Preparing data for
modeling

Terence Parr
MSDS program
University of San Francisco

UNIVERSITY OF SAN FRANCISCO

Data prep overview

 Data sets must follow two fundamental rules before use in models:
1. all data must be numeric
2. there can't be any missing values

 Must delete or derive numeric features from nonnumeric features,
such as strings, dates, and categorical variables

« Even with purely numeric data, there is potential cleanup work,
such as deleting or replacing erroneous/missing entries or even
deleting entire records that are outside our business rules

UNIVERSITY OF SAN FRANCISCO

Data cleaning

UNIVERSITY OF SAN FRANCISCO

Decide what you care about

 View all data cleaning operations through the lens of what
exactly we want the model to do, as dictated by business or
application

* For apartment data set, we want to predict apartment prices but

» just for New York City
* just for the reasonably-priced apartments
« E.g., $1k <rent < $10k and GPS inside NYC

* Don’'t make decisions about “reasonable values” after looking at
the data because we risk losing generality;
inappropriate data peeking is a form of overfitting

See https://mlbook.explained.ai/prep.html and https://mlbook.explained.ai/bulldozer-intro.html

UNIVERSITY OF SAN FRANCISCO

https://mlbook.explained.ai/prep.html
https://mlbook.explained.ai/bulldozer-intro.html

Why we care about noise, outliers

* Noise and outliers can lead to inconsistencies

« Zooming in on a small region of New York City there are two
apartments with similar features but that are much more expensive:

bedrooms bathrooms street_address price
39939 1 1.0000 west 54 st & 8 ave 2300
21711 1 1.0000 300 West 55th Street 2400
15352 1 1.0000 300 West 55th Street 3350
48274 1 1.0000 300 West 55th Street 3400 /??
29665 1 1.0000 333 West 57th Street 1070000
30689 1 1.0000 333 West 57th Street 1070000

« Could be missing a key feature (view or parking?); sale not rent price?
« Could be errors or simply outliers but such inconsistent data leads to

iInaccurate predictions

» RFs predict the average price for all apartments in same feature
space so predictions for these will be way off

UNIVERSITY OF SAN FRANCISCO

To begin: take a quick sniff of the data

* Identlfy bathrooms
. | bedrooms
column names building_id

* their datatypes created

. . description
whether target co_lumn has numeric display_address
values or categories features

. . . latitud

- Look inside the values of string fsting, 14
columns as we might want to break longitude

ager_id

them into multiple columns

street_address
interest_level

1.5000

3
53a5b119ba8f7b61d4e010512...
2016-06-24 07:54:24

A Brand New 3 Bedroom 1.5...
Metropolitan Avenue

(]

40.7145

7211212

-73.9425
5ba989232d0489da1b5f2c45f...
['https://photos.renthop....
3000

792 Metropolitan Avenue
medium

UNIVERSITY OF SAN FRANCISCO

Look at data ranges with describe()

* 10 bathrooms? 0 bedrooms? Wow.

 Longitude and latitude of 07
 Apts that are $43 and $4,490,000 / month? Wow

bathrooms bedrooms longitude latitude price

count 49352.0000 49352.0000 49352.0000 49352.0000 49352.0000
mean 1.2122 1.5416 -73.9557 40.7415 3830.1740
std 0.5014 1.1150 1.1779 0.6385 22066.8659
min 0.0000 0.0000 -118.2710 0.0000 43.0000
25% 1.0000 1.0000 -73.9917 40.7283 2500.0000
50% 1.0000 1.0000 -73.9779 40.7518 3150.0000
75% 1.0000 2.0000 -73.9548 40.7743 4100.0000
max 10.0000 8.0000 0.0000 44.8835 (4490000.0000

UNIVERSITY OF SAN FRANCISCO

Check distributions

* Only a few outlier apartments with > 6 bedrooms/bathrooms

print(df_num.bathrooms.value_counts()) 15000 -
1.0 39422 "
2.0 7660 210000 -
3.0 745 P
1.5 645 =)
0.0 313 < 5000+
2.5 277
4.0 159 0-
3.5 70 0 2 4 6 8
4.5 29 Num Bedrooms
5.0 20
5.5 5
6.0 4 i
P 1 Not many outliers:
%oée 1 len(df[df.price>10_000]) = 878

Name: bathrooms, dtype: int64
UNIVERSITY OF SAN FRANCISCO

Check variable-target relationships too

« Sometimes checking the relationship between each variable
and the target can be illuminating; e.g., here is a categorical

variable versus bulldozer sale price:

Skid Steer Loader - Unidentified
Skid Steer Loader - 2201.0 to 2701.0 Lb p rat |ng Capacity
Wheel Loader - 0.0 to 40.0 H orsepower
Skid Steer Loader - 1751 0 to 2201.0 Lb Ope rater/([:; aC| y
raullc Excavator, Track - 4.0 to 6.0 etrlc ons
i HSy raulic Excavator Track - 2 0to 3.0 Metrlc Tons

teer Loader - 0.0 to_701.0 L Operatlrlbclg acpaut
a 0.0to 2.0 etr| Tons

1,
Hydraulic Excavator ck-0.0to 2
Skid Steer Loader - 976.0 to'1251.0 Lb Operating Flty
) Motorgrader - Un| entl
Skid Steer Loader - 1601.0 to 1751.0 Lb Operating Capacity
Skid Steer Loader - 1251.0 to 1351.0 Lb Qperating Capacity
k|d Steer Loader - 1351.0 to 1601.0 Lb Operating Capacit
Hydrau Ic Excavator, Trac Umde tifie déc%m act Construction
Skid Steer Loader - 701.0 to 976.0 Lb Operating Capacity 1

We should try extracting useful
info from feature as it is predictive

B SalePrice

5000 10000

UNIVERSITY OF SAN FRANCISCO

Let's clean up

* Filter data per business goals
* In NY only:

df_clean = df[(df['latitude']>40.55) & (df['latitude']<40.94) &
(df['longitude']>-74.1) & (df['longitude']<-73.67)]

« Reasonable prices:
df_clean = df[(df.price>1_000) & (df.price<10_000)]

« If column known to be corrupted or useless, can just delete it; e.qg.,
from bulldozer data set:

del df[‘MachineID’]

UNIVERSITY OF SAN FRANCISCO

More clean up

SalePrice YearMade saledate

« Sold before manufactured? (ask
stakeholders) Can adjust date or delete
if there few enough of those records

« Some columns are read in as numbers
but are really categorical; e.g., bulldozer

36156 27000 1996.0 (1995+03-31
36417 11500 1996.0 1995-04-08
34303 70000 1996.0 1995-01-25

auctioneeriD

auctioneerlD; we can set to strings 0 6.0
(affects missing data handling): 1 2.0
2 3.0

df['auctioneerID’] = df['auctioneerID'].astype(str) 2 0

Don’t replace with median (to impute value) —4 > NaN

UNIVERSITY OF SAN FRANCISCO

Normalization

Tire_Size

« Some columns are shown as strings but are 0 None
numbers; e.qg., bulldozer Tire_Size; delete double- 1 baE
quote and then convert column to numbers , -
 Bulldozer Stick_length is more complicated but 3 None or Unspecified
could still be normalized to inches rather than string 75
 Bulldozer Enclosure has “"EROPS w AC” and Stick_Length
“‘EROPS AC”; normalize to one or other: 0 None
df ['"Enclosure'].replace("EROPS w AC', "EROPS AC") N —
one or unspecirie

2 10' 2"

3 9' 6"

UNIVERSITY OF SAN FRANCISCO

Find missing data indicators

fiModelSeries

0 5
» Missing values are np.NaN after loading with pandas - S
« BUT, some are physically-present numbers or strings 2 #NAME?
that actually represent missing values: 3 ZTs

* Rent dataset: Some longitude/latitude values are 0O
(off the west coast of Africa?) Tire_Size
» Bulldozer dataset: strings like Tire_Size have 0 None
“None or Unspecified” 235

» Bulldozer fiModelSeries has “#Name?”

* Replace those with NaN; for example:

df .loc[df['Tire_Size']=="None or Unspecified’,
'Tire_Size'] = np.nan

14"

None or Unspecified

A W N

17.5"

UNIVERSITY OF SAN FRANCISCO

More missing data indicators ..

120000 -
100000 -

« Something fishing with Bulldozer YearMade

[}
O
=
o

80000 A

* YearMade=1000 must mean unknown 60000 -
(or don't ask it's age! haha) 40000 4
« Replace weird dates with NaN (missing): 20000 §
df .loc[df.YearMade<1950, 'YearMade'] = np.nan ® 1000 1950 1500 1750 2000

» Bulldozer Backhoe Mounting should be rearade

boolean; normalize, convert to true/false, set type

Backhoe_Mounting
0 None or Unspecified
1 None

2 Yes UNIVERSITY OF SAN FRANCISCO

Encoding non-numeric
variables

UNIVERSITY OF SAN FRANCISCO

Encoding date variables

« Date columns in datasets are often predictive of target variables

« E.g., in bulldozer data set, the date of sale and the year of
manufacture together are strongly predictive of the sale price

* General procedure:

« Shatter date columns into constituent components such as: year,
month, day, day of week (1..7), day of year (1..365), and even things
like “end of quarter” and “end of month”

« After extracting the components, convert datetime64 column to integer
with number of seconds since 1970 (unix time)

« Can add business holidays, big snowstorm days, ...

See https://mlbook.explained.ai/bulldozer-feateng.html UNIVERSITY OF SAN FRANCISCO

https://mlbook.explained.ai/bulldozer-feateng.html

Date-related computations also useful

* E.g., bulldozer should add age:
df['age'] = df['saleyear'] - df['YearMade’]

Makes life easier on the RF model

« Can try introducing variables like 100000 -
“‘days since event E” (e.g., “days since
we had a big sale”) or other cumulative
counts, averages, sums, efc...

SalePrice

50000 1

0 20 40
Age in years

UNIVERSITY OF SAN FRANCISCO

Sample date conversion code

def df_split_dates(df,colname):
df["saleyear"] = df[colname].dt.year
df["salemonth"] = df[colname].dt.month
df["saleday"] = df[colname].dt.day
df["saledayofweek"] = df[colname].dt.dayofweek
df["saledayofyear"] = df[colname].dt.dayofyear
df [colname] = df[colname].astype(np.int64) # convert to seconds since 1970

0

saledate @ 1232668800000000000
saleyear 2009
salemonth 1
saleday 23
saledayofweek 4
saledayofyear 23

UNIVERSITY OF SAN FRANCISCO

Encoding categorical vars

« Categorical variables are named elements like
US states or arbitrary strings like addresses;
pandas calls them objects

« We distinguish between ordinal (low/high) and
nominal (zip code) categoricals

* First, convert ordinals to appropriate ordered ints

* Then, make a choice about nominals:
* One-hot encode (dummy variables)
 Label encode (category — unique integer)
* Frequency encode
 Break up string into more useful columns
« Advanced: embeddings, target encoding, ...

See https://mlbook.explained.ai/catvars.html and
https://mlbook.explained.ai/bulldozer-feateng.html

MachineHoursCurrentMeter float64

saledate datetime64[ns]

Coupler object
Tire_Size object
Tip_Control object
Hydraulics object

The easy way to remember the
difference between ordinal and
nominal variables is that ordinal
variables have order and nominal
comes from the word for “name”
in Latin (nomen) or French (nom).

UNIVERSITY OF SAN FRANCISCO

https://mlbook.explained.ai/catvars.html
https://mlbook.explained.ai/bulldozer-feateng.html

Start by converting ordinals

 Bulldozer ProductSize categorical is ordinal not
nominal so convert it to integers with appropriate order

* Marginal plot makes it look very predictive

ProductSize

encoding 0 NaN
large / medium 5
1 small
large 4
2 large / medium
o medium 3 .
.5 3 medium
§ e 2 4 compact
a - 0
missing 5 mlnl
min! 1 Articles on web say 6 large
compact m SalePrice mini/compact are same
0 10000 20000 30000 40000 UNIVERSITY OF SAN FRANCISCO

Ordinal encoding mechanics

interest_level

0 medium
« Apply a dictionary, mapping name to ordered value 1 low
2 high

* E.g., rent data set:

df['interest_level'] = \
df["interest_level'].map({'low':1, "'medium':2, 'high':3})

* For RFs, only the order matters not the scale so
{'low":10,'medium":20,'nigh":30} would also work

UNIVERSITY OF SAN FRANCISCO

One-hot encoding (dummy variables)

Note: RFs don't require dummy variables but sometimes dummies are useful

* Instead of a number, the “hot” position indicates the category
» Notice how the missing value ends up with none hot (all 0s)

Dept Dept CS Math Physics
0 Math 0 Math 0 1 0
1 CcS ||). 1 cs 1 0 0
2 Physics 2 Physics 0 0 1
3 3 0 0 0

onehot = pd.get_dummies(df['Dept’])
df _encoded = pd.concat([df, onehot], axis=1)
del df_encoded[‘Dept’]

(Some people differentiate between one-hot and dummy vars.) UNIVERSITY OF SAN FRANCISCO

When to one-hot encode

* Don’t one-hot encode when there are many eropsac s >alePrice
cat levels otherwise you will end up with
thousands of columns in your data set

 That slows down training speed and usually OROPS

EROPS

Enclosure

doesn’t help (for RFs) 0 20000 40000

* One-hot encoding is worth it for cat vars that
are strongly predictive (if there are few levels)

* E.g., ‘/EROPS AC” gets, on average, twice the
price of the other bulldozers meaning air-
conditioning is important

UNIVERSITY OF SAN FRANCISCO

Frequency encoding

manager_id count

« Sometimes we can extract some
meanlng frOm the nomlnals 6e5c10246156ae5bdcd9b487ca99d96a 695

» Convert categories to the frequencies 8f5a9c893f6d602f4953fccOb8e6edbd 404
with which they appear in the training 620685cc0d876¢3a1a51d63a0d6a8082 396

. E_g_, rent data: might be predictive cb87dadbca78fad02b388dc9e8f25a5b 370
power in the number of apartments
managed by a particular manager

€6472c7237327dd3903b3d6f6a94515a 2509

managers_count = df['manager_id'].value_counts()
df['mgr_apt_count'] = df['manager_id'].map(managers_count)

UNIVERSITY OF SAN FRANCISCO

Label encoding categoricals

* If you can’t extract more useful information from a nominal
variable, label encode it

* There are more advanced techniques such as embeddings,
target encoding but we’ll leave those to another class

* Result: each category becomes a unique numeric value where
missing becomes 0 and other categories are 1..n

* We ignore the fact that the categories are not really ordered

UNIVERSITY OF SAN FRANCISCO

Label encoding mechanics

Name
0 Xue

« Convert string column to ordered categorical 1
2 Tom

* Replace categories with cat code + 1
Name catcodes

* NaN gets cat code -1 so +1 means missing = 0

def df_string_to_cat(df): 0 Xue 1
for col in df.columns: 1 -]
if is_string_dtype(df[col]): E Tom 0
df[[col] = df[col].astype('category') Name catcodes
df[col] = df[col].cat.as_ordered()
0 2 1
def df_cat_to_catcode(df): 1 0 1
for col in df.columns: 2 1 0
1f 1s_categorical_dtype(df[col]):
df[col] = df[col].cat.codes + 1
UNIVERSITY OF SAN FRANCISCO

The unreasonable effectiveness of label
encoding categorical variables

* Why is it “legal” to convert all of those unordered (nominal)
categorical variables to ordered integers?

 RF models can still partition such converted categorical features
iIn a way that is predictive

« Might require more complex / bigger tree

 Definitely not appropriate for models doing math on variables,
such as linear models (which require one-hot encoding)

* |[n practice, label encoding categorical variables is surprisingly
effective

« Some RF models do subset comparisons not int comparisons

UNIVERSITY OF SAN FRANCISCO

Dealing with missing data

UNIVERSITY OF SAN FRANCISCO

Real data sets are often full of holes

» Here are some stats on Bulldozer data set

percent missing

SalesID 0.0000
SalePrice 0.0000
MachinelD 0.0000
ModellD 0.0000
datasource 0.0000
YearMade 0.0000
auctioneeriD 5.1747
MachineHoursCurrentMeter 64.7178
saledate 0.0000
Coupler 46.8269
Tire_Size 76.3297
Tip_Control 93.6982
Hydraulics 20.1663
Ripper 73.9670

UNIVERSITY OF SAN FRANCISCO

Missing categorical data

» Missing categorical values are dealt with automatically because
of the label-encoding process

* We convert categories to unique integer values and missing
values, np.nan, become category code 0 and all other
categories are codes 1 and above

* In other words, “missing” is just another category hardcoded to O

UNIVERSITY OF SAN FRANCISCO

Missing numeric data

« Don’t delete columns/rows with missing values; destroys info!
« Don’t just replace missing values; destroys fact they were missing
* E.g., missing YearMade could mean “ancient’

* E.g., missing Employer on loan app could mean "unemployed”
(or missing YearsOfEducation might mean "no college degree”)

* We still must fill in values in order to train a model, however, and
we don’t want to skew the column distribution by replacing with O
or 999999 or some other anomalous value

UNIVERSITY OF SAN FRANCISCO

Imputing missing numeric values

» Dealing with missing numeric values requires a new column
and replacement of np.nans:

1.

2.

For column x, create a new boolean column x_na where x_nali] is
true if x[i] is missing.

Replace missing values in column x with the median of all x values in
that column.

def fix_missing_num(df, colname):

df[colname+'_na'] = pd.isnull(df[colname])
df[colname].fillna(df[colname].median(), inplace=True)

YearMade YearMade YearMade _na
0 1995.0000 0 1995.0000 False
1 2001.0000 1 2001.0000 False

2 1998.0000 True UNIVERSITY OF SAN FRANCISCO

Supporting academic work

« See “On the consistency of supervised learning with

missing values”
https://hal.archives-ouvertes.fr/hal-02024202v2:

“A striking result is that the widely-used method of imputing with
the mean prior to learning is consistent when missing values
are not informative.”

“When missingness is related to the prediction target,
imputation does not suffice and it is useful to add indicator
variables of missing entries as features.”

UNIVERSITY OF SAN FRANCISCO

https://hal.archives-ouvertes.fr/hal-02024202v2

Rectifying training and validation sets

* Replacing missing values, encoding categorical variables, etc... introduces
synchronization issues between training and validation/test sets

» Key rules:
1. Transformations must be applied to features consistently across data subsets
2. Transformations of validation/test sets can only use data derived from training set

* To follow those rules, we have to remember all transformations done to the
training set for later application to the validation and test sets.

« That means tracking the median of all numeric columns, all category-to-
code mappings, frequency encodings, and one-hot'd categories

» Special care is required to ensure that one-hot encoded variables use the
same name and number of columns in the training and testing sets.

« Beware: it's easy to screw up the synchronization!

For details, see https://mlbook.explained.ai/bulldozer-testing.html UNIVERSITY OF SAN FRANCISCO

https://mlbook.explained.ai/bulldozer-testing.html

