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Binary tree abstract data structure

• A directed graph with internal nodes and leaves
• No cycles and each node has at most one parent

• Each node has at most 2 child nodes

• For ! nodes, there are ! -1 edges

• Nodes have payloads (values) that can be anything

• A full binary tree: all internal nodes have 2 children

• Height of full tree with ! internal nodes is about log%(!)
• Height defined as number of edges along path root→leaf

• Level 0 is root, level 1, …

• Warning: binary tree doesn’t imply binary search tree
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Concrete binary tree using pointers
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class TreeNode:
def __init__(self, value,

left=None, right=None):
self.value = value
self.left = left
self.right = right

Drawn with https://github.com/parrt/lolviz

For our purposes here, you can think 
of a class definition as defining a 
dictionary that maps fields/members 
to values. Objects are instances of a 
class and can act like dictionary 
objects. Compare:

o = dict()
O['value'] = 3

o = TreeNode()
o.value = 3

https://github.com/parrt/lolviz


Building binary trees

• Manual construction is a simple matter of creating nodes and 
setting left/right child pointers or passing kids to init method

https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb

root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)

root.left.left = TreeNode(4)
root.left.right = TreeNode(5)

class TreeNode:
def __init__(self, value,

left=None, right=None):
self.value = value
self.left = left
self.right = right

root = TreeNode(1, TreeNode(2), TreeNode(3))
or

https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb


Recursion detour



Math recurrence relations ⇒ recursion

• Factorial definition:
• Let 0! = 1
• Define "! = " ∗ (" − 1)! for " ≥ 1

• Recurrent math functions
become recursive functions
in Python

• Non-recursive version is harder
to understand and less natural

def fact(n):
if n==0: return 1
return n * fact(n-1)

def factloop(n):
r = 1
for i in range(1,n+1):

r *= i
return r



Recursion traces out a call graph

• Think of each call to 
the function as node in 
chain or graph of calls

• Result of each function 
call is a piece of the 
result and each call 
combines subresult(s) 
to create more 
complete answer and 
pass it back
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def fact(n):
if n==0: return 1
return n * fact(n-1)



Formula for writing recursive functions

def fact(n):
if n==0: return 1
return n * fact(n-1)

def f(input):
1. check termination condition
2. process the active input region / current node, etc…
3. invoke f on subregion(s)
4. combine and return results

Steps 2 and 4 are optional

Terminology: currently-active region or element is what f is currently trying to process.
Here, that is argument n (the “region” is the numbers 0..n)



Don't let the recursion scare you

• Just pretend that you are calling a different function
• Or, as you write the function, pretend that you are calling the 

same function except that it is already complete
• We call this the recursive leap of faith
• Follow the “Formula for recursive functions” and all will be well! 



Recursive tree procedures



An analogy for recursive tree walking

• Imagine searching for an item in a maze of
rooms connected by doors (no cycles)

• Each room has at most 2 doors, some have none
• Search procedure that works in ANY room:

• This approach is called backtracking

def visit(room):
if item in room: print(“rejoice!”)
if room.left exists: visit(room.left)
if room.right exists: visit(room.right)



Recursive tree walk is natural
• Depth-first search is how we walk (visit) through nodes
• Pre-order traversal: executing an action

at discovery time, before visiting kids

def walk(p:TreeNode):
if p is None: return
print(p.value) # preorder
walk(p.left)
walk(p.right)
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https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb

Think of launching a minion to walk the
left subtree and then another to walk the right

Follows formula for recursive functions

Indicates action execution

def f(input):
1. check termination condition
2. process the current node
3. invoke f on subregion(s)
4. combine and return results

https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb


How can walk() remember where it has visited?
• “Where to return” is tracked per 

function call not per function definition
• Function f calls g calls h and Python 

remembers where each was called from
• Each function call saves its place like 

keeping a finger on the call statement; 
return statement uses that as location to 
resume after invoked function returns

• Just imagine that f, g, and h are the same 
function and you'll see that recursive calls 
also remember where they came from



Recursion call tree vs tree
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walk(10)

walk(3) walk(13)

walk(2) walk(7) walk(21)

def walk(p:TreeNode):
if p is None: return
walk(p.left)
walk(p.right)

Exhaustive search of all nodes



Searching in binary tree

• Let’s modify the tree walker to search for an element and 
compare to unrestricted depth-first tree walk

def search(p:TreeNode, x:object):
if p is None: return None
if x==p.value: return p
q = search(p.left, x)
if q is not None: return q
q = search(p.right, x)
return q

def walk(p:TreeNode):
if p is None: return
print(p.value)
walk(p.left)
walk(p.right)



Decision tree stumps



Stumps
• A stump is a 2-level tree w/decision node root & 2 predictor leaves
• Used by gradient boosting machines as the “weak learners” 
• If node has field split, it’s a decision node else it’s a leaf
# Define a single-node class for simplicity
class TreeNode:
def __init__(self, split=None, prediction=None,

left=None, right=None):
self.split = split
self.prediction = prediction
self.left = left
self.right = right



Sample stump that picks midpoint as split

≥<

Split sqfeet feature space at 850

Average in right region



Creating decision tree stumps
• For demonstration purposes only, let’s split ! always at midpoint 

between min/max:

def stumpfit(x, y):
if len(x)==1 or len(np.unique(x))==1:

# if just one or unique x value, create & return a leaf
return TreeNode(prediction=np.mean(y))

split = (min(x) + max(x)) / 2 # split at x midpoint
t = TreeNode(split)
t.left = TreeNode(prediction=np.mean(y[x<split]))
t.right = TreeNode(prediction=np.mean(y[x>=split]))
return t



The magic of recursion

• Demo converting stumpfit() to treefit()
• See “Regression tree midpoint split for

Boston dataset” in notebook
• In treefit(x,y), simply convert

t.left = TreeNode(prediction=np.mean(y[x<split]))

t.left = treefit(x[x<split], y[x<split])

Notebook: https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb

(midpoint split)

Create node

Create subtree

to

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb


In practice, better to use two classes
• See notebook for 1D decision tree implementation

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb

class DecisionNode:
def __init__(self, split, left=None, right=None):

self.split = split  # split point chosen from x
self.left = left
self.right = right

class LeafNode:
def __init__(self,y):

self.y = y

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb


Key takeaways
• Binary tree: acyclic tree structure with at most two children,

constructed by hooking nodes together
(e.g., root.left = TreeNode(2))

• Self-similar data structures built and walked with recursion
• Each recursive call does a piece of the work and returns its 

piece combined with results obtained from recursive calls
• Recursion traces out a call tree that's like a tree data structure
• Recursive call in treefit() returns newly-constructed subtree
• Remember the recursive function template!
• Depth-first-search visits each node through backtracking
• Study these recursive tree functions!


