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Unsupervised learning techniques…
• In a nutshell, we have just 𝑋 not 𝑋 → 𝑦 and would like to know 

about 𝑋, such as density or interesting subregions/vectors of 𝑋 (𝑛
x 𝑝 matrix)

• Principle components analysis (orthogonal vectors of
most variation)

• Page rank for ranking most important articles/nodes
• Collaborative filtering (recommending movies)
• Anomaly detection (fraud or network attack detection)

See Chapter 14 in ESLII

“Almost all of AI's recent progress is through one type, in which some input 
data (A) is used to quickly generate some simple response (B).”
Andrew Ng in What Artificial Intelligence Can and Can't Do Right Now
Harvard Business Review November 9, 2016



Most common unsupervised learning
• Clustering (unsupervised classifier; i.e., no known classes)

• 𝑘-means / 𝑘-medoid / mean-shift
• hierarchical clustering
• spectral clustering; graph connecting observations (nodes) by 

distance-labeled edges
• Recommendation engines (this stuff works great)

• collaborative filtering (“other people like you bought X”);
best done with embeddings; e.g., see [1]

• market basket analysis / association rules; see a priori algorithm
(“what do people buy together?)

[1] https://github.com/fastai/fastbook/blob/master/08_collab.ipynb

https://github.com/fastai/fastbook/blob/master/08_collab.ipynb


The problem with clustering is…
• Clustering sounds awesome but useful only in limited 

circumstances, such as vector quantization & compression, and 
usually only when 𝑝 is small

• Generally doesn’t work well with imbalanced data sets such as 
fraud or network attack classification

• There no clear measure of success, such as the metrics used 
by supervised learning; e.g., you have bank transactions and no 
idea which are fraudulent; design algorithm to identify fraud; 
now, how do you know if your algorithm works?

• You can measure cluster centroid separation, but it still doesn’t 
truly indicate proper clustering; might have too many 𝑘 etc…



Is clustering really what we want anyway?
• Imagine clustering a customer db into 4 clusters; now what?
• You have 4 groups of, say, 4 million records each; what do you 

do with it?
• Let’s say you can identify marketing-related groups like 

“technerd”, “shoeshopper”, etc… What do you do with that info? 
• Old joke: You know you’re wasting half of your marketing 

money; you just don’t know which half!
• Can try to market to those groups but don’t we really want to 

know what kind of ad people click on? Run an ad campaign and 
track customer->clicks; now you have a supervised problem



Instead can try semi-supervised learning
• Sometimes getting labels is expensive or difficult, such as in 

medicine
• Still, it’s good idea to try to turn unsupervised into supervised 

learning problem so let’s try to start with this “kernel” and 
gradually broaden the labeled data

• Use a few labeled observations to get things started, such as 
picking the initial centroids (cluster centers); try to get your client 
to give you class labels for a few observations

• For a good summary, see An overview of proxy-label 
approaches for semi-supervised learning by S. Ruder
https://ruder.io/semi-supervised/index.html#selftraining

https://ruder.io/semi-supervised/index.html


One possible self-training procedure
1. Get small initial 𝑋!,𝑦! labeled training set from 𝑋
2. Train supervised model 𝑀! on initial 𝑋!,𝑦! set
3. Use model 𝑀! to make predictions for 𝑋\𝑋!

4. Combine highest confidence predictions with 𝑋!,𝑦! to get, 
new larger labeled set 𝑋",𝑦"

5. Train model 𝑀" on 𝑋",𝑦"

6. Repeat until all 𝑋 are labeled or no high confidence obs.

E.g., see Semi-Supervised Self-Training of Object Detection Models 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.3602&rep=rep1&type=pdf

Selecting “highest confidence” metric requires experimentation
and requires accurate confidence or probabilities from the model

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.3602&rep=rep1&type=pdf


Clustering



Clustering preliminaries
• Each 𝑥(") in 𝑋 is a point in 𝑝 space with 𝑝 coordinates
• Space can be Euclidean but categorical vars present a challenge
• All such spaces must have distance(𝑥("), 𝑥($)) measure
• Often we need to normalize 𝑥 values so distance means same thing 

in all directions
• 𝐿% and 𝐿& are common distances for Euclidean space
• 𝐿' also useful: max abs difference in any dimension
• For large 𝑝 and/or binary values, better to use cosine similarity (angle 

between 2 vectors); cos(𝜃)= ()*
∥(∥∥*∥

so 1-cos(𝜃) is distance
• Two flavors: point-assignment and agglomerative



Clustering examples

Images: https://developers.google.com/machine-learning/clustering/clustering-algorithms,
https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/, https://uc-r.github.io/hc_clustering

k-means mean-shift hierarchical clustering

https://developers.google.com/machine-learning/clustering/clustering-algorithms
https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/
https://uc-r.github.io/hc_clustering


Distance measure requirements

1. Always nonnegative; only distance(v,v) is 0
2. Symmetry; distance(v,w) = distance(w,v)
3. Triangle inequality; distance(v,w)+distance(w,z)≥distance(v,z)

From http://www.mmds.org/; see it for more on distance metrics

v

w

z

http://www.mmds.org/


𝑘-means clustering
• Assumes Euclidean space
• Clusters separated by straight lines only
• User provides 𝑋 and number of clusters to find, 𝑘
• Idea is to pick 𝑘 centroids in 𝑝 space and assign points 

to cluster with closest centroid then recompute 
centroids

• Repeat until the cluster assignments stop changing
• Can select 𝑘 points as initial centroids:

• At random (seems to do a crappy job for large 𝑝)
• By picking 𝑘 distant points (k-means++ is a variation for initial 

selection)
• Algorithm converges using Euclidean distance
• Not guaranteed to find optimal clusters

k-means works

k-means fails



𝑘-mean clustering animation

Animation from https://en.wikipedia.org/wiki/K-means_clustering

• 𝑘-means gives Voronoi 
tessellation

• It assumes that all points in the 
cluster are contiguous; sounds 
obvious, but for most real 
problems this assumption 
doesn’t hold

• If true clusters are 
noncontiguous, 𝑘-means will 
give poor results

https://en.wikipedia.org/wiki/K-means_clustering


k-means algorithm



𝑘-means application: MNIST
(Known digits so we can measure error)

• Goal: cluster MNIST digit greyscale images
• 𝑝=28x28=784 pixels/image

• 𝑘-means finds 𝑘=10 clusters but cluster 5 doesn’t usually 
correspond to the images of fives

X = df_digits.drop('digit', axis=1) # get just pixels
y = df_digits['digit']
kmeans = KMeans(k)
kmeans.fit(X)
y_cluster = kmeans.labels

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb


Testing MNIST cluster quality

• For all images in each cluster, cl, get the true digits from y
• y_cluster==cl indicates which images are in cluster cl
• y[y_cluster==cl] indicates the true digit of each image in that cluster 
• Then use most common true digit as guess for that cluster’s prediction

for cl in range(0,k):    
y_true_digits = y[y_cluster==cl].values # convert from class to digit
most_common_digit = np.bincount(y_true_digits).argmax()
accur = np.sum(y_true_digits==most_common_digit) / len(y_true_digits)

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb


Purity and accuracy of clusters for k=10
• Here are true digits for each cluster found by kmeans:

• 𝑘-means doesn’t work that well if we use k=10

[5 8 8 8 9 3 8 8 8 6 5 5 8 8 5 8 5 0 8 8 5 8 0 5 8 8 5 9 8 8] mode = 8, gini = 0.64, accur = 53.0%
[2 2 2 2 2 2 5 2 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] mode = 2, gini = 0.18, accur = 90.2%
[3 3 3 3 2 5 2 2 3 3 3 5 3 3 8 0 8 3 5 5 5 8 3 3 3 5 8 3 0 3] mode = 3, gini = 0.64, accur = 53.0%
[4 0 7 9 4 4 4 7 7 9 5 4 4 9 6 4 2 7 9 4 7 4 4 7 7 3 9 4 9 4] mode = 4, gini = 0.72, accur = 35.6%
[0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 2 0 5 0 0 5 0 0 0 0 0 0 5 0] mode = 0, gini = 0.38, accur = 77.9%
[7 9 7 9 9 9 4 7 4 9 4 7 4 9 9 9 9 7 7 9 7 4 4 7 9 7 9 4 7 7] mode = 7, gini = 0.69, accur = 43.1%
[6 6 2 6 6 6 6 6 6 6 6 6 6 4 6 6 1 6 6 6 6 2 6 6 6 0 6 6 6 6] mode = 6, gini = 0.26, accur = 85.7%
[0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9] mode = 0, gini = 0.19, accur = 89.6%
[1 1 2 1 1 6 1 5 7 1 7 1 8 4 5 1 5 1 1 2 6 5 1 8 1 5 2 1 1 1] mode = 1, gini = 0.69, accur = 51.6%
[1 1 1 1 1 1 2 1 2 1 1 9 1 9 1 1 1 3 6 3 7 3 1 9 3 1 2 1 1 6] mode = 1, gini = 0.57, accur = 64.5%
Unique labels [0 1 2 3 4 6 7 8], within class avg accuracy 64.4

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

Missing 5, 9!!

https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb


Purity and accuracy of clusters for k=20

• Here are true digits for each cluster found by kmeans:
[3 5 5 8 3 5 8 3 8 3 3 3 5 3 3 8 3 3 3 5 5 8 5 5 3 5 3 3 8 3] mode = 3, gini = 0.62, accur = 50.3%
[4 9 4 4 5 4 4 9 4 4 4 4 4 4 4 9 4 4 4 9 9 4 9 4 4 4 4 9 4 4] mode = 4, gini = 0.50, accur = 63.4%
[9 9 7 9 9 9 7 7 7 9 7 7 7 7 7 9 7 5 7 4 9 7 9 9 7 4 4 7 7 9] mode = 7, gini = 0.50, accur = 66.3%
[1 1 1 1 1 1 1 2 1 1 1 9 1 1 1 3 6 1 3 1 1 1 6 2 1 1 1 1 1 1] mode = 1, gini = 0.30, accur = 83.6%
[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2] mode = 2, gini = 0.09, accur = 95.5%
…
[8 8 8 8 8 8 7 8 8 5 8 8 8 8 8 8 8 2 3 8 8 8 8 8 8 8 8 8 8 8] mode = 8, gini = 0.35, accur = 80.0%
[9 7 9 4 4 9 4 9 9 4 9 7 9 9 9 9 4 9 9 4 7 9 4 9 4 7 9 4 4 4] mode = 9, gini = 0.61, accur = 48.3%
[2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] mode = 2, gini = 0.13, accur = 93.0%
[7 7 9 4 9 7 9 7 7 9 9 3 7 9 3 9 9 9 7 9 9 7 9 9 4 6 4 9 9 9] mode = 9, gini = 0.71, accur = 38.9%
[7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 2 7 7 7 7 7 7 7 7 7 2 7 7] mode = 7, gini = 0.09, accur = 95.2%
[4 4 6 2 4 7 4 4 4 9 4 4 4 4 4 4 4 7 4 9 4 4 4 4 9 9 7 9 4 4] mode = 4, gini = 0.67, accur = 45.8%
[0 0 0 0 0 0 0 0 0 0 0 2 5 5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0] mode = 0, gini = 0.20, accur = 89.1%
Unique labels [0 1 2 3 4 5 6 7 8 9], within class avg accuracy 73.6

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb


Purity and accuracy of clusters for k>20

• k=100:

• k=200:

• k=250:

• Naturally, we’d have to combine these k classes to group into
10 digits

Unique labels [0 1 2 3 4 5 6 7 8 9], within class avg accuracy 88.6 

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

Unique labels [0 1 2 3 4 5 6 7 8 9], within class avg accuracy 90.8

Unique labels [0 1 2 3 4 5 6 7 8 9], within class avg accuracy 91.4 

https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb


𝑘-means application: Breast cancer
(Known cancer/benign target so we can measure error)

• 212 cancer, 357 non-cancer
• 𝑘-means isn’t great; uncertainty is low for one 

class (0.0056) but high for the other (.4743)
• To the right are the two possible conf matrices, 

depending on the cluster number chosen by 𝑘-
means for cancer and for non-cancer
kmeans = KMeans(n_clusters=2, init='k-means++')
kmeans.fit(X) 
y_pred = kmeans.predict(X) 
cancer = np.where(y==0)[0]
benign = np.where(y==1)[0]
print( gini(y_pred[benign]), gini(y_pred[cancer]) )
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𝑘-means application:
color quantization
• Color pictures typically use lots of unique 

colors, possibly 10s of thousands
• Each pixel in the image has 

Red/Green/Blue colors, 1 byte per RGB 
= 3 bytes (24 bits)

• Each RGB is a 3D coordinate of color: 
(R, G, B), with possibly tens of 
thousands of unique combinations

• Example with just red/green (omit blue):

See https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
Image from https://en.wikipedia.org/wiki/Color_quantization

no blue

https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://en.wikipedia.org/wiki/Color_quantization


Color quantization cont’d

• (R,G,B) takes 3 bytes per pixel which makes 
images really big

• If a picture only has 256 unique colors we can 
map all (R,G,B) vectors to a single byte; the 
color “index” 0..255 points into a color palette 
with the full (R,G,B) vectors; 3x compression 
for each pixel, which is massive compression

• If picture has more than 256 colors, we can 
cluster in RGB space with k=256 and it will 
group similar colors together; then we pick 
the centroid as the colors in the palette



Color quantization example, k=10

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb


Color quantization example, k=4



Confusion point

• 𝑘-means’ centroids don’t have to be points in X, usually aren’t
• k-medians uses median not mean for centroids (minimizes w.r.t.

L1 not L2 distance); median even for single dimension doesn’t 
have to be point in 𝑥(") space

• k-medoids (not spelled k-medioids) requires medoids to be 
points in X; works with any distance measure; sounds like 𝑘-
means but algorithm is pretty different; gotta pick “centrally 
located point”



Trouble with 𝑘-means
• 𝑘-means requires that we specify number of clusters 𝑘
• Picking 𝑘 is usually a problem
• Color quantization and MNIST digits have known 𝑘, but few do
• Different starting centroids can lead to very different results
• Each observation is forced into one of the 𝑘 clusters, but 

probabilities might be nice; we could use distance to centroid I 
guess but a density estimate would be better



Hierarchical (agglomerative) clustering
• Idea: put every point into its own singleton cluster; repeatedly group 

two closest clusters into a meta-cluster until just one cluster left
• Can also stop when distance between clusters are sufficiently large
• We need a cluster distance metric; called the linkage criterion
• Simplest linkage is just the distance between cluster centroids
• Result is a tree of clusters, one cluster per level
• We get all possible clusters



Dendograms

• Dendogram is a tree 
of clusters, one 
cluster per level

• Distance from node 
to children reflects 
between-cluster-
metric

Image from https://www.statisticshowto.datasciencecentral.com/hierarchical-clustering/

https://www.statisticshowto.datasciencecentral.com/hierarchical-clustering/


Between-cluster distance metrics (linkage)

1. Minimum distance between any two points in the 
cluster (single linkage); tends not to get compact 
clusters and can get chains of points

2. Max distance between point pairs (complete 
linkage); tends to get compact clusters but points 
can be closer to other clusters than those within 
their cluster

3. Average distance of all point pairs from two clusters 
(group average linkage); tries to get compact 
clusters that are far apart

4. Ward’s method minimizes within-cluster variance; 
merge pair with smallest prospective variance at 
each step

Images from http://saedsayad.com/clustering_hierarchical.htm

Warning: statisticians coining terms again!

http://saedsayad.com/clustering_hierarchical.htm


Effect of between-cluster-metric

Image from https://uc-r.github.io/hc_clustering

Min distance between pointsMax distance between points

https://uc-r.github.io/hc_clustering


Ward’s method

Image from https://uc-r.github.io/hc_clustering

https://uc-r.github.io/hc_clustering


Non-numeric clustering

• How do you cluster documents?
• Can use edit distance or Jaccard similarity between text docs
• Maybe convert words to Glove word vectors
• Try your own word embeddings from corpus
• But what about tabular data with nominal categorical variables?
• In non-numeric space, what is a centroid vector?
• There are similarity measures for categoricals, but I’m not a big 

fan, particularly with mixed numeric and categorical data



Breiman’s RF clustering
• Goal: similarity(𝑥("), 𝑥($)) or distance(𝑥("), 𝑥($)) for any two 

feature vectors in 𝑋, even in the presence of mixed categorical 
and numeric data

• Random Forests to the rescue again with clever trick that 
turns unsupervised into supervised problem

• Then derive similarity matrix between all 𝑥("), 𝑥($) pairs
• Proximity matrix: count how often 𝑥("), 𝑥($) appear in same leaf 

in all trees of forest; normalize by number of leaves
• Use 1 minus proximity to get distance, then can use any 

clustering algorithm we want like 𝑘-means, …

See https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm


Random Forest distance metric
1. Consider all 𝑋 records as as class 0
2. Duplicate and bootstrap columns of 𝑋 to get 𝑋’: class 1

• Breiman: 𝑋’ created by “…sampling at random from the univariate
distributions…” of 𝑋

• 𝑋’ destroys relationships between columns of X
3. Create 𝑦 to label/distinguish 𝑋 vs 𝑋’
4. Train RF on stacked [𝑋, 𝑋’] → 𝑦
5. Walk all leaves of all trees, bumping proximity[𝑖, 𝑗] for all 

𝑥("), 𝑥($) pairs in leaf; divide proximities by num of leaves
6. Cluster using 1-proximity for distance matrix
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Breiman’s RF gets 𝑋’ from 𝑋

def df_scramble(X : pd.DataFrame) -> pd.DataFrame:
X_rand = X.copy()
for colname in X:

X_rand[colname] = \
np.random.choice(X[colname], len(X), replace=True)

return X_rand

Here’s how to create 𝑋’ from 𝑋



Breiman’s RF conjures up supervised 
from unsupervised

def conjure_twoclass(X : pd.DataFrame)\
-> (pd.DataFrame, pd.Series):

X_rand = df_scramble(X)
X_synth = pd.concat([X, X_rand], axis=0)
y_synth = np.concatenate([np.zeros(len(X)),

np.ones(len(X_rand))],
axis=0)

return X_synth, pd.Series(y_synth)

Train an RF model to recognize structure between variables,
but goal is simply co-existence in leaves



Computing RF similarity matrix

For each tree in RF
For each leaf in tree

Increment similarity for all 𝑥(") and 𝑥($) in leaf (ignoring 𝑋’ obs.)
Divide each similarity[i,j] by number of leaves to normalize similarities



More on RFs for similarity

• Similarity Forests
http://biorxiv.org/cgi/reprint/258699v1

• Unsupervised Learning With Random Forest Predictors
https://horvath.genetics.ucla.edu/html/RFclustering/RFclustering
/RandomForestHorvath.pdf

http://biorxiv.org/cgi/reprint/258699v1
https://horvath.genetics.ucla.edu/html/RFclustering/RFclustering/RandomForestHorvath.pdf

