
A crash course in
binary trees

We’ll revisit in MSDS689 but we need binary trees for projects now

Terence Parr
MSDS program
University of San Francisco

Binary tree abstract data structure

• A directed graph with internal nodes and leaves
• No cycles and each node has at most one parent

• Each node has at most 2 child nodes

• For ! nodes, there are ! -1 edges

• Nodes have payloads (values) that can be anything

• A full binary tree: all internal nodes have 2 children

• Height of full tree with ! internal nodes is about log%(!)
• Height defined as number of edges along path root→leaf

• Level 0 is root, level 1, …

• Warning: binary tree doesn’t imply binary search tree

3

10

13

72 21

Tree

value '10'

left right

Tree

value '3'

left right

Tree

value '13'

left right

Tree

value '2'

left right

Tree

value '7'

left right

Tree

value '21'

left right

Concrete binary tree using pointers

3

10

13

72 21

class TreeNode:
def __init__(self, value,

left=None, right=None):
self.value = value
self.left = left
self.right = right

Drawn with https://github.com/parrt/lolviz

For our purposes here, you can think
of a class definition as defining a
dictionary that maps fields/members
to values. Objects are instances of a
class and can act like dictionary
objects. Compare:

o = dict()
O['value'] = 3

o = TreeNode()
o.value = 3

https://github.com/parrt/lolviz

Building binary trees

• Manual construction is a simple matter of creating nodes and
setting left/right child pointers or passing kids to init method

https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb

root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)

root.left.left = TreeNode(4)
root.left.right = TreeNode(5)

class TreeNode:
def __init__(self, value,

left=None, right=None):
self.value = value
self.left = left
self.right = right

root = TreeNode(1, TreeNode(2), TreeNode(3))
or

https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb

Recursion detour

Math recurrence relations ⇒ recursion

• Factorial definition:
• Let 0! = 1
• Define "! = " ∗ (" − 1)! for " ≥ 1

• Recurrent math functions
become recursive functions
in Python

• Non-recursive version is harder
to understand and less natural

def fact(n):
if n==0: return 1
return n * fact(n-1)

def factloop(n):
r = 1
for i in range(1,n+1):

r *= i
return r

Recursion traces out a call graph

• Think of each call to
the function as node in
chain or graph of calls

• Result of each function
call is a piece of the
result and each call
combines subresult(s)
to create more
complete answer and
pass it back

fact(5)

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

5 *

4 *

3 *

2 *

1 *

1

def fact(n):
if n==0: return 1
return n * fact(n-1)

Formula for writing recursive functions

def fact(n):
if n==0: return 1
return n * fact(n-1)

def f(input):
1. check termination condition
2. process the active input region / current node, etc…
3. invoke f on subregion(s)
4. combine and return results

Steps 2 and 4 are optional

Terminology: currently-active region or element is what f is currently trying to process.
Here, that is argument n (the “region” is the numbers 0..n)

Don't let the recursion scare you

• Just pretend that you are calling a different function
• Or, as you write the function, pretend that you are calling the

same function except that it is already complete
• We call this the recursive leap of faith
• Follow the “Formula for recursive functions” and all will be well!

Recursive tree procedures

An analogy for recursive tree walking

• Imagine searching for an item in a maze of
rooms connected by doors (no cycles)

• Each room has at most 2 doors, some have none
• Search procedure that works in ANY room:

• This approach is called backtracking

def visit(room):
if item in room: print(“rejoice!”)
if room.left exists: visit(room.left)
if room.right exists: visit(room.right)

Recursive tree walk is natural
• Depth-first search is how we walk (visit) through nodes
• Pre-order traversal: executing an action

at discovery time, before visiting kids

def walk(p:TreeNode):
if p is None: return
print(p.value) # preorder
walk(p.left)
walk(p.right)

3

10

13

72 21

https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb

Think of launching a minion to walk the
left subtree and then another to walk the right

Follows formula for recursive functions

Indicates action execution

def f(input):
1. check termination condition
2. process the current node
3. invoke f on subregion(s)
4. combine and return results

https://github.com/parrt/msds621/blob/master/notebooks/trees/basics.ipynb

How can walk() remember where it has visited?
• “Where to return” is tracked per

function call not per function definition
• Function f calls g calls h and Python

remembers where each was called from
• Each function call saves its place like

keeping a finger on the call statement;
return statement uses that as location to
resume after invoked function returns

• Just imagine that f, g, and h are the same
function and you'll see that recursive calls
also remember where they came from

Recursion call tree vs tree

3

10

13

72 21

walk(10)

walk(3) walk(13)

walk(2) walk(7) walk(21)

def walk(p:TreeNode):
if p is None: return
walk(p.left)
walk(p.right)

Exhaustive search of all nodes

Searching in binary tree

• Let’s modify the tree walker to search for an element and
compare to unrestricted depth-first tree walk

def search(p:TreeNode, x:object):
if p is None: return None
if x==p.value: return p
q = search(p.left, x)
if q is not None: return q
q = search(p.right, x)
return q

def walk(p:TreeNode):
if p is None: return
print(p.value)
walk(p.left)
walk(p.right)

Decision tree stumps

Stumps
• A stump is a 2-level tree w/decision node root & 2 predictor leaves
• Used by gradient boosting machines as the “weak learners”
• If node has field split, it’s a decision node else it’s a leaf
Define a single-node class for simplicity
class TreeNode:
def __init__(self, split=None, prediction=None,

left=None, right=None):
self.split = split
self.prediction = prediction
self.left = left
self.right = right

Sample stump that picks midpoint as split

≥<

Split sqfeet feature space at 850

Average in right region

Creating decision tree stumps
• For demonstration purposes only, let’s split ! always at midpoint

between min/max:

def stumpfit(x, y):
if len(x)==1 or len(np.unique(x))==1:

if just one or unique x value, create & return a leaf
return TreeNode(prediction=np.mean(y))

split = (min(x) + max(x)) / 2 # split at x midpoint
t = TreeNode(split)
t.left = TreeNode(prediction=np.mean(y[x<split]))
t.right = TreeNode(prediction=np.mean(y[x>=split]))
return t

The magic of recursion

• Demo converting stumpfit() to treefit()
• See “Regression tree midpoint split for

Boston dataset” in notebook
• In treefit(x,y), simply convert

t.left = TreeNode(prediction=np.mean(y[x<split]))

t.left = treefit(x[x<split], y[x<split])

Notebook: https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb

(midpoint split)

Create node

Create subtree

to

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb

In practice, better to use two classes
• See notebook for 1D decision tree implementation

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb

class DecisionNode:
def __init__(self, split, left=None, right=None):

self.split = split # split point chosen from x
self.left = left
self.right = right

class LeafNode:
def __init__(self,y):

self.y = y

https://github.com/parrt/msds621/blob/master/notebooks/trees/decision-trees.ipynb

Key takeaways
• Binary tree: acyclic tree structure with at most two children,

constructed by hooking nodes together
(e.g., root.left = TreeNode(2))

• Self-similar data structures built and walked with recursion
• Each recursive call does a piece of the work and returns its

piece combined with results obtained from recursive calls
• Recursion traces out a call tree that's like a tree data structure
• Recursive call in treefit() returns newly-constructed subtree
• Remember the recursive function template!
• Depth-first-search visits each node through backtracking
• Study these recursive tree functions!

