/* * Copyright (c) 2021, Idan Horowitz * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include namespace AK { template class BinaryHeap { public: BinaryHeap() = default; ~BinaryHeap() = default; // This constructor allows for O(n) construction of the heap (instead of O(nlogn) for repeated insertions) BinaryHeap(K keys[], V values[], size_t size) { VERIFY(size <= Capacity); m_size = size; for (size_t i = 0; i < size; i++) { m_elements[i].key = keys[i]; m_elements[i].value = values[i]; } for (ssize_t i = size / 2; i >= 0; i--) { heapify_down(i); } } [[nodiscard]] size_t size() const { return m_size; } [[nodiscard]] bool is_empty() const { return m_size == 0; } void insert(K key, V value) { VERIFY(m_size < Capacity); auto index = m_size++; m_elements[index].key = key; m_elements[index].value = value; heapify_up(index); } V pop_min() { VERIFY(!is_empty()); auto index = --m_size; swap(m_elements[0], m_elements[index]); heapify_down(0); return m_elements[index].value; } const V& peek_min() const { VERIFY(!is_empty()); return m_elements[0].value; } const K& peek_min_key() const { VERIFY(!is_empty()); return m_elements[0].key; } void clear() { m_size = 0; } private: void heapify_down(size_t index) { while (index * 2 + 1 < m_size) { auto left_child = index * 2 + 1; auto right_child = index * 2 + 2; auto min_child = left_child; if (right_child < m_size && m_elements[right_child].key < m_elements[min_child].key) min_child = right_child; if (m_elements[index].key <= m_elements[min_child].key) break; swap(m_elements[index], m_elements[min_child]); index = min_child; } } void heapify_up(size_t index) { while (index != 0) { auto parent = (index - 1) / 2; if (m_elements[index].key >= m_elements[parent].key) break; swap(m_elements[index], m_elements[parent]); index = parent; } } struct { K key; V value; } m_elements[Capacity]; size_t m_size { 0 }; }; } using AK::BinaryHeap;