Image Sentiment Classification
本次作業為Image Sentiment Classification。我們提供給各位的training dataset為兩萬八千張左右48x48 pixel的圖片,以及每一張圖片的表情label(注意:每張圖片都會唯一屬於一種表情)。總共有七種可能的表情(0:生氣, 1:厭惡, 2:恐懼, 3:高興, 4:難過, 5:驚訝, 6:中立(難以區分為前六種的表情))。
Testing data則是七千張左右48x48的圖片,希望各位同學能利用training dataset訓練一個CNN model,預測出每張圖片的表情label(同樣地,為0~6中的某一個)並存在csv檔中。
[注意] 這次作業希望大家在衝高Kaggle上Accuracy的同時,對訓練的model及預測的結果多做一些觀察(P3-P5),並在報告中多加詳述。
https://inclass.kaggle.com/c/ml2017-hw3
https://drive.google.com/file/d/0B8Si647wj9ZoTHlJR1pDazUxSVE/view?usp=sharing
https://keras.io/#getting-started-30-seconds-to-keras https://keras.io/getting-started/sequential-model-guide/ https://keras.io/layers/convolutional/#conv2d https://keras.io/losses/ https://keras.io/optimizers/ https://keras.io/models/sequential/ https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model https://keras.io/layers/core/ https://keras.io/layers/advanced-activations/ https://keras.io/models/model/ https://keras.io/visualization/#model-visualization https://keras.io/callbacks/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.squeeze.html https://docs.scipy.org/doc/numpy/reference/generated/numpy.argwhere.html https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html https://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t
https://en.wikipedia.org/wiki/Test_set https://www.zhihu.com/question/23437871 https://scikit-learn.org/stable/index.html https://en.wikipedia.org/wiki/Confusion_matrix https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/ https://blog.fastforwardlabs.com/2016/02/24/hello-world-in-keras-or-scikit-learn-versus.html
https://github.com/raghakot/keras-vis/tree/master/vis
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py https://en.wikipedia.org/wiki/Median_filter https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.filters.median_filter.html
https://deeplearning.net/wp-content/uploads/2013/03/dlsvm.pdf https://arxiv.org/pdf/1608.02833.pdf