Decision trees

Terence Parr MSDS program **University of San Francisco**

The essence of decision trees

- Decision trees are like kNN, but with rectangular not polygonal hypervolumes, dynamic k not fixed k (based on regions not points)
- Partition feature space into tight rectangular hypervolumes of feature space with constraint that we want *y* values to be as pure/similar as possible for records in that hypervolume
- Not so tight that the hypervolumes have too few feature vectors (records/samples), which tends to overfit the training data
- Prediction for unknown vector:
 - predict the mean y for training samples in that hypervolume (regression)
 - predict the mode (most common) y in that hypervolume (classification)
- Binary trees just happen to be an efficient implementation

Basic properties of decision tree models

- Decision trees consist of internal decision nodes and leaf nodes that make predictions
- Each input record (feature vector) is contained in exactly one leaf node
- Each leaf has 1 or more records whose y's are as pure as possible (model hyperparameters affect number of records per leaf)
- Prediction proceeds from root to leaf, testing var/value combos
- Regressor: leaf predicts average of y for associated records
- Classifier: leaf predicts mode (most common) class

Let's reinvent decision trees

Let's create a simple regressor in 1D

Improve by partitioning, using multiple lines

Strategy: find split point giving least MSE

Strategy: find split point giving least MSE

Split WGT into two JETTER! subregions, 40 each predicting 90 BUM mean 20 10 2000 3000 4000 5000 Vehicle Weight

WGT=3500 is ANOTHER BAD CHOICE: MSE very high (still dissimilar)

Note: MSE for mean model is same as variance (average squared difference from mean)

A split exists that gives min MSE for regions

Slide s1 from left to right over x_i range, computing subregion MSE Choose WGT location with min average MSE for subregions Technique:

Exhaustively check all feature values, computing MSE or variance of subregions for each split

Choose split point giving min MSE

Now split those 2 regions to get 4 regions

Split s1 stays, *recursively* split left/right regions to get splits s2, s3

Kinda like binary search or other divide-and-conquer strategy

Slide s2 from left to s1, computing MSEs; choose x location with min avg MSE UNIVERSITY OF SAN FRANCISCO Slide s3 from s1 to right, computing MSEs; choose x location with min avg MSE

Recursive call-tree from model training gives regions defined by splits s1,s2,s3

Split (recurse) until one of:

- All potential splits do not reduce MSE
- All nodes have min num samples
- Max number of splits reached
- Etc...

Predictions are avg of MPG (target) values in subregions

Hardcoded non-tree model implementation

To partition space, test in recursion/split order

if x<s1 and x<s2: predict 32.6
if x<s1 and x>=s2: predict 26.3
if x>=s1 and x<s3: predict 20.5
if x>=s1 and x>=s3: predict 14.6

Note repeated comparisons!

Factor the split comparisons for efficiency


```
if x<s1:
    if x<s2: predict 32.6
    else: predict 26.3
else:
    if x<s3: predict 20.5
    else: predict 14.6
```

But, don't want to hardcode model!

We morph tree of recursion from training into decision tree! UNIVERSITY OF SAN FRANCISCO

1D feature space vs dtreeviz decision tree

https://github.com/parrt/msds621/blob/master/notebooks/trees/partitioning.ipynb

INIVERSITY OF SAN FRANCISCO

2D regressor feature space (heatmap, 3D)

An aside: partitioning, tree viz done with custom library

- Do "pip install dtreeviz"
- Partially built with Prince Grover, previous MSDS student
- See https://github.com/parrt/dtreeviz and the article for more detail: https://explained.ai/decision-tree-viz/index.html
- Advice: never accept status quo; always strive for more / better
- See "How to lead a fulfilling life by being dissatisfied" buried in my talk on decision tree viz <u>https://twitter.com/the_antlr_guy/status/1120359898062000128</u>

Classifiers

Classifiers split feature space too

Predict wine from proline

- Internal decision nodes test features just like regressor trees
- Leaves predict most common target category (mode) not mean
- Find split that decreases average impurity of left/right subregions (we'll need a definition of impurity for categories)

https://github.com/parrt/msds621/blob/master/notebooks/trees/partitioning.ipynb

UNIVERSITY OF SAN FRANCISCO

Split s1 subregions into more subregions

To improve predictions: Use 2 features and split 2D feature space into regions

Training looks for (feature, split point) combos giving more **pure** subregions. To test: decision nodes compare single feature value in subset of records to split point

To improve predictions: Use 2 features and split 2D feature space into regions

Training looks for (feature, split point) combos giving more **pure** subregions. To test: decision nodes compare single feature value in subset of records to split point

UNIVERSITY OF SAN FRANCISCO

Compare depth=2 trees for 1D, 2D vars

All splits use same proline variable

Splits use proline and flavanoid

🛞 UNIVERSITY OF SAN FRANCISCO

Node impurity: Gini impurity

- Measures y's uncertainty, like entropy but fas
- Minimize gini during node splitting
- Let p_i be the fraction of y values with class i and k = num of classes

$$Gini(y) = \sum_{i=1}^{k} p_i \left[\sum_{j \neq i}^{k} p_j \right] = \sum_{i=1}^{k} p_i (1 - p_i) = 1 - \sum_{i=1}^{k} p_i^2$$

- Gini range is 0..(k-1)/k
- Max uncertainty is when all $p_i = p_j$: $p_i = 1/k$ so gini = $1 - \sum_{i=1}^k \frac{1}{k^2} = 1 - 1/k = (k-1)/k$
- Min uncertainty is when a single $p_i = 1$ and other $p_j = 0$

See https://github.com/parrt/msds621/blob/master/notebooks/trees/gini-impurity.ipynb

Tree structure's effect on prediction error

Hyperparameter max_depth

Restricts how many splits tree can make, preventing tree from getting too specific to training set (zeroing in on outliers)

Hyperparameter min_samples_leaf

- Idea: don't split regions w/less than min_samples_leaf records
- Similar to limiting height of tree but finer granularity of control
- More direct control of generality than tree height
- Degenerate case where min_samples_leaf=n
 - What does such a regressor predict?
 - What does such a classifier predict?
 - Describe accuracy of this extreme model
 - If we trained on many different training sets pulled from same data distribution, how stable would the test set prediction error be? (What does that say about variance/generality?)

2D tesselation varying min samples/leaf in action

As min leaf size gets bigger, more general but less accurate Synthetic dataset, 1 samples/leaf

🏶 UNIVERSITY OF SAN FRANCISCO

What happens with very small leaves?

Check out that lonely blue dot in sea of yellow! (let's assume tiny region is blue)

We let model get overly specific; it's overfit

Accuracy on training set is very high, but at the cost of generality; test set error is higher than necessary

(Wine data set)

How could we (likely) improve generality?

(Wine data set)

Key takeaways

- Trees partition feature space into rectangular hypervolumes of similar features but also with pure/similar y values for records in that hypervolume
- Decision trees have internal decision nodes that test variables at split points and leaf nodes that make predictions
- Leaves predict mean (regressor) or mode (classifier) of samples
- Partitioning subject to reducing MSE (y variance) or Gini impurity
- Limiting tree height or increasing leaf size reduces accuracy but improves generality
- (We'll have whole lecture on training these beasts)

Lab time

• Partitioning feature space

https://github.com/parrt/msds621/blob/master/labs/trees/partitioning-feature-space.ipynb

