
Build your applications thinking on 
zero-downtime upgrades

OpenSouthCode 2017
Malaga, Spain
May 2017



Build your applications thinking in zero-downtime upgrades @javilinux

Javier Ramirez
Software Maintenance Engineer

Red Hat

http://www.sombrerorojo.es
@javilinux
github.com/javilinux



Build your applications thinking in zero-downtime upgrades @javilinux

Basada en una charla de mi compañero
Jorge Morales

http://jorgemoral.es
@UnPOUcoDe
github.com/jorgemoralespou



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

¿Se puede ser rentable con 
Software Libre?



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

THE WORLD’S LEADING PROVIDER OF 
OPEN SOURCE, ENTERPRISE I.T. 

SOLUTIONS

MORE THAN

90%
of the

FORTUNE

500
RED HAT

use

PRODUCTS &
SOLUTIONS*

~10,000
EMPLOYEES

85
OFFICES

S&P

500
COMPANY

NYSE

RHT35
COUNTRIE

S

*Red Hat client data and Fortune 500 list, 2015

THE FIRST

$2
OPEN

SOURCE
COMPANY

IN THE WORLD

BILLION



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe6

COMPANY REVENUE

FY04 FY06 FY08 FY10 FY12 FY14 FY16

.50

1.00

1.50

2.00

0

 FY2003 – FY2016 $ 
BILLIONS



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

OpenShift



Community Powered 
Innovation





Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Introduction



Build your applications thinking in zero-downtime upgrades @javilinux

Evolution of IT



Build your applications thinking in zero-downtime upgrades @javilinux

WHAT ARE CONTAINERS?
It depends who you ask

● Sandboxed application 
processes on a shared Linux OS 
kernel

● Simpler, lighter, and denser 
than virtual machines

● Portable across different 
environments

● Package my application and all 
of its dependencies

● Deploy to any environment in 
seconds and enable CI/CD

● Easily access and share 
containerized components

INFRASTRUCTU
RE

APPLICATIONS



Build your applications thinking in zero-downtime upgrades @javilinux

CLEAR BOUNDARIES

Hardware

Virtual Machine

Operating 
System

Container

App
Controlled by 
Developers

Controlled by 
IT Operations



Build your applications thinking in zero-downtime upgrades @javilinux

COMMON LANGUAGE

I.T. OPERATIONSDEVELOPERS



Build your applications thinking in zero-downtime upgrades @javilinux

Docker is an open-source 
container packaging format 
and runtime that packages and 
run applications in 
“containers,” allowing them to 
be portable among systems 
running Linux.



Build your applications thinking in zero-downtime upgrades @javilinux

Kubernetes is an open-source 
system for automating 
deployment, operations, and 
scaling of containerized 
applications across multiple 
hosts

kubernetes



Build your applications thinking in zero-downtime upgrades @javilinux

But you need more

Routing & Load Balancing

Multi-tenancy

CI/CD Pipelines

Role-based Authorization

Capacity Management

Chargeback

Vulnerability Scanning

Container Isolation

Image Build Automation

Quota Management

Teams and Collaboration

Infrastructure Visibility



Build your applications thinking in zero-downtime upgrades @javilinux

The industry’s most 
secure 
and comprehensive 
enterprise-grade 
container platform based 
on industry standards, 
Docker and Kubernetes.



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

To take full advantage of the 
platform one needs to know how 

it works



Build your applications thinking in zero-downtime upgrades @javilinux

Workload types

ReplicaSets →DeploymentConfig/Deployments

StatefulSets (a.k.a PetSets)

DaemonSets

Jobs

CronJobs

more to come???



Build your applications thinking in zero-downtime upgrades @javilinux

DeploymentConfig

A deployment configuration consists of the following key parts:

A replication controller template which describes the application 
to be deployed.

The default replica count for the deployment.

A deployment strategy which will be used to 
execute the deployment.

A set of triggers which cause deployments to be created 
automatically.



Build your applications thinking in zero-downtime upgrades @javilinux

Deployment strategies

Recreate

Rolling

Custom



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Recreate Deployment Strategy



Build your applications thinking in zero-downtime upgrades @javilinux

Recreate Strategy for Deployment

A recreate deployment removes instances of the previous version of an 
application and replaces them with instances of the new version of the 
application.

The Recreate strategy has basic rollout behavior and supports lifecycle 
hooks for injecting code into the deployment process



Build your applications thinking in zero-downtime upgrades @javilinux

When to use a Recreate Strategy

When you must run migrations or other data transformations before 
your new code starts.

When you do not support having new and old versions of your 
application code running at the same time.

When you want to use a RWO volume, which is not supported being 
shared between multiple replicas.



Build your applications thinking in zero-downtime upgrades @javilinux

Definition of a Recreate Strategy

strategy:
  type: Recreate
  recreateParams:
    timeoutSeconds:
    pre: {} 
    mid: {}
    post: {}



Build your applications thinking in zero-downtime upgrades @javilinux

Workflow of a Recreate Strategy

1.Execute any pre lifecycle hook.

2.Scale down the previous deployment to zero.

3.Execute any mid lifecycle hook.

4.Scale up the new deployment.

5.Execute any post lifecycle hook.



Build your applications thinking in zero-downtime upgrades @javilinux

Demo - Recreate Strategy (Code)

oc new-project recreatedemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/recreatedemo.yaml

oc tag deployment-example:v2 deployment-example:latest && 
oc logs -f dc/deployment-example

Execute a recreate deployment of an application with 3 instances

Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/recreatedemo.yaml#L24-L29
https://www.youtube.com/watch?v=B-zcqBvGKQ4


Build your applications thinking in zero-downtime upgrades @javilinux

Allow for Zero downtime? 



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Rolling Deployment Strategy



Build your applications thinking in zero-downtime upgrades @javilinux

Rolling Strategy for Deployment

A rolling deployment slowly replaces instances of the previous version 
of an application with instances of the new version of the application. A 
rolling deployment typically waits for new pods to become ready via a 
readiness check before scaling down the old components. If a significant 
issue occurs, the rolling deployment can be aborted.

All rolling deployments in OpenShift Origin are canary deployments; a 
new version (the canary) is tested before all of the old instances are 
replaced.



Build your applications thinking in zero-downtime upgrades @javilinux

When to use Rolling Strategy

When you want to take no downtime during an 
application update.

When your application supports having old code and 
new code running at the same time.



Build your applications thinking in zero-downtime upgrades @javilinux

Definition of a Rolling Strategy

strategy:
  type: Rolling
  rollingParams:
    timeoutSeconds:  
    intervalSeconds:
    updatePeriodSeconds:
    maxSurge: "" 
    maxUnavailable: "" 
    pre: {} 
    post: {}



Build your applications thinking in zero-downtime upgrades @javilinux

Workflow of a Rolling Strategy

1.Execute any pre lifecycle hook.

2.Scale up the new replication controller based on the surge count.

3.Scale down the old replication controller based on the max 
unavailable count.

4.Repeat this scaling until the new replication controller has 
reached the desired replica count and the old replication controller 
has been scaled to zero.

5.Execute any post lifecycle hook. 



Build your applications thinking in zero-downtime upgrades @javilinux

Demo - Rolling Strategy (Code)

oc new-project rollingdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/rollingdemo.yaml

oc tag deployment-example:v2 deployment-example:latest && 
oc logs -f dc/deployment-example

Execute a Rolling deployment of an application with 3 instances
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/rollingdemo.yaml#L24-L33
https://www.youtube.com/watch?v=Dxzvrn3Supo


Build your applications thinking in zero-downtime upgrades @javilinux

Allow for Zero downtime? 



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Custom Deployment Strategy



Build your applications thinking in zero-downtime upgrades @javilinux

Custom Strategy for Deployment

The Custom strategy allows you to provide your own deployment 
behavior.



Build your applications thinking in zero-downtime upgrades @javilinux

When to use Custom Strategy

When the default strategies does not work for you

When you want to alter how a default strategy works



Build your applications thinking in zero-downtime upgrades @javilinux

Definition of a Custom Strategy

strategy:
  type: Custom
  customParams:
    Image: “”
    command:
    environment:



Build your applications thinking in zero-downtime upgrades @javilinux

Alternative - Custom behaviour of default 
strategies
strategy:
  type: Rolling
  customParams:
    Image: “”
    command: “/bin/sh -c openshift-deploy --until=50%; echo 
Halfway there; openshift-deploy; echo Complete”
    environment:



Build your applications thinking in zero-downtime upgrades @javilinux

Demo - Custom strategy (Code)

oc new-project customdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/customdemo.yaml

oc tag deployment-example:v2 deployment-example:latest && 
oc logs -f dc/deployment-example

Execute a Custom Rolling deployment of an application with 4 instances 
showing a message half way through
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/customdemo.yaml#L24-L44
https://www.youtube.com/watch?v=Plv17cvkEgQ&t=2s


Build your applications thinking in zero-downtime upgrades @javilinux

Allow for Zero downtime? 



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

What’s the problem now?



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

When a container starts it’s not 
when the application is ready for 

getting requests.



Build your applications thinking in zero-downtime upgrades @javilinux

Health checks

Know when the application is ready to accept 
requests (readinessProbe).

Know if the application is healthy (livenessProbe)



Build your applications thinking in zero-downtime upgrades @javilinux

HTTP Check

The kubelet uses a web hook to determine the healthiness of the 
container. The check is deemed successful if the hook returns with 200 
or 399

A HTTP check is ideal for complex applications that 
can return with a 200 status when completely 
initialized.

  httpGet:

    path: /healthz

    port: 8080

  initialDelaySeconds: 15

  periodSeconds: 1

  timeoutSeconds: 1

  failureThreashold: 3

  sucessThreshold: 1



Build your applications thinking in zero-downtime upgrades @javilinux

Container execution Check

The kubelet executes a command inside the container. Exiting the check 
with status 0 is considered a success.

When health should be checked using a script or 
command

 exec:

    command:

    - cat

    - /tmp/health

  initialDelaySeconds: 15

  periodSeconds: 1

  timeoutSeconds: 1

  failureThreashold: 3

  sucessThreshold: 1



Build your applications thinking in zero-downtime upgrades @javilinux

TCP socket Check

The kubelet attempts to open a socket to the container. The container is 
only considered healthy if the check can establish a connection.

A TCP socket check is ideal for applications that do 
not start listening until initialization is complete.

  tcpSocket:

    port: 8080

  initialDelaySeconds: 15

  periodSeconds: 1

  timeoutSeconds: 1

  failureThreashold: 3

  sucessThreshold: 1



Build your applications thinking in zero-downtime upgrades @javilinux

Readiness Probe

A readiness probe determines if a container is ready to service requests. 
If the readiness probe fails a container, the endpoints controller ensures 
the container has its IP address removed from the endpoints of all 
services.



Build your applications thinking in zero-downtime upgrades @javilinux

Demo - Readiness Probe (Code)

oc new-project probesdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

curl http://probesdemo-probesdemo.apps.lcup/ws/unsetready
curl http://probesdemo-probesdemo.apps.lcup/ws/setready

Switch readiness result OK/NOOK
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/probesdemo.yaml#L101-L110
https://www.youtube.com/watch?v=amLzEy3lSY0


Build your applications thinking in zero-downtime upgrades @javilinux

Liveness Probe

A liveness probe checks if the container in which it is configured is still 
running. If the liveness probe fails, the kubelet kills the container, which 
will be subjected to its restart policy.



Build your applications thinking in zero-downtime upgrades @javilinux

Demo - Liveness Probe (Code)

oc new-project probesdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

curl http://probesdemo-probesdemo.apps.lcup/ws/unsetlive

Switch Liveness resultNOOK
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/probesdemo.yaml#L82-L91
https://www.youtube.com/watch?v=amLzEy3lSY0


Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

What else?



Build your applications thinking in zero-downtime upgrades @javilinux

Don’t kill your current clients (a.k.a Graceful Shutdown)

On shutdown, OpenShift Origin will send a TERM signal to the processes in the container. 

On receiving SIGTERM, an application:

should continue to signal liveness

may stop signalling readiness (in fact, when a Pod deletion starts, Kubernetes automatically 
removes the pod from services irrespective of any readiness probe result)

should continue to accept new connections as long as they arrive

should terminate cleanly if/when possible, e.g. when all connections have completed

After the graceful termination period expires, a process that has not exited will be sent the KILL signal, 
which immediately ends the process. (terminationGracePeriodSeconds defaults to 30 seconds).

Make sure signals get to the process. Use exec



Build your applications thinking in zero-downtime upgrades @javilinux



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Make sure signals get to the process. Use exec



Build your applications thinking in zero-downtime upgrades @javilinux

Demo - Propagate signal

oc new-project probesdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

oc rsh <pod>
kill 1

Enter the container and kill 1



Build your applications thinking in zero-downtime upgrades @javilinux

Allow for Zero downtime? 



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

But deployments make it even 
better



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe



Build your applications thinking in zero-downtime upgrades @javilinux

Result graph



Build your applications thinking in zero-downtime upgrades @javilinux

Demo - Zerodowntime (Code)

oc new-project zerodowntimedemo
oc create -f https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

# Start load tool

httpress -n 10000 http://probesdemo-zerodowntime.apps.127.0.0.1.nip.io 

# Redeploy lastest application again
oc deploy probesdemo --latest --follow

Deploy a new version of the application
Demo en youtube

https://www.youtube.com/watch?v=juexGDF2Ij8


Build your applications thinking in zero-downtime upgrades @javilinux

Allow for Zero downtime? 



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

But what if?



Build your applications thinking in zero-downtime upgrades @javilinux

My application upgrade needs change the 
database?

● If the change can be backwards compatible

– Predeployment hook to update the database

– Blue/Green Deployment - A/B Deployments

– Pipelines orchestrated deployment (a.k.a Continuous Delivery Deployments)

● If the change can not be backwards compatible

– No Zero-Downtime possible (with CAVEATS, but that’s for another meetup)



Build your applications thinking in zero-downtime upgrades @javilinux

Allow for Zero downtime? 



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Remember



Build your applications thinking in zero-downtime upgrades @javilinux

Checklist

Appropriate Deployment strategy

● Recreate

● Rolling - > If possible

● Custom



Build your applications thinking in zero-downtime upgrades @javilinux

Checklist

Healtchecks 

● Liveness 

● Readiness

– HTTPGet

– Command

– TCPSocket



Build your applications thinking in zero-downtime upgrades @javilinux

Checklist

● Propagate signals to your process
● Application/server Graceful 

Shutdown



Build your applications thinking in zero-downtime upgrades @javilinux

Checklist

Data Involved 

● Backwards compatibility

● Use lifecycle hooks



Build your applications thinking in zero-downtime upgrades @javilinux

Checklist

Test under load 

● Rollover

● Rollback



Build your applications thinking in zero-downtime upgrades @javilinux

Checklist

Automate if there is a configuration change involved 

● Pipelines to orchestrate the update

– Rollover 

– Test

– Rollback if error



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Resources



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

https://github.com/jorgemoralespou/zerodowntime-talk
http://www.openshift.com
http://www.openshift.org
http://www.openshift.io
http://www.github.com/openshift
https://github.com/openshift-evangelists/oc-cluster-
wrapper

https://github.com/jorgemoralespou/zerodowntime-talk
http://www.github.com/openshift


Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Questions???



Thank you


	Slide 1
	Slide 2
	Slide 3
	Introduction
	Slide 5
	COMPANY REVENUE
	Slide 7
	Community Powered Innovation
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Workload types
	DeploymentConfig
	Deployment strategies
	Recreate Deployment Strategy
	Recreate Strategy for Deployment
	When to use a Recreate Strategy
	Definition of a Recreate Strategy
	Workflow of a Recreate Strategy
	Demo - Recreate Strategy ()
	Allow for Zero downtime?
	Rolling Deployment Strategy
	Rolling Strategy for Deployment
	When to use Rolling Strategy
	Definition of a Rolling Strategy
	Workflow of a Rolling Strategy
	Demo - Rolling Strategy ()
	Allow for Zero downtime?
	Custom Deployment Strategy
	Custom Strategy for Deployment
	When to use Custom Strategy
	Definition of a Custom Strategy
	Alternative - Custom behaviour of default strategies
	Demo - Custom strategy ()
	Allow for Zero downtime?
	What’s the problem now?
	Slide 45
	Health checks
	HTTP Check
	Container execution Check
	TCP socket Check
	Readiness Probe
	Demo - Readiness Probe ()
	Liveness Probe
	Demo - Liveness Probe ()
	What else?
	Make sure signals get to the process. Use exec
	Slide 56
	Make sure signals get to the process. Use exec
	Demo - Propagate signal
	Allow for Zero downtime?
	But deployments make it even better
	Slide 61
	Result graph
	Demo - Zerodowntime (Code)
	Allow for Zero downtime?
	But what if?
	My application upgrade needs change the database?
	Allow for Zero downtime?
	Remember
	Slide 69
	Checklist
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Resources
	Slide 76
	Questions???
	Slide 78

