
Reliability
Nightmares
The coloring book

Script and storyboard by Máirín Duffy
Illustration by Wildfire

Concept and technical information by Jeremy Eder, Irit Goihman,
David Martin, and Craig Robinson

The coloring book

Reliability
Nightmares

2

Gino’s was a successful family-owned restaurant,
renowned for good food and good times.

Gino passed away and left the restaurant to his son, Leo, who quit his job to run it.
Gino had a natural instinct for running a restaurant. Leo does not.

3

The waitstaff are either
bombarded or bored.

Food spoils due to a freezer failure,
and a poorly maintained oven

causes a kitchen fire.

Loyal customers were
disappointed and started leaving.

Word was getting around that Gino’s
was “not what it used to be.”

Wrong food.

Cold food.

Gross food.

4

I can’t do this.
45 years in operation!
Will this be the last?

Who’s that at the door?

Hi! I’m celebrity chef Cookie Cache!
You’re hosting your sister’s wedding

reception! Let’s get this place
whipped into shape!!

5

Ugh...Mia!
What do you say?

Want to give it a go?

...Sure, let’s do it.
Yes!

Your sister Mia called us!

The first task is for Chef Cache to evaluate Gino’s dining experience—
sample the menu and check out the service.

6

I’ll try the LAMP stack, please!

Our specials of the day are J2EE
spaghetti with artisanal memory leaks,

bash’ed shellfish on bare metal, and
home-cooked biz-critical ancient

LAMP stack pancakes.

[90 minutes pass]

... Hey, uh, Leo?

Apologies for the
wait! I’ll check!

7

Sssssorry!!
Here you are!

You saved me!

Go home, get a good
night’s sleep. We’ll start

again in the morning.

There is a better way. I will teach you
how to run Gino’s as a managed service.
You’ll have five challenges, one per day.
We’ll close Gino’s for the week and get

you ready for the wedding!

Help!
HELP!

Five Challenges

8

The first challenge is to set up
observability for the restaurant.

This is foundational for
improving Gino’s service.

You need to know your equipment
works, your food supplies are fresh
and stocked, and that customers are
served in a timely manner. You need

data to achieve all of this.

1. We need to break down the silos between each
role with regular open communication.

2. We must be in consensus about the level of
service we provide.

3. We enforce accountability by measuring
causes of issues and working to address them.

4. We need to prioritize our work...

5. ...so we can keep our customers happy!

How do we do it?

#1. Observability • Break down silos
• Consensus
• Enforce accountability
• Prioritize work
• Keep customers happy

9

To accomplish this, we’ll define service-level
objectives for Gino’s. SLOs are a set of goals
you’d like to achieve that represent what your

customers expect. We’ll collect data to measure
whether we meet our SLOs or not.

We’ve had a lot of dishes sent
back lately because they weren’t
served right away and got cold.

Can we set an SLO for that?

10

Yep! Let’s set the SLO to 99% of
customers will receive their food within

20 minutes of placing their order. How will
we know we are meeting this SLO?

I have this new ticket
scanning system...

Great, let’s set it up. Chef, you scan
when you get a ticket, scan when the

food is ready, and waitstaff —scan when
you pick the meals up to serve.

11

Brilliant! Our SLO can be no more
than two dishes omitted per week due to

supply. How do we measure this?

The scanners can do
inventory tracking too!

How about supplies? So we don’t
have to tell customers we’re out of their

favorite dishes quite so much?

Great, let’s set the scanners up to track
inventory. Once everything is set up, let’s

schedule monthly SLO meetings. We can talk
about how we’re doing at meeting our SLOs,

and tweak, retire, or create new ones.

Dashboard

12

Great work on instrumenting for
observability! Today’s challenge is safety
and self-healing. We’ll know when things
go wrong with the observability we set up

yesterday. For issues that can be addressed
through automation, we can self-heal!

So instead of simply tracking
inventory—we automatically order

more when low?

Yes! If Chef spends less time with
ordering forms, that’s more time to spend

on customer experience. You can
self-heal inventory issues.

#2. Safety and self-healing

13

What about when it’s less clear there’s
a problem? I had to bring 15 orders back

last week because the customers disagreed
about the steak doneness.

We can’t be perfect on subjective things.
Let’s create an SLO—1/100 customers will

send their steaks back. We can set an error
budget for doneness. For a medium steak

what would your range be?

Medium rare to medium-well done.
Not well done or rare.

That means that of 100 steaks ordered,
only one will be out of range. If we get

more than one out of range, it is time to
do something about it ASAP. Let’s call

that an ‘incident’.

14

So measure it! Measure before
you send them out. Time them and

use a thermometer—don’t just go by
your gut—until you meet the SLO.

And if you hit two steak returns in
one day, you can self-heal by using

thermometers on every steak afterwards
to make sure no more get returned and

so you can recalibrate yourself.

So let’s list out all of these
kinds of potential issues and set error

budgets for them. Then we can track them
each day on our dashboard!

Hmm...maybe something
is wrong with the stove?

#2. Safety and self-healing

15

Today we’re looking at scalability.
Both the observability and self-healing we
set up over the past two days of challenges

will enable today’s challenge.

Will scalability help us handle the
dining room better when we have a
huge batch of take-out orders? The

guests get so mad at me—sometimes
they wait two hours for food!

Yes, it can help! Scalability
refers to Gino’s ability to scale up
for the dinner rush, and scale down

as demand comes back down.

#3. Scalability

Takeout pick-up

What’s our
challenge today?

16

Let’s address this. First, let’s add
the number of active online takeout
orders to the dashboard. How many

can you handle per hour?

Maybe 10–12?

So we set up an alert when
we have 10+ takeout orders.

Then what?

We had an online coupon for 15% off that
went viral last week. We got flooded with takeout
orders—600 orders between 5–7 PM. We couldn’t

figure out how to shut off online orders...

Then, you should start
load shedding and autoscaling.

load shedding
+

auto-scaling

Active takeouts

Dashboard

12

17

Load shedding is when you drop some tasks
purposely to work through your queue. To load shed
here, you could add a 20 minute wait to new dine-in
guests. You can also pad out time estimates online

to buy time to work thru the queue.

Autoscaling is when you horizontally scale out
your capacity on demand. Say you have a large party
reservation coming when takeout orders are high—
you could call in extra staff to meet the demand if

load shedding can’t free up enough resources.

18

Let’s make sure that the upcoming daily
reservations—especially for large parties—

are on the dashboard as well!

Ready for today’s challenge!

What is it today?

We’re going to shift left today.

What does that mean?

Active takeoutsLarge
Reservations

Dashboard

12

#4. Shifting left

19

Shifting left is moving towards
preventing problems as far in advance

(leftward) as possible. The further in advance
you see and address issues, the better
experience your customers will have!

You could regularly dine here as a
customer yourself and experience it first-
hand, note any improvements to be made,

and plan out SLOs to meet them.

Dining here like how you did?
Exactly.

For seasonal menu testing, you could
hold a ‘test kitchen’ event and have diners

come in to test out your new menu ahead of time.
That gives you time to address any issues and

improve the menu before launch based on their
feedback. You’ll shift your menu left!

20

That’s a great idea.
I didn’t think of that!

So let’s prep a service for Leo
and Chef—I’ll be the stand-in chef,

and I’ll work off your menu.
Let’s see how it goes!

Ready for today’s challenge?
It’s...zero downtime upgrades!

Zero downtime? We need
our 15 minute breaks!

#5. Zero downtime

21

Of course, of course! You need
breaks to do your best work—

we want to prevent burnout and
help you do your best work!

Zero downtime upgrades are more about
seamless transitions during needed changes.

For example, waitstaff shift changes—
instead of scheduling Annie to leave at

the beginning of Thomas’s shift...

...schedule their shifts to
overlap, and slowly transfer guests

from the departing waitstaff
to the incoming waitstaff.

Once all guests are
transferred, Annie can
go home, confident she
won’t be called back.

22

Now say your chef gives you notice to
open her own restaurant. A handover
between Chefs will ensure a seamless

experience for customers.

That would be great! We’re always
so rushed between shifts, sometimes we

neglect a customer waiting on a drink they
ordered before our shift, for example!

23

Great ideas—except for
the thought of Chef leaving us.

Let’s work on adjusting our
staffing schedules accordingly!

In the months leading up to his
sister’s wedding reception, Leo put
into practice the lessons from the
five managed service challenges...

Chef Cookie Cache left Gino’s
at the end of day five.

...and the wedding reception at Gino’s
went off without a hitch. Each lesson

helped avert issues.

24

Out of 200 guests, four sent their steaks back—and only one was outside
of the error budget for doneness. Chef’s steak SLO was met for the event!

The dashboard pointed out when three reception tables were in danger of
not meeting a 20 min food wait SLO—Leo was able to step in and help

the waitstaff get the food to the guests on time.

#1. Observability

#2. Safety and self-healing

25

Leo and Chef did a dry-run of the reception menu and improved the wine pairing
and dessert options based on the experience—both were a big hit at the event!

When the dance floor opened up, the bar was overwhelmed with drink orders.
Leo took waitstaff off of dessert service (everyone was dancing anyway) to help

auto-scale the bar. Once the bar quieted down, those waitstaff continued serving dessert.

#4. Shifting left

#3. Scalability

26

Mia, Leo’s sister, was thrilled, and the entire family had a blast!
Gino’s, the family restaurant, was saved, and became a much greater success.

Leo’s dad would have been proud!

#5. Zero downtime

The reception ran six hours—well past midnight. From monthly staff meetings
and regular communication, Leo knew Annie had to leave at 11. Leo started taking

over her guests and by 11 she was all set to go home.

Observability

Safety and self-healing

Scalability

Shifting left

Zero downtime upgrades

Check your score
on the next page!

1 . 2 . 3 . 4 . 5

1 . 2 . 3 . 4 . 5

1 . 2 . 3 . 4 . 5

1 . 2 . 3 . 4 . 5

1 . 2 . 3 . 4 . 5

Never tried to get
metrics out of it

My codebase OOM kills
routinely, oops.

I have no idea of the capacity limits of
my codebase in production.

I’ve never run my codebase
in Production before.

Upgrading my codebase requires a
weeks-long consulting engagement.

Regularly enable new metrics for SRE team working closely
with service development and product teams

My codebase checks for common
preventable failures and avoids them.

My codebase’s default deployment includes capacity-
limit based auto-scaling and load shedding.

I work in a DevOps team that is regularly involved in production
deployment and operations, and am directly responsible for its reliability.

My codebase can gracefully handoff
connections to a new upgraded version

of my application and take those
clients back in case of failure.

So what’s the operability
of your codebase? For each

of the five challenges...

How many points did you get?
Add them up, let’s see

where you are!

 0-10beginner
 11-20 advanced
 21+ expert

red.ht/sre-coloring-book

Stable, Secure,
Performant, and Boring

https://red.ht/sre-coloring-book

30

Sponsored by Red Hat

