# Preparing data for modeling

Terence Parr MSDS program **University of San Francisco** 



#### Data prep overview

- Data sets must follow two fundamental rules before use in models:
  - 1. all data must be numeric
  - 2. there can't be any missing values
- Must delete or derive numeric features from nonnumeric features, such as strings, dates, and categorical variables
- Even with purely numeric data, there is potential cleanup work, such as deleting or replacing erroneous/missing entries or even deleting entire records that are outside our business rules



# Data cleaning



#### Decide what you care about

- View all data cleaning operations through the lens of what exactly we want the model to do, as dictated by business or application
- For apartment data set, we want to predict apartment prices but
  - just for New York City
  - just for the reasonably-priced apartments
  - E.g., \$1k < rent < \$10k and GPS inside NYC
- Don't make decisions about "reasonable values" after looking at the data because we risk losing generality; inappropriate data peeking is a form of overfitting

See <a href="https://mlbook.explained.ai/prep.html">https://mlbook.explained.ai/bulldozer-intro.html</a> and <a href="https://mlbook.explained.ai/bulldozer-intro.html">https://mlbook.explained.ai/bulldozer-intro.html</a>



#### Why we care about noise, outliers

- Noise and outliers can lead to inconsistencies
- Zooming in on a small region of New York City there are two apartments with similar features but that are much more expensive:

|       | bedrooms | bathrooms | street_address       | price   | •  |
|-------|----------|-----------|----------------------|---------|----|
| 39939 | 1        | 1.0000    | west 54 st & 8 ave   | 2300    |    |
| 21711 | 1        | 1.0000    | 300 West 55th Street | 2400    |    |
| 15352 | 1        | 1.0000    | 300 West 55th Street | 3350    |    |
| 48274 | 1        | 1.0000    | 300 West 55th Street | 3400    | ?? |
| 29665 | 1        | 1.0000    | 333 West 57th Street | 1070000 |    |
| 30689 | 1        | 1.0000    | 333 West 57th Street | 1070000 |    |

- Could be missing a key feature (view or parking?); sale not rent price?
- Could be errors or simply outliers but such inconsistent data leads to inaccurate predictions
- RFs predict the average price for all apartments in same feature space so predictions for these will be way off



#### To begin: take a quick sniff of the data

• Identify: bathrooms 1.5000 **bedrooms** 3 column names building id 53a5b119ba8f7b61d4e010512... • their datatypes 2016-06-24 07:54:24 created description A Brand New 3 Bedroom 1.5... whether target column has numeric display\_address Metropolitan Avenue values or categories features latitude 40.7145 Look inside the values of string listing\_id 7211212 columns as we might want to break longitude -73.9425manager\_id 5ba989232d0489da1b5f2c45f... them into multiple columns photos ['https://photos.renthop.... price 3000 street address 792 Metropolitan Avenue

interest level

🛞 UNIVERSITY OF SAN FRANCISCO

medium

#### Look at data ranges with describe()

- 10 bathrooms? 0 bedrooms? Wow.
- Longitude and latitude of 0?
- Apts that are \$43 and \$4,490,000 / month? Wow

|       | bathrooms  | bedrooms   | longitude  | latitude   | price        |
|-------|------------|------------|------------|------------|--------------|
| count | 49352.0000 | 49352.0000 | 49352.0000 | 49352.0000 | 49352.0000   |
| mean  | 1.2122     | 1.5416     | -73.9557   | 40.7415    | 3830.1740    |
| std   | 0.5014     | 1.1150     | 1.1779     | 0.6385     | 22066.8659   |
| min   | 0.0000     | 0.0000     | -118.2710  | 0.0000     | 43.0000      |
| 25%   | 1.0000     | 1.0000     | -73.9917   | 40.7283    | 2500.0000    |
| 50%   | 1.0000     | 1.0000     | -73.9779   | 40.7518    | 3150.0000    |
| 75%   | 1.0000     | 2.0000     | -73.9548   | 40.7743    | 4100.0000    |
| max   | 10.0000    | 8.0000     | 0.0000     | 44.8835    | 4490000.0000 |



#### **Check distributions**

• Only a few outlier apartments with > 6 bedrooms/bathrooms

| print(df_nu | um.bathroom | s.value | _counts()) |
|-------------|-------------|---------|------------|
|             |             |         |            |
|             | 1.0         | 39422   |            |
|             | 2.0         | 7660    |            |
|             | 3.0         | 745     |            |
|             | 1.5         | 645     |            |
|             | 0.0         | 313     |            |
|             | 2.5         | 277     |            |
|             | 4.0         | 159     |            |
|             | 3.5         | 70      |            |
|             | 4.5         | 29      |            |
|             | 5.0         | 20      |            |
|             | 5.5         | 5       |            |
|             | 6.0         | 4       |            |
|             | 6.5         | 1       |            |
|             | 10.0        | 1       |            |
|             | 7.0         | 1       |            |
| Name:       | bathrooms,  | dtype:  | int64      |



Not many outliers: len(df[df.price>10\_000]) = 878

UNIVERSITY OF SAN FRANCISCO

#### Check variable-target relationships too

 Sometimes checking the relationship between each variable and the target can be illuminating; e.g., here is a categorical variable versus bulldozer sale price:

Skid Steer Loader - 2201.0 to 2701.0 Lb Operating Capacity Wheel Loader - 0.0 to 40.0 Horsepower Skid Steer Loader - 1751.0 to 2201.0 Lb Operating Capacity Hydraulic Excavator, Track - 4.0 to 6.0 Metric Tons Hydraulic Excavator, Track - 2.0 to 3.0 Metric Tons Skid Steer Loader - 0.0 to 701.0 Lb Operating Capacity Hydraulic Excavator, Track - 0.0 to 2.0 Metric Tons Skid Steer Loader - 976.0 to 1251.0 Lb Operating Capacity Motorgrader - Unidentified Skid Steer Loader - 1601.0 to 1751.0 Lb Operating Capacity Skid Steer Loader - 1251.0 to 1351.0 Lb Operating Capacity Skid Steer Loader - 1351.0 to 1601.0 Lb Operating Capacity Skid Steer Loader - 1351.0 to 1601.0 Lb Operating Capacity Skid Steer Loader - 1351.0 to 1601.0 Lb Operating Capacity Skid Steer Loader - 1351.0 to 1601.0 Lb Operating Capacity Skid Steer Loader - 10 to 1601.0 Lb Operating Capacity

We should try extracting useful info from feature as it is predictive





#### Let's clean up

- Filter data per business goals
- In NY only:

• Reasonable prices:

```
df_clean = df[(df.price>1_000) & (df.price<10_000)]
```

• If column known to be corrupted or useless, can just delete it; e.g., from bulldozer data set:

```
del df['MachineID']
```



#### More clean up

SalePrice YearMade Sold before manufactured? (ask 1995-03-31 1996.0 36156 27000 stakeholders) Can adjust date or delete 11500 1996.0 1995-04-08 36417 if there few enough of those records 1995-01-25 34303 70000 1996.0 Some columns are read in as numbers auctioneerID but are really categorical; e.g., bulldozer 0 auctioneerID; we can set to strings (affects missing data handling): 1

df['auctioneerID'] = df['auctioneerID'].astype(str)

Don't replace with median (to impute value) NaN -4



2

3

saledate

6.0

2.0

3.0

1.0

#### Normalization

- Some columns are shown as strings but are numbers; e.g., bulldozer Tire\_Size; delete doublequote and then convert column to numbers
- Bulldozer Stick\_length is more complicated but could still be normalized to inches rather than string
- Bulldozer Enclosure has "EROPS w AC" and "EROPS AC"; normalize to one or other: df['Enclosure'].replace('EROPS w AC', 'EROPS AC')

|                  | Tire_Size                                                      |
|------------------|----------------------------------------------------------------|
| 0                | None                                                           |
| 1                | 23.5                                                           |
| 2                | 14"                                                            |
| 3                | None or Unspecified                                            |
| 4                | 17.5"                                                          |
|                  |                                                                |
|                  | Stick_Length                                                   |
| 0                | Stick_Length<br>None                                           |
| 0<br>1           | Stick_Length<br>None<br>None or Unspecified                    |
| 0<br>1<br>2      | Stick_Length<br>None<br>None or Unspecified<br>10' 2"          |
| 0<br>1<br>2<br>3 | Stick_Length<br>None<br>None or Unspecified<br>10' 2"<br>9' 6" |



#### Find missing data indicators

|                                                                                     |   | <b>0</b> 5          |
|-------------------------------------------------------------------------------------|---|---------------------|
| <ul> <li>Missing values are np.NaN after loading with pandas</li> </ul>             |   | 1 SeriesII          |
| <ul> <li>BUT, some are physically-present numbers or strings</li> </ul>             |   | <b>2</b> #NAME?     |
| that actually represent missing values:                                             |   | 3 ZTS               |
| <ul> <li>Rent dataset: Some longitude/latitude values are 0</li> </ul>              |   |                     |
| (off the west coast of Africa?)                                                     |   | Tire_Size           |
| <ul> <li>Bulldozer dataset: strings like Tire_Size have</li> </ul>                  | 0 | None                |
| "None or Unspecified"                                                               | 1 | 23.5                |
| <ul> <li>Bulldozer fiModelSeries has "#Name?"</li> </ul>                            | 2 | 14"                 |
| <ul> <li>Replace those with NaN; for example:</li> </ul>                            | 3 | None or Unspecified |
| <pre>df.loc[df['Tire_Size']=='None or Unspecified',     'Tire_Size'] = np.nan</pre> | 4 | 17.5"               |

UNIVERSITY OF SAN FRANCISCO

**fiModelSeries** 



2

Yes

UNIVERSITY OF SAN FRANCISCO

# Encoding non-numeric variables



#### Encoding date variables

- Date columns in datasets are often predictive of target variables
- E.g., in bulldozer data set, the date of sale and the year of manufacture together are strongly predictive of the sale price
- General procedure:
  - Shatter date columns into constituent components such as: year, month, day, day of week (1..7), day of year (1..365), and even things like "end of quarter" and "end of month"
  - After extracting the components, convert datetime64 column to integer with number of seconds since 1970 (unix time)
- Can add business holidays, big snowstorm days, ...

See <a href="https://mlbook.explained.ai/bulldozer-feateng.html">https://mlbook.explained.ai/bulldozer-feateng.html</a>



#### Date-related computations also useful

• E.g., bulldozer should add age:

df['age'] = df['saleyear'] - df['YearMade']

Makes life easier on the RF model

 Can try introducing variables like "days since event E" (e.g., "days since we had a big sale") or other cumulative counts, averages, sums, etc...



UNIVERSITY OF SAN FRANCISCO

#### Sample date conversion code

```
def df_split_dates(df,colname):
    df["saleyear"] = df[colname].dt.year
    df["salemonth"] = df[colname].dt.month
    df["saleday"] = df[colname].dt.day
    df["saledayofweek"] = df[colname].dt.dayofweek
    df["saledayofyear"] = df[colname].dt.dayofyear
    df[colname] = df[colname].astype(np.int64) # convert to seconds since 1970
```

|               | 0                   |
|---------------|---------------------|
| saledate      | 1232668800000000000 |
| saleyear      | 2009                |
| salemonth     | 1                   |
| saleday       | 23                  |
| saledayofweek | 4                   |
| saledayofyear | 23                  |



### Encoding categorical vars

- Categorical variables are named elements like US states or arbitrary strings like addresses; pandas calls them objects
- We distinguish between *ordinal* (low/high) and *nominal* (zip code) categoricals
- First, convert ordinals to appropriate ordered ints
- Then, make a choice about nominals:
  - One-hot encode (dummy variables)
  - Label encode (category  $\rightarrow$  unique integer)
  - Frequency encode
  - Break up string into more useful columns
  - Advanced: embeddings, target encoding, ...

See <u>https://mlbook.explained.ai/catvars.html</u> and <u>https://mlbook.explained.ai/bulldozer-feateng.html</u>

| MachineHoursCurrentMeter | float64        |
|--------------------------|----------------|
| saledate                 | datetime64[ns] |
| Coupler                  | object         |
| Tire_Size                | object         |
| Tip_Control              | object         |
| Hydraulics               | object         |

The easy way to remember the difference between ordinal and nominal variables is that ordinal variables have order and nominal comes from the word for "name" in Latin (*nomen*) or French (*nom*).



#### Start by converting ordinals

- Bulldozer ProductSize categorical is ordinal not nominal so convert it to integers with appropriate order
- Marginal plot makes it look very predictive



#### Ordinal encoding mechanics

- Apply a dictionary, mapping name to ordered value 1
- E.g., rent data set:

```
df['interest_level'] = \setminus
    df['interest_level'].map({'low':1, 'medium':2, 'high':3})
```

• For RFs, only the order matters not the scale so {'low':10,'medium':20,'high':30} would also work



2

medium 0

interest\_level

low

high

## One-hot encoding (dummy variables)

Note: RFs don't require dummy variables but sometimes dummies are useful

- Instead of a number, the "hot" position indicates the category
- Notice how the missing value ends up with none hot (all 0s)



(Some people differentiate between one-hot and dummy vars.)



#### When to one-hot encode

- Don't one-hot encode when there are many cat levels otherwise you will end up with thousands of columns in your data set
- That slows down training speed and usually doesn't help (for RFs)
- One-hot encoding is worth it for cat vars that are strongly predictive (if there are few levels)
- E.g., "EROPS AC" gets, on average, twice the price of the other bulldozers meaning airconditioning is important





#### Frequency encoding

- Sometimes we can extract some meaning from the nominals
- Convert categories to the frequencies with which they appear in the training
- E.g., rent data: might be predictive power in the number of apartments managed by a particular manager

| count | Indiager_id                      |
|-------|----------------------------------|
| 2509  | e6472c7237327dd3903b3d6f6a94515a |
| 695   | 6e5c10246156ae5bdcd9b487ca99d96a |
| 404   | 8f5a9c893f6d602f4953fcc0b8e6e9b4 |
| 396   | 62b685cc0d876c3a1a51d63a0d6a8082 |
| 370   | cb87dadbca78fad02b388dc9e8f25a5b |

manager id count

managers\_count = df['manager\_id'].value\_counts()
df['mgr\_apt\_count'] = df['manager\_id'].map(managers\_count)



#### Label encoding categoricals

- If you can't extract more useful information from a nominal variable, label encode it
- There are more advanced techniques such as embeddings, target encoding but we'll leave those to another class
- **Result**: each category becomes a unique numeric value where missing becomes 0 and other categories are 1..n
- We ignore the fact that the categories are not really ordered



| Label encoding mechanics                                                           |        |           |        | Name   |
|------------------------------------------------------------------------------------|--------|-----------|--------|--------|
|                                                                                    |        | _         | 0      | Xue    |
| <ul> <li>Convert string column to ordered categorical</li> </ul>                   |        |           | 1      |        |
| <ul> <li>Replace categories with cat code + 1</li> </ul>                           |        | 2         | Tom    |        |
| • NaN gets cat code -1 so +1 means missing = 0                                     |        | Name      | ca     | tcodes |
| def df string to cat(df).                                                          | 0      | Xue       |        | 1      |
| for col in df columns.                                                             | 1      |           |        | -1     |
| if is_string_dtype(df[col]):                                                       | 2      | Tom       |        | 0      |
| <pre>df[col] = df[col].astype('category') df[col] = df[col] cat as ordered()</pre> |        | Name      | cat    | codes  |
|                                                                                    | 0      | 2         |        | 1      |
| <pre>def df_cat_to_catcode(df):</pre>                                              | 1      | 0         |        | -1     |
| <pre>for col in df.columns:     if is_categorical_dtype(df[col]):</pre>            | 2      | 1         |        | 0      |
| df[col] = df[col].cat.codes + 1                                                    | VERSIT | TY OF SAN | I FRAM | VCISCO |

# The unreasonable effectiveness of label encoding categorical variables

- Why is it "legal" to convert all of those unordered (nominal) categorical variables to ordered integers?
- RF models can still partition such converted categorical features in a way that is predictive
- Might require more complex / bigger tree
- Definitely not appropriate for models doing math on variables, such as linear models (which require one-hot encoding)
- In practice, label encoding categorical variables is surprisingly effective
- Some RF models do subset comparisons not int comparisons



# Dealing with missing data



#### Real data sets are often full of holes

#### • Here are some stats on Bulldozer data set

|                          | percent missing |
|--------------------------|-----------------|
| SalesID                  | 0.0000          |
| SalePrice                | 0.0000          |
| MachinelD                | 0.0000          |
| ModelID                  | 0.0000          |
| datasource               | 0.0000          |
| YearMade                 | 0.0000          |
| auctioneerID             | 5.1747          |
| MachineHoursCurrentMeter | 64.7178         |
| saledate                 | 0.0000          |
| Coupler                  | 46.8269         |
| Tire_Size                | 76.3297         |
| Tip_Control              | 93.6982         |
| Hydraulics               | 20.1663         |
| Ripper                   | 73.9670         |
|                          |                 |



#### Missing categorical data

- Missing categorical values are dealt with automatically because of the label-encoding process
- We convert categories to unique integer values and missing values, np.nan, become category code 0 and all other categories are codes 1 and above
- In other words, "missing" is just another category hardcoded to 0



#### Missing numeric data

- Don't delete columns/rows with missing values; destroys info!
- Don't *just* replace missing values; destroys fact they were missing
- E.g., missing YearMade could mean "ancient"
- E.g., missing **Employer** on loan app could mean "unemployed" (or missing **YearsOfEducation** might mean "no college degree")
- We still must fill in values in order to train a model, however, and we don't want to skew the column distribution by replacing with 0 or 999999 or some other anomalous value



#### Imputing missing numeric values

- Dealing with missing numeric values requires a new column and replacement of np.nans:
  - For column x, create a new boolean column x\_na where x\_na[i] is true if x[i] is missing.
  - 2. Replace missing values in column *x* with the median of all *x* values in that column.

def fix\_missing\_num(df, colname):
 df[colname+'\_na'] = pd.isnull(df[colname])
 df[colname].fillna(df[colname].median(), inplace=True)

|   | YearMade  |   | YearMade  | YearMade_na |                             |
|---|-----------|---|-----------|-------------|-----------------------------|
| 0 | 1995.0000 | 0 | 1995.0000 | False       |                             |
| 1 | 2001.0000 | 1 | 2001.0000 | False       |                             |
| 2 |           | 2 | 1998.0000 | True        | INIVERSITY OF SAN FRANCISCO |

#### Supporting academic work

 See "On the consistency of supervised learning with missing values"

https://hal.archives-ouvertes.fr/hal-02024202v2:

"A striking result is that the widely-used method of imputing with the mean prior to learning is consistent when missing values are not informative."

*"When missingness is related to the prediction target, imputation does not suffice and it is useful to add indicator variables of missing entries as features."* 



### Rectifying training and validation sets

- Replacing missing values, encoding categorical variables, etc... introduces synchronization issues between training and validation/test sets
- Key rules:
  - 1. Transformations must be applied to features consistently across data subsets
  - 2. Transformations of validation/test sets can only use data derived from training set
- To follow those rules, we have to remember all transformations done to the training set for later application to the validation and test sets.
- That means tracking the median of all numeric columns, all category-tocode mappings, frequency encodings, and one-hot'd categories
- Special care is required to ensure that one-hot encoded variables use the same name and number of columns in the training and testing sets.
- Beware: it's easy to screw up the synchronization!

For details, see https://mlbook.explained.ai/bulldozer-testing.html

