
Decision trees
Terence Parr
MSDS program
University of San Francisco



The essence of decision trees
• Decision trees are like kNN, but with rectangular not polygonal 

hypervolumes, dynamic k not fixed k (based on regions not points)
• Partition feature space into tight rectangular hypervolumes of 

feature space with constraint that we want 𝑦 values to be as 
pure/similar as possible for records in that hypervolume

• Not so tight that the hypervolumes have too few feature vectors 
(records/samples), which tends to overfit the training data

• Prediction for unknown vector:
• predict the mean 𝑦 for training samples in that hypervolume (regression)
• predict the mode (most common) 𝑦 in that hypervolume (classification)

• Binary trees just happen to be an efficient implementation



Basic properties of decision tree models
• Decision trees consist of internal decision nodes

and leaf nodes that make predictions
• Each input record (feature vector) is

contained in exactly one leaf node
• Each leaf has 1 or more records whose 𝑦’s are

as pure as possible (model hyperparameters
affect number of records per leaf)

• Prediction proceeds from root to leaf, testing var/value combos
• Regressor: leaf predicts average of 𝑦 for associated records
• Classifier: leaf predicts mode (most common) class

Most images in these slides from package https://github.com/parrt/dtreeviz

https://github.com/parrt/dtreeviz


Let’s reinvent decision trees



Let’s create a simple regressor in 1D
Predict a single
constant for
entire region
(the mean)

MSE is high,
residual variance 
is high

Predict MPG
from weight

Residuals from
point to region
mean



Improve by partitioning, using multiple lines
Can only use
horizontal lines,
but can use lots

Each region
predicts mean
in piecewise
fashion

WHERE DO
WE SPLIT??
Find ranges of 
WGT with similar 
MPG values, which
yields a lower
MSE



Strategy: find split point giving least MSE
WGT=2000 is
BAD CHOICE:
MSE very high
(subregion 𝑦's 
are still 
dissimilar)

Split WGT
into two
subregions,
each
predicting
mean

BOO!



Strategy: find split point giving least MSE
WGT=3500 is
ANOTHER
BAD CHOICE:
MSE very high
(still dissimilar)BE

TT
ER
!

Split WGT
into two
subregions,
each
predicting
mean

Note: MSE for 
mean model is 
same as variance
(average squared 
difference from 
mean)



A split exists that gives min MSE for regions

Technique:
Exhaustively
check all feature
values, computing 
MSE or variance 
of subregions for 
each split

Choose split point
giving min MSE

s1

Not bad!

Slide s1 from left to right over 𝑥! range, computing subregion MSE
Choose WGT location with min average MSE for subregions



Now split those 2 regions to get 4 regions
Split s1 stays,
recursively split
left/right regions to
get splits s2, s3

Kinda like binary
search or other
divide-and-conquer
strategy

s1s2 s3

Slide s2 from left to s1, computing MSEs; choose 𝑥 location with min avg MSE
Slide s3 from s1 to right, computing MSEs; choose 𝑥 location with min avg MSE



Recursive call-tree from model training
gives regions defined by splits s1,s2,s3

s1=split(1000,5000)

s2=split(1000,s1) s3=split(s1,5000)

s1s2 s3 [1000,s2) [s2,s1) [s1,s3) [s3,5000)

Split (recurse) until one of:
• All potential splits do not reduce MSE
• All nodes have min num samples
• Max number of splits reached
• Etc…

Predictions are avg of MPG
(target) values in subregions



Hardcoded non-tree model implementation

To partition space, test in 
recursion/split order

if x<s1 and x<s2: predict 32.6
if x<s1 and x>=s2: predict 26.3
if x>=s1 and x<s3: predict 20.5
if x>=s1 and x>=s3: predict 14.6

s1s2 s3 Note repeated comparisons!



Factor the split comparisons for efficiency

if x<s1:
if x<s2: predict 32.6
else: predict 26.3

else:
if x<s3: predict 20.5
else: predict 14.6

s1s2 s3

But, don’t want to hardcode model!



Represent nested conditionals as tree

s1

s2 s3

32.6 26.3 20.5 14.6

< >=

< >=< >=
Internal nodes test features
Leaves predict region mean

s1s2 s3

We morph tree of recursion from training into decision tree!

if x<s1:if x<s2: predict 32.6

else: predict 26.3

else:if x<s3: predict 20.5

else: predict 14.6

rotate 90°



1D feature space vs dtreeviz decision tree

https://github.com/parrt/msds621/blob/master/notebooks/trees/partitioning.ipynb

s1s2 s3

s1

s2 s3

https://github.com/parrt/msds621/blob/master/notebooks/trees/partitioning.ipynb


2D regressor feature space (heatmap, 3D)



How predictions are
made from unknown 𝒙



An aside: partitioning, tree viz done with 
custom library
• Do “pip install dtreeviz”
• Partially built with Prince Grover, previous MSDS student
• See https://github.com/parrt/dtreeviz and the article for more 

detail: https://explained.ai/decision-tree-viz/index.html
• Advice: never accept status quo; always strive for more / better
• See “How to lead a fulfilling life by being dissatisfied” buried in 

my talk on decision tree viz
https://twitter.com/the_antlr_guy/status/1120359898062000128

https://github.com/parrt/dtreeviz
https://explained.ai/decision-tree-viz/index.html
https://twitter.com/the_antlr_guy/status/1120359898062000128


Classifiers



Classifiers split feature space too

s1

• Internal decision nodes test features just like regressor trees
• Leaves predict most common target category (mode) not mean
• Find split that decreases average impurity of left/right subregions

(we'll need a definition of impurity for categories)

Predict wine
from proline

https://github.com/parrt/msds621/blob/master/notebooks/trees/partitioning.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/trees/partitioning.ipynb


Split s1 subregions into more subregions

s1s2 s3

Still not very pure though

All splits use same proline variable



To improve predictions: 
Use 2 features and 
split 2D feature
space into regions

s1

Training looks for (feature, split point)
combos giving more pure subregions.
To test: decision nodes compare single feature
value in subset of records to split point



s2

s1

s3

Training looks for (feature, split point)
combos giving more pure subregions.
To test: decision nodes compare single feature
value in subset of records to split point

To improve predictions: 
Use 2 features and 
split 2D feature
space into regions



Compare depth=2 trees for 1D, 2D vars

All splits use same proline variable Splits use proline and flavanoid



For bigger trees, can
do nonfancy plot, leaf plots

Leaf stacked barcharts showing samples per class



• Measures y’s uncertainty, like entropy but faster
• Minimize gini during node splitting
• Let 𝑝" be the fraction of 𝑦 values

with class 𝑖 and 𝑘 = num of classes

• Gini range is 0..(k-1)/k
• Max uncertainty is when all 𝑝" = 𝑝#:
𝑝" = 1/𝑘 so gini = 1 − ∑"$%& %

&!
= 1 − 1/𝑘 = (𝑘 − 1)/𝑘

• Min uncertainty is when a single 𝑝" = 1 and other 𝑝# = 0

Node impurity: Gini impurity

See https://github.com/parrt/msds621/blob/master/notebooks/trees/gini-impurity.ipynb

𝑝"

𝑘=2 case, entropy scaled to 0..1/2 

https://github.com/parrt/msds621/blob/master/notebooks/trees/gini-impurity.ipynb


Tree structure’s effect on 
prediction error



Hyperparameter 
max_depth
Restricts how many splits tree 
can make, preventing tree from 
getting too specific to training 
set (zeroing in on outliers)



Hyperparameter min_samples_leaf

• Idea: don’t split regions w/less than min_samples_leaf records
• Similar to limiting height of tree but finer granularity of control
• More direct control of generality than tree height
• Degenerate case where min_samples_leaf=n

• What does such a regressor predict?
• What does such a classifier predict?
• Describe accuracy of this extreme model
• If we trained on many different training sets pulled from same data 

distribution, how stable would the test set prediction error be? (What 
does that say about variance/generality?)

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb


2D tesselation
varying min 
samples/leaf
in action
As min leaf size gets bigger, 
more general but less 
accurate



Trees for 200,100,50 samples per leaf
(Boston housing data, n=506 records)

• Leaves have fewer & fewer elements, but tree is bigger
• Variance of 𝑦 in leaves shrinks with samples/leaf,

which is training goal; increase accuracy by
reducing impurity



What happens with very small leaves?
Check out that lonely blue dot in sea of
yellow! (let’s assume tiny region is blue)

We let model get overly specific; it’s overfit

Accuracy on training set is very high, but at
the cost of generality; test set error is higher
than necessary

Max depth 5

(Wine data set)



How could we (likely) improve generality?

Max depth 5
Max depth 3 or
min samples / leaf 10

Blue dot now gets classified as yellow

(Wine data set)



Key takeaways
• Trees partition feature space into rectangular hypervolumes of 

similar features but also with pure/similar 𝑦 values for records in 
that hypervolume

• Decision trees have internal decision nodes that test variables at 
split points and leaf nodes that make predictions

• Leaves predict mean (regressor) or mode (classifier) of samples
• Partitioning subject to reducing MSE (𝑦 variance) or Gini impurity
• Limiting tree height or increasing leaf size reduces accuracy but 

improves generality
• (We’ll have whole lecture on training these beasts)



Lab time

• Partitioning feature space
https://github.com/parrt/msds621/blob/master/labs/trees/partitioning-feature-space.ipynb

https://github.com/parrt/msds621/blob/master/labs/trees/partitioning-feature-space.ipynb

