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See Chapter 14 in ESLII

Unsupervised learning techniques...

* In a nutshell, we have just X not X — y and would like to know
about X, such as density or interesting subregions/vectors of X (n
X p matrix)

* Principle components analysis (orthogonal vectors of
most variation)

« Page rank for ranking most important articles/nodes

 Collaborative filtering (recommending movies)
« Anomaly detection (fraud or network attack detection) x

“Almost all of Al's recent progress is through one type, in which some input

data (A) is used to quickly generate some simple response (B).”
Andrew Ng in What Artificial Intelligence Can and Can't Do Right Now

Harvard Business Review November 9, 2016 v R
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Most common unsupervised learning

* Clustering (unsupervised classifier; i.e., no known classes)
* k-means / k-medoid / mean-shift
* hierarchical clustering
» spectral clustering; graph connecting observations (nodes) by
distance-labeled edges
« Recommendation engines (this stuff works great)

« collaborative filtering (“other people like you bought X”);
best done with embeddings; e.g., see [1]

» market basket analysis / association rules; see a priori algorithm
(“what do people buy together?)

[1] https://qithub.com/fastai/fastbook/blob/master/08_collab.ipynb UNIVERSITY OF SAN FRANCISCO



https://github.com/fastai/fastbook/blob/master/08_collab.ipynb

The problem with clustering is...

* Clustering sounds awesome but useful only in limited
circumstances, such as vector quantization & compression, and
usually only when p is small

* Generally doesn’t work well with imbalanced data sets such as
fraud or network attack classification

 There no clear measure of success, such as the metrics used

by supervised learning; e.g., you have bank transactions and no
idea which are fraudulent; deS|gn algorithm to identify fraud;
now, how do you know if your algorithm works?

* You can measure cluster centroid separation, but it still doesn’t
truly indicate proper clustering; might have too many k etc...

UNIVERSITY OF SAN FRANCISCO



Is clustering really what we want anyway?

* Imagine clustering a customer db into 4 clusters; now what?
* You have 4 groups of, say, 4 million records each; what do you
do with it?

 Let’s say you can identify marketing-related groups like
“technerd”, “shoeshopper”, etc... What do you do with that info?

 Old joke: You know you’re wasting half of your marketing
money; you just don’'t know which half!

« Can try to market to those groups but don’t we really want to
know what kind of ad people click on? Run an ad campaign and
track customer->clicks; now you have a supervised problem

UNIVERSITY OF SAN FRANCISCO



Instead can try semi-supervised learning

« Sometimes getting labels is expensive or difficult, such as in
medicine

« Still, it's good idea to try to turn unsupervised into supervised
learning problem so let’s try to start with this “kernel” and
gradually broaden the labeled data

» Use a few labeled observations to get things started, such as
picking the initial centroids (cluster centers); try to get your client
to give you class labels for a few observations

* For a good summary, see An overview of proxy-label
approaches for semi-supervised learning by S. Ruder
https://ruder.io/semi-supervised/index.html#selftraining

UNIVERSITY OF SAN FRANCISCO


https://ruder.io/semi-supervised/index.html

One possible self-training procedure

1. Get small initial X°,y° labeled training set from X
2. Train supervised model M° on initial X°,y° set

3. Use model M° to make predictions for X\ X°
4

. Combine highest confidence predictions with X°,y° to get,
new larger labeled set X1,y!

5. Train model M on X1yt
6. Repeat until all X are labeled or no high confidence obs.

Selecting “highest confidence” metric requires experimentation
and requires accurate confidence or probabilities from the model

E.g., see Semi-Supervised Self-Training of Object Detection Models
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.3602&rep=rep1&type=pdf UNIVERSITY OF SAN FRANCISCO



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.3602&rep=rep1&type=pdf

Clustering

UNIVERSITY OF SAN FRANCISCO



Clustering preliminaries

« Each x® in X is a point in p space with p coordinates
« Space can be Euclidean but categorical vars present a challenge
« All such spaces must have distance(x®, xY)) measure

« Often we need to normalize x values so distance means same thing
in all directions

L, and L, are common distances for Euclidean space
* L, also useful: max abs difference in any dimension

» For large p and/or binary values, better to use cosine similarity (angle
between 2 vectors); cos(0)= so 1-cos(0) is distance

lvlliwli
« Two flavors: point-assignment and agglomerative

UNIVERSITY OF SAN FRANCISCO



Clustering examples

Bandwidth Value: 0.8
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k-means mean-shift hierarchical clustering

Images: https://developers.google.com/machine-learning/clustering/clustering-algorithms,
https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/, https://uc-r.qgithub.io/hc_clustering

UNIVERSITY OF SAN FRANCISCO


https://developers.google.com/machine-learning/clustering/clustering-algorithms
https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/
https://uc-r.github.io/hc_clustering

Distance measure requirements

1. Always nonnegative; only distance(v,v) is O
2. Symmetry; distance(v,w) = distance(w,v)
3. Triangle inequality; distance(v,w)+distance(w,z)>distance(v,z)

P

) ) ) UNIVERSITY OF SAN FRANCISCO
From http://www.mmds.org/; see it for more on distance metrics



http://www.mmds.org/

k-means clustering

k-means works

« Assumes Euclidean space ’
 Clusters separated by straight lines only )
« User provides X and number of clusters to find, k ‘

* |[dea is to pick k centroids in p space and assign points
to c!(us_tder with closest centroid then recompute
centroids

» Repeat until the cluster assignments stop changing k-means fails

» Can select k points as initial centroids:
« At random (seems to do a crappy job for large p)

* By picking k distant points (k-means++ is a variation for initial
selectlong

» Algorithm converges using Euclidean distance
* Not guaranteed to find optimal clusters

UNIVERSITY OF SAN FRANCISCO



k-mean clustering animation

* k-means gives Voronoi ’ . ot
tessellation 81 ¥ % ;
* [t assumes that all points in the o7 { ATy
cluster are contiguous; sounds
obvious, but for most real 1 N
problems this assumption . P
doesn’t hold PN
 If true clusters are T 2 %
noncontiguous, k-means will oisid
give poor results
0.2 +
Iteration #0
0.1

0O 01 02 03 04 05 06 07 08 09 1

) ) o . o ) UNIVERSITY OF SAN FRANCISCO
Animation from https://en.wikipedia.org/wiki/K-means clustering



https://en.wikipedia.org/wiki/K-means_clustering

kK-means algorithm

Algorithm: kmeans(X,k)

(t (t=0)

Select k unique points from X as initial centroids m1,7<;0) for clusters C’li
repeat
foreach r € X do

j* = arg min; distance(z, m§t)) (find closest centroid to x)
Add x to cluster C'J(-iﬂ) (assign x to cluster)
end
for j =1..k do
G+l _ _1 > % (recompute centroids)
j @ ) zeC{tY p
end
t=it+1

until C’it)k — C’g;l) (until clusters don’t change)



k-means application: MNIST

(Known digits so we can measure error)

» Goal: cluster MNIST digit greyscale images
« p=28x28=784 pixels/image

NN e [
w <y N
o o
< SR T
KU N S o

X
y = df_digits['digit']
kmeans = KMeans(k)
kmeans . fit(X)

y_cluster = kmeans.labels

df_digits.drop('digit', axis=1) # get just pixels

* k-means finds k=10 clusters but cluster 5 doesn’t usually

correspond to the images of fives

See https://qithub.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

UNIVERSITY OF SAN FRANCISCO


https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

Testing MNIST cluster quality

 For all images in each cluster, cl, get the true digits from y
» y_cluster==cl indicates which images are in cluster cl
» y[y_cluster==cl] indicates the true digit of each image in that cluster
* Then use most common true digit as guess for that cluster’s prediction

for cl in range(0,k):
y_true_digits = y[y_cluster==cl].values # convert from class to digit
most_common_digit = np.bincount(y_true_digits).argmax()
accur = np.sum(y_true_digits==most_common_digit) / len(y_true_digits)

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb UNIVERSITY OF SAN FRANCISCO



https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

Purity and accuracy of clusters for k=10

* Here are true digits for each cluster found by kmeans:

[588893888655885850885805885988]mode =8, gini =0.64, accur =53.0%
[222222522223223222222222222222]mode =2,gini=0.18, accur =90.2%
[333325223335338083555833358303]mode =3, gini=0.64, accur=53.0%
[407944477954496427947447739494]mode =4, gini=0.72, accur = 35.6%
[000000500000060020500500000050] mode =0, gini =0.38, accur = 77.9%
[79799947494749999779744797947 7]mode =7, gini=0.69, accur =43.1%
[662666666666646616666266606666]mode =6, gini =0.26, accur = 85.7%
[000000000000600000000000000009] mode =0, gini =0.19, accur = 89.6%
11211615717184515112651815211 1] mode =1, gini =0.69, accur =51.6%
1M11111212119191113637319312116]mode =1, gini=0.57, accur =64.5%
Unique labels [0 1 2 3 4 6 7 8], within class avg accuracy 64 .4
- Missing 5, 9!!

* k-means doesn’t work that well if we use k=10

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb UNIVERSITY OF SAN FRANCISCO



https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

Purity and accuracy of clusters for k=20

* Here are true digits for each cluster found by kmeans:

[355835838333533833355855353383]mode =3, gini=0.62, accur =50.3%
[494454494444444944499494444944]mode =4, gini=0.50, accur =63.4%
99799977797 7777975749799744779]mode =7, gini=0.50, accur =66.3%
1M1111112111911136131116211111 1] mode =1, gini =0.30, accur = 83.6%
222222222222222222222222222322]mode =2,gini=0.09, accur =95.5%

[888888788588888882388888888888]mode =8, gini=0.35, accur=280.0%
[979449499497999949947949479444]mode =9, gini=0.61, accur =48.3%
[222223222222222222222222222222]mode =2, gini=0.13, accur = 93.0%
[779497977993793999799799464999]mode =09, gini=0.71, accur = 38.9%
(777777777777 777772777777777277]mode=7,gini=0.09, accur=95.2%
[4462474449044444447494444997 944]mode =4, gini=0.67, accur=45.8%
[000000000002550000000000005000] mode =0, gini =0.20, accur = 89.1%
Unique labels [0 12 34 56 7 8 9], within class avg accuracy 73.6

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb UNIVERSITY OF SAN FRANCISCO



https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

Purity and accuracy of clusters for k>20

* k=100:

Unique labels [012 34 56 7 8 9], within class avg accuracy 88.6
« k=200:

Unique labels [0 1234 56 7 8 9], within class avg accuracy 90.8
» k=250:

Unique labels [0 1234 56 7 8 9], within class avg accuracy 91.4

« Naturally, we'd have to combine these k classes to group into
10 digits

See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb UNIVERSITY OF SAN FRANCISCO



https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

k-means application: Breast cancer

(Known cancer/benign target so we can measure error)
« 212 cancer, 357 non-cancer |
predicted

* k-means isn’t great; uncertainty is low for one 0 1
class (0.0056) but high for the other (.4743)

* To the right are the two possible conf matrices,
depending on the cluster number chosen by k-

actual
— o
f

predicted
means for cancer and for non-cancer 0 1
kmeans = KMeans(n_clusters=2, init='k-means++') T O
kmeans . fit(X) *§ 1
y_pred = kmeans.predict(X)
cancer = np.where(y==0)[0]
benign = np.where(y==1)[0]
print( gini(y_pred[benign]), gini(y_pred[cancer]) )

UNIVERSITY OF SAN FRANCISCO



k-means application:
color quantization

 Color pictures typically use lots of unique
colors, possibly 10s of thousands 250

« Each pixel in the image has -
Red/Green/Blue colors, 1 byte per RGB
= 3 bytes (24 bits)

« Each RGB is a 3D coordinate of color:
(R, G, B), with possibly tens of ,
thousands of unique combinations 50 4

« Example with just red/green (omit blue):

150

Green level

100

50 100 150 200 250
Red level

See https://scikit-learn.org/stable/auto examples/cluster/plot color guantization.html UNIVERSITY OF SAN FRANCISCO
Image from https://en.wikipedia.org/wiki/Color_guantization



https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://en.wikipedia.org/wiki/Color_quantization

Color quantization cont'd

* (R,G,B) takes 3 bytes per pixel which makes
images really big 200

- If a picture only has 256 unique colors we can = s,
map all (R,G,B) vectors to a single byte; the
color “index” 0..255 points into a color palette & 100
with the full (R,G,B) vectors; 3x compression
for each pixel, which is massive compression 5o g
* If picture has more than 256 colors, we can
cluster in RGB space with k=256 and it will 50 100 150 200 250

group similar colors together; then we pick Red level
the centroid as the colors in the palette

een le

UNIVERSITY OF SAN FRANCISCO



Color quantization example, k=10

Original image Quantized image Quantized image
(96,615 colors) (10 colors, k-Means) (10 colors, at random)

7/ \ (WA

UNIVERSITY OF SAN FRANCISCO
See https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb



https://github.com/parrt/msds621/blob/master/notebooks/clustering/kmeans.ipynb

Color quantization example, k=4

Original image Quantized image Quantized image
(96,615 colors) (4 colors, k-Means) (4 colors, at random)

UNIVERSITY OF SAN FRANCISCO



Confusion point

* k-means’ centroids don’t have to be points in X, usually aren’t

* k-medians uses median not mean for centroids (minimizes w.r.t.
L1 not L2 distance); median even for single dimension doesn’t

have to be point in x¥) space

* k-medoids (not spelled k-medioids) requires medoids to be
points in X; works with any distance measure; sounds like k-
means but algorithm is pretty different; gotta pick “centrally
located point”

UNIVERSITY OF SAN FRANCISCO



Trouble with k-means

* k-means requires that we specify number of clusters k

* Picking k is usually a problem

« Color quantization and MNIST digits have known k, but few do
« Different starting centroids can lead to very different results

« Each observation is forced into one of the k clusters, but
probabilities might be nice; we could use distance to centroid |
guess but a density estimate would be better

UNIVERSITY OF SAN FRANCISCO



Hierarchical (agglomerative) clustering

* Idea: put every point into its own singleton cluster; repeatedly group
two closest clusters into a meta-cluster until just one cluster left

« Can also stop when distance between clusters are sufficiently large
* We need a cluster distance metric; called the linkage criterion

« Simplest linkage is just the distance between cluster centroids

* Result is a tree of clusters, one cluster per level

* We get all possible clusters

UNIVERSITY OF SAN FRANCISCO



Dendograms

 Dendogram is a tree
of clusters, one
cluster per level

* Distance from node
to children reflects
between-cluster-
metric

UNIVERSITY OF SAN FRANCISCO

Image from https://www.statisticshowto.datasciencecentral.com/hierarchical-clustering/



https://www.statisticshowto.datasciencecentral.com/hierarchical-clustering/

Between-cluster distance metrics (/linkage)

Warning: statisticians coining terms again!

1. Minimum dista between any two points in the
cluster (single linkage); tends not to get compact
clusters and can get chain oints

2. Max distance between point pairs (complete
linkage); tends to get compact clusters but points
can be closer to other clusters than those within
their cluster

3. Average distance of all point pairs from two clusters
(group average linkage); tries to get compact
clusters that are far apart

4. Ward’s method minimizes within-cluster variance;
merge pair with smallest prospective variance at
each step

UNIVERSITY OF SAN FRANCISCO

Images from http://saedsayad.com/clustering hierarchical.htm



http://saedsayad.com/clustering_hierarchical.htm

Effect of between-cluster-metric
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Image from https://uc-r.qgithub.io/hc_clustering


https://uc-r.github.io/hc_clustering

Ward’s method
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Image from https://uc-r.qgithub.io/hc_clustering


https://uc-r.github.io/hc_clustering

Non-numeric clustering

* How do you cluster documents?

« Can use edit distance or Jaccard similarity between text docs

« Maybe convert words to Glove word vectors

 Try your own word embeddings from corpus

« But what about tabular data with nominal categorical variables?
 [n non-numeric space, what is a centroid vector?

* There are similarity measures for categoricals, but I'm not a big
fan, particularly with mixed numeric and categorical data

UNIVERSITY OF SAN FRANCISCO



Breiman’s RF clustering

» Goal: similarity(x®, xY)) or distance(x®, xU)) for any two
feature vectors in X, even in the presence of mixed categorical
and numeric data

« Random Forests to the rescue again with clever trick that
turns unsupervised into supervised problem

» Then derive similarity matrix between all x¥, x) pairs

« Proximity matrix: count how often x(, xU) appear in same leaf
in all trees of forest; normalize by number of leaves

« Use 1 minus proximity to get distance, then can use any
clustering algorithm we want like k-means, ...

UNIVERSITY OF SAN FRANCISCO

See https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm



https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Random Forest distance metric

1. Consider all X records as as class 0

2. Duplicate and bootstrap columns of X to get X': class 1

« Breiman: X’ created by “...sampling at random from the univariate
distributions...” of X

» X’ destroys relationships between columns of X
3. Create y to label/distinguish X vs X’
4. Train RF on stacked [X, X'] - y

5. Walk all leaves of all trees, bumping proximity([i, j] for all
x®, xU) pairs in leaf; divide proximities by num of leaves

6. Cluster using 1-proximity for distance matrix train

X
Yololole

A

bootstrap
>

UNIVERSITY OF SAN FRANCISCO



Breiman’s RF gets X' from X

Here’s how to create X’ from X

def df_scramble(X : pd.DataFrame) -> pd.DataFrame:
X_rand = X.copy()
for colname 1in X:
X_rand[colname] = \
np.random.choice(X[colname], len(X), replace=True)
return X_rand

UNIVERSITY OF SAN FRANCISCO




Breiman’s RF conjures up supervised
from unsupervised

def conjure_twoclass(X : pd.DataFrame)\
-> (pd.DataFrame, pd.Series):
X_rand = df_scramble(X)
X_synth = pd.concat([X, X_rand], axis=0)
y_synth = np.concatenate([np.zeros(len(X)),
np.ones(len(X_rand))],
ax1i1s=0)
return X_synth, pd.Series(y_synth)

Train an RF model to recognize structure between variables,
but goal is simply co-existence in leaves

UNIVERSITY OF SAN FRANCISCO



Computing RF similarity matrix

For each tree in RF
For each leaf in tree
Increment similarity for all x® and xU) in leaf (ignoring X’ obs.)
Divide each similarity[i,j] by number of leaves to normalize similarities

UNIVERSITY OF SAN FRANCISCO



More on RFs for similarity

« Similarity Forests
http://biorxiv.org/cqi/reprint/258699v1

 Unsupervised Learning With Random Forest Predictors
https://horvath.genetics.ucla.edu/html/RFclustering/RFclustering
/RandomForestHorvath.pdf

UNIVERSITY OF SAN FRANCISCO
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