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Data prep overview

• Data sets must follow two fundamental rules before use in models:
1. all data must be numeric
2. there can't be any missing values

• Must delete or derive numeric features from nonnumeric features, 
such as strings, dates, and categorical variables

• Even with purely numeric data, there is potential cleanup work, 
such as deleting or replacing erroneous/missing entries or even 
deleting entire records that are outside our business rules



Data cleaning



Decide what you care about
• View all data cleaning operations through the lens of what 

exactly we want the model to do, as dictated by business or 
application

• For apartment data set, we want to predict apartment prices but
• just for New York City
• just for the reasonably-priced apartments
• E.g., $1k < rent < $10k and GPS inside NYC

• Don’t make decisions about “reasonable values” after looking at 
the data because we risk losing generality;
inappropriate data peeking is a form of overfitting

See https://mlbook.explained.ai/prep.html and https://mlbook.explained.ai/bulldozer-intro.html

https://mlbook.explained.ai/prep.html
https://mlbook.explained.ai/bulldozer-intro.html


Why we care about noise, outliers
• Noise and outliers can lead to inconsistencies
• Zooming in on a small region of New York City there are two 

apartments with similar features but that are much more expensive:

• Could be missing a key feature (view or parking?); sale not rent price?
• Could be errors or simply outliers but such inconsistent data leads to 

inaccurate predictions
• RFs predict the average price for all apartments in same feature 

space so predictions for these will be way off

??



To begin: take a quick sniff of the data

• Identify:
• column names
• their datatypes
• whether target column has numeric 

values or categories
• Look inside the values of string 

columns as we might want to break 
them into multiple columns



Look at data ranges with describe()

• 10 bathrooms? 0 bedrooms? Wow.
• Longitude and latitude of 0?
• Apts that are $43 and $4,490,000 / month? Wow 



Check distributions
• Only a few outlier apartments with > 6 bedrooms/bathrooms

Not many outliers:
len(df[df.price>10_000]) = 878



Check variable-target relationships too
• Sometimes checking the relationship between each variable 

and the target can be illuminating; e.g., here is a categorical 
variable versus bulldozer sale price:

We should try extracting useful 
info from feature as it is predictive



Let’s clean up

• Filter data per business goals
• In NY only:

• Reasonable prices:

• If column known to be corrupted or useless, can just delete it; e.g., 
from bulldozer data set:

df_clean = df[(df['latitude']>40.55) & (df['latitude']<40.94) &
(df['longitude']>-74.1) & (df['longitude']<-73.67)]

df_clean = df[(df.price>1_000) & (df.price<10_000)]

del df[‘MachineID’]



More clean up

• Sold before manufactured? (ask 
stakeholders) Can adjust date or delete 
if there few enough of those records

• Some columns are read in as numbers 
but are really categorical; e.g., bulldozer 
auctioneerID; we can set to strings 
(affects missing data handling):
df['auctioneerID’] = df['auctioneerID'].astype(str)

?

Don’t replace with median (to impute value)



Normalization

• Some columns are shown as strings but are 
numbers; e.g., bulldozer Tire_Size; delete double-
quote and then convert column to numbers

• Bulldozer Stick_length is more complicated but 
could still be normalized to inches rather than string

• Bulldozer Enclosure has “EROPS w AC” and 
“EROPS AC”; normalize to one or other:
df['Enclosure'].replace('EROPS w AC','EROPS AC')



Find missing data indicators

• Missing values are np.NaN after loading with pandas
• BUT, some are physically-present numbers or strings 

that actually represent missing values: 
• Rent dataset: Some longitude/latitude values are 0

(off the west coast of Africa?)
• Bulldozer dataset: strings like Tire_Size have

“None or Unspecified”
• Bulldozer fiModelSeries has “#Name?”

• Replace those with NaN; for example:
df.loc[df['Tire_Size']=='None or Unspecified’,

'Tire_Size'] = np.nan



More missing data indicators

• Something fishing with Bulldozer YearMade
• YearMade=1000 must mean unknown

(or don’t ask it’s age! haha)
• Replace weird dates with NaN (missing):

• Bulldozer Backhoe_Mounting should be 
boolean; normalize, convert to true/false, set type

df.loc[df.YearMade<1950, 'YearMade'] = np.nan



Encoding non-numeric 
variables



Encoding date variables

• Date columns in datasets are often predictive of target variables
• E.g., in bulldozer data set, the date of sale and the year of 

manufacture together are strongly predictive of the sale price
• General procedure:

• Shatter date columns into constituent components such as: year, 
month, day, day of week (1..7), day of year (1..365), and even things 
like “end of quarter” and “end of month”

• After extracting the components, convert datetime64 column to integer 
with number of seconds since 1970 (unix time)

• Can add business holidays, big snowstorm days, …

See https://mlbook.explained.ai/bulldozer-feateng.html

https://mlbook.explained.ai/bulldozer-feateng.html


Date-related computations also useful

• E.g., bulldozer should add age:

Makes life easier on the RF model
• Can try introducing variables like

“days since event E” (e.g., “days since
we had a big sale”) or other cumulative
counts, averages, sums, etc…

df['age'] = df['saleyear'] - df['YearMade’]



Sample date conversion code



Encoding categorical vars
• Categorical variables are named elements like 

US states or arbitrary strings like addresses; 
pandas calls them objects

• We distinguish between ordinal (low/high) and 
nominal (zip code) categoricals

• First, convert ordinals to appropriate ordered ints
• Then, make a choice about nominals:

• One-hot encode (dummy variables)
• Label encode (category → unique integer)
• Frequency encode
• Break up string into more useful columns
• Advanced: embeddings, target encoding, …

See https://mlbook.explained.ai/catvars.html and
https://mlbook.explained.ai/bulldozer-feateng.html

https://mlbook.explained.ai/catvars.html
https://mlbook.explained.ai/bulldozer-feateng.html


Start by converting ordinals
• Bulldozer ProductSize categorical is ordinal not 

nominal so convert it to integers with appropriate order
• Marginal plot makes it look very predictive
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Ordinal encoding mechanics

• Apply a dictionary, mapping name to ordered value
• E.g., rent data set:

• For RFs, only the order matters not the scale so 
{'low':10,'medium':20,'high':30} would also work

df['interest_level'] = \
df['interest_level'].map({'low':1,'medium':2,'high':3})



One-hot encoding (dummy variables)

• Instead of a number, the “hot” position indicates the category
• Notice how the missing value ends up with none hot (all 0s)

onehot = pd.get_dummies(df['Dept’])
df_encoded = pd.concat([df, onehot], axis=1)
del df_encoded[‘Dept’]

(Some people differentiate between one-hot and dummy vars.)

Note: RFs don't require dummy variables but sometimes dummies are useful



When to one-hot encode

• Don’t one-hot encode when there are many 
cat levels otherwise you will end up with 
thousands of columns in your data set

• That slows down training speed and usually 
doesn’t help (for RFs)

• One-hot encoding is worth it for cat vars that 
are strongly predictive (if there are few levels)

• E.g., “EROPS AC” gets, on average, twice the 
price of the other bulldozers meaning air-
conditioning is important



Frequency encoding

• Sometimes we can extract some 
meaning from the nominals

• Convert categories to the frequencies 
with which they appear in the training

• E.g., rent data: might be predictive 
power in the number of apartments 
managed by a particular manager
managers_count = df['manager_id'].value_counts()
df['mgr_apt_count'] = df['manager_id'].map(managers_count)



Label encoding categoricals

• If you can’t extract more useful information from a nominal 
variable, label encode it

• There are more advanced techniques such as embeddings, 
target encoding but we’ll leave those to another class

• Result: each category becomes a unique numeric value where 
missing becomes 0 and other categories are 1..n

• We ignore the fact that the categories are not really ordered



Label encoding mechanics 

• Convert string column to ordered categorical
• Replace categories with cat code + 1
• NaN gets cat code -1 so +1 means missing = 0

def df_string_to_cat(df):
for col in df.columns:

if is_string_dtype(df[col]):
df[col] = df[col].astype('category')
df[col] = df[col].cat.as_ordered()

def df_cat_to_catcode(df):
for col in df.columns:

if is_categorical_dtype(df[col]):
df[col] = df[col].cat.codes + 1



The unreasonable effectiveness of label 
encoding categorical variables
• Why is it “legal” to convert all of those unordered (nominal) 

categorical variables to ordered integers?
• RF models can still partition such converted categorical features 

in a way that is predictive
• Might require more complex / bigger tree
• Definitely not appropriate for models doing math on variables, 

such as linear models (which require one-hot encoding)
• In practice, label encoding categorical variables is surprisingly 

effective
• Some RF models do subset comparisons not int comparisons



Dealing with missing data



Real data sets are often full of holes

• Here are some stats on Bulldozer data set



Missing categorical data

• Missing categorical values are dealt with automatically because 
of the label-encoding process

• We convert categories to unique integer values and missing 
values, np.nan, become category code 0 and all other 
categories are codes 1 and above

• In other words, “missing” is just another category hardcoded to 0



Missing numeric data
• Don’t delete columns/rows with missing values; destroys info!
• Don’t just replace missing values; destroys fact they were missing
• E.g., missing YearMade could mean “ancient”
• E.g., missing Employer on loan app could mean ”unemployed” 

(or missing YearsOfEducation might mean ”no college degree”)
• We still must fill in values in order to train a model, however, and 

we don’t want to skew the column distribution by replacing with 0 
or 999999 or some other anomalous value



Imputing missing numeric values
• Dealing with missing numeric values requires a new column 

and replacement of np.nans:
1. For column x, create a new boolean column x_na where x_na[i] is 

true if x[i] is missing.
2. Replace missing values in column x with the median of all x values in 

that column.
def fix_missing_num(df, colname):

df[colname+'_na'] = pd.isnull(df[colname])
df[colname].fillna(df[colname].median(), inplace=True)



Supporting academic work

• See “On the consistency of supervised learning with 
missing values”
https://hal.archives-ouvertes.fr/hal-02024202v2:

“A striking result is that the widely-used method of imputing with 
the mean prior to learning is consistent when missing values 
are not informative.”

“When missingness is related to the prediction target, 
imputation does not suffice and it is useful to add indicator 
variables of missing entries as features.”

https://hal.archives-ouvertes.fr/hal-02024202v2


Rectifying training and validation sets
• Replacing missing values, encoding categorical variables, etc… introduces 

synchronization issues between training and validation/test sets
• Key rules:

1. Transformations must be applied to features consistently across data subsets
2. Transformations of validation/test sets can only use data derived from training set

• To follow those rules, we have to remember all transformations done to the 
training set for later application to the validation and test sets.

• That means tracking the median of all numeric columns, all category-to-
code mappings, frequency encodings, and one-hot’d categories

• Special care is required to ensure that one-hot encoded variables use the 
same name and number of columns in the training and testing sets.

• Beware: it's easy to screw up the synchronization!

For details, see https://mlbook.explained.ai/bulldozer-testing.html

https://mlbook.explained.ai/bulldozer-testing.html

