
7 March 2024

ORT in a CMake / C++ environment
ORT Community Days 2024

Ummo Schwarting
Carl Zeiss GOM Metrology GmbH
Frank Viernau
EPAM Systems GmbH

The Project
Why creating a SBOM is a challenge

The Project environment

• Metrology 3D Software

• Legacy monolithic CMake / C++ project with ~25 years development, ~ 10.000.000 lines of code

• Multiple teams committing, up to 90 pull requests a day

• SVN background: Migrated to git recently but still one repository without any submodules

• Many custom solutions to configure the build process

• No single build step but several layers

• 3rd party package included at many different steps

• Firmware builds attached

• On site build environment

Further Challenge

• No changing a running system:
setting up everything new and clean is no option.

7 March 2024ZEISS 3

Source code repository

Screening a monolithic legacy project

Options for Software composition analysis (SCA):

• Scan the whole source repo?

→ Infinite work for curation (plus maintaining curations)

→ Binary artefacts might be missed

• Binary analysis on final artifact?

→ massively incomplete.

7 March 2024ZEISS 4

Project code

massively
simplified

representation

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
ar

ty
 b

in
ar

y

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
ar

ty
 b

in
ar

y

3rd party binary

What to do?

1. Clean up!

• Migrate 3rd party packages into a central collection

• Sort between distributed and internal packages

2. Add SCA ‘abstraction layer’ to funnel custom build solution into ORT workflow

• The existing build system “magic” remains in place, but abstraction allows further processing.

• The target data structure for the abstraction must be simple

• Avoid having to train the build system specialists for SBOM structure

3. Prioritize: Focus on what is important and define increments

• Completeness over structure

• Package hierarchy is no priority → ORT won’t know, how packages depend on each other.

• But every package will be listed

• Binary package analysis is currently out of scope

7 March 2024ZEISS 5

Knowledge
about FOSS
compliance
and SBOM
structure

Knowledge
of the build

system

Source code repository

Screening a monolithic legacy project

7 March 2024ZEISS 6

3rd party package repository

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
a
rt

y
b

in
a
ry

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
ar

ty
 b

in
ar

y

3
rd

 p
ar

ty
 b

in
ar

y

Project code

Abstraction layer

Motivation
CMAKE -> analyzer result

Requirements

• Enable ORT's package-by-package license scanning / clearance workflow (re-use work across projects)

• Use ORT to create SBOMs containing dedicated entries per dependency

• Future: Enable querying vulnerabilities for the dependencies via ORT's advisor(s)

Just need an analyzer result representing the CMAKE project, but where from?

• Implement CMAKE support as package manager in ORT? ..very hard, not timely, not feasible.

• Put information into project.spdx / package.spdx files and analyze them with ORT?

• CMAKE scripts have all information, they could generate SPDX documents, but

• SPDX document data model more complex than needed here

• Relying on external format implies limitations: Risk to supporting unforeseen future use cases

• ORT's SPDX analyzer is relatively hard to change: analyzer result and SPDX documents do not match 1:1

• Idea: Introduce a minimal file format dedicated to this use case

• Generate an analyzer result based on such file + ort configuration

7 March 2024ZEISS 7

Source code repository

Screening a monolithic legacy project

7 March 2024ZEISS 8

3rd party package repository

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
a
rt

y
b

in
a
ry

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
ar

ty
 s

o
u

rc
es

3
rd

 p
ar

ty
 b

in
ar

y

3
rd

 p
ar

ty
 b

in
ar

y

Project code

Abstraction layer

ORT Helper

package-list.yml

Motivation
CMAKE -> package list YAML -> analyzer result

Minimum data needed:

• A flat list of packages, per package:

• identifier

• provenance (for scanning for detected licenses)

• is_excluded, is_dynamically_linked (for policy rules / license clearance)

• Some data from ORT configuration which the analyzer adds: package curations, ...

Decision to allow choosing identifiers freely (including type)

• Allows creating analyzer results with arbitrary set of packages: useful for other use case such as license clearance.

• User becomes responsible for uniqueness of identifiers

Short Demo

...

Limitations:

• Not all package metadata can be set yet. Further fields to be added, e.g. PURLs

• Inject further configuration into analyzer result: resolutions, .ort.yml file

• Querying vulnerabilities only work if identifier type is known in ORT / if queries are constructed from PURLs

7 March 2024ZEISS 9

Outlook
Ongoing and future goals

• Transmit package dependency tree into ORT

• Use additional metadata, e.g. package URL (PURL)

• Read completed SBOMs for binary packages into ORT pipeline (equivalent to SCANNER step)

• Vulnerability identification for C++ dependencies (packages without ecosystem ID)

7 March 2024ZEISS 10

Discussion

	Default Section
	Slide 2: ORT in a CMake / C++ environment
	Slide 3: The Project
	Slide 4: Screening a monolithic legacy project
	Slide 5: What to do?
	Slide 6: Screening a monolithic legacy project
	Slide 7: Motivation
	Slide 8: Screening a monolithic legacy project
	Slide 9: Motivation
	Slide 10: Outlook
	Slide 11: Discussion
	Slide 12

