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¿Se puede ser rentable con 
Software Libre?
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OpenShift



Community Powered 
Innovation
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Introduction
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Evolution of IT
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WHAT ARE CONTAINERS?
It depends who you ask

● Sandboxed application 
processes on a shared Linux OS 
kernel

● Simpler, lighter, and denser 
than virtual machines

● Portable across different 
environments

● Package my application and all 
of its dependencies

● Deploy to any environment in 
seconds and enable CI/CD

● Easily access and share 
containerized components

INFRASTRUCTU
RE

APPLICATIONS
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CLEAR BOUNDARIES

Hardware

Virtual Machine

Operating 
System

Container

App
Controlled by 
Developers

Controlled by 
IT Operations
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COMMON LANGUAGE

I.T. OPERATIONSDEVELOPERS
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Docker is an open-source 
container packaging format 
and runtime that packages and 
run applications in 
“containers,” allowing them to 
be portable among systems 
running Linux.
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Kubernetes is an open-source 
system for automating 
deployment, operations, and 
scaling of containerized 
applications across multiple 
hosts

kubernetes
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But you need more

Routing & Load Balancing

Multi-tenancy

CI/CD Pipelines

Role-based Authorization

Capacity Management

Chargeback

Vulnerability Scanning

Container Isolation

Image Build Automation

Quota Management

Teams and Collaboration

Infrastructure Visibility
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The industry’s most 
secure 
and comprehensive 
enterprise-grade 
container platform based 
on industry standards, 
Docker and Kubernetes.
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To take full advantage of the 
platform one needs to know how 

it works
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Workload types

ReplicaSets →DeploymentConfig/Deployments

StatefulSets (a.k.a PetSets)

DaemonSets

Jobs

CronJobs

more to come???
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DeploymentConfig

A deployment configuration consists of the following key parts:

A replication controller template which describes the application 
to be deployed.

The default replica count for the deployment.

A deployment strategy which will be used to 
execute the deployment.

A set of triggers which cause deployments to be created 
automatically.
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Deployment strategies

Recreate

Rolling

Custom



Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Recreate Deployment Strategy
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Recreate Strategy for Deployment

A recreate deployment removes instances of the previous version of an 
application and replaces them with instances of the new version of the 
application.

The Recreate strategy has basic rollout behavior and supports lifecycle 
hooks for injecting code into the deployment process
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When to use a Recreate Strategy

When you must run migrations or other data transformations before 
your new code starts.

When you do not support having new and old versions of your 
application code running at the same time.

When you want to use a RWO volume, which is not supported being 
shared between multiple replicas.
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Definition of a Recreate Strategy

strategy:
  type: Recreate
  recreateParams:
    timeoutSeconds:
    pre: {} 
    mid: {}
    post: {}
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Workflow of a Recreate Strategy

1.Execute any pre lifecycle hook.

2.Scale down the previous deployment to zero.

3.Execute any mid lifecycle hook.

4.Scale up the new deployment.

5.Execute any post lifecycle hook.
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Demo - Recreate Strategy (Code)

oc new-project recreatedemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/recreatedemo.yaml

oc tag deployment-example:v2 deployment-example:latest && 
oc logs -f dc/deployment-example

Execute a recreate deployment of an application with 3 instances

Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/recreatedemo.yaml#L24-L29
https://www.youtube.com/watch?v=B-zcqBvGKQ4
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Allow for Zero downtime? 
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Rolling Deployment Strategy



Build your applications thinking in zero-downtime upgrades @javilinux

Rolling Strategy for Deployment

A rolling deployment slowly replaces instances of the previous version 
of an application with instances of the new version of the application. A 
rolling deployment typically waits for new pods to become ready via a 
readiness check before scaling down the old components. If a significant 
issue occurs, the rolling deployment can be aborted.

All rolling deployments in OpenShift Origin are canary deployments; a 
new version (the canary) is tested before all of the old instances are 
replaced.
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When to use Rolling Strategy

When you want to take no downtime during an 
application update.

When your application supports having old code and 
new code running at the same time.
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Definition of a Rolling Strategy

strategy:
  type: Rolling
  rollingParams:
    timeoutSeconds:  
    intervalSeconds:
    updatePeriodSeconds:
    maxSurge: "" 
    maxUnavailable: "" 
    pre: {} 
    post: {}



Build your applications thinking in zero-downtime upgrades @javilinux

Workflow of a Rolling Strategy

1.Execute any pre lifecycle hook.

2.Scale up the new replication controller based on the surge count.

3.Scale down the old replication controller based on the max 
unavailable count.

4.Repeat this scaling until the new replication controller has 
reached the desired replica count and the old replication controller 
has been scaled to zero.

5.Execute any post lifecycle hook. 
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Demo - Rolling Strategy (Code)

oc new-project rollingdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/rollingdemo.yaml

oc tag deployment-example:v2 deployment-example:latest && 
oc logs -f dc/deployment-example

Execute a Rolling deployment of an application with 3 instances
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/rollingdemo.yaml#L24-L33
https://www.youtube.com/watch?v=Dxzvrn3Supo
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Allow for Zero downtime? 
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Custom Deployment Strategy
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Custom Strategy for Deployment

The Custom strategy allows you to provide your own deployment 
behavior.
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When to use Custom Strategy

When the default strategies does not work for you

When you want to alter how a default strategy works



Build your applications thinking in zero-downtime upgrades @javilinux

Definition of a Custom Strategy

strategy:
  type: Custom
  customParams:
    Image: “”
    command:
    environment:
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Alternative - Custom behaviour of default 
strategies
strategy:
  type: Rolling
  customParams:
    Image: “”
    command: “/bin/sh -c openshift-deploy --until=50%; echo 
Halfway there; openshift-deploy; echo Complete”
    environment:
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Demo - Custom strategy (Code)

oc new-project customdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/customdemo.yaml

oc tag deployment-example:v2 deployment-example:latest && 
oc logs -f dc/deployment-example

Execute a Custom Rolling deployment of an application with 4 instances 
showing a message half way through
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/customdemo.yaml#L24-L44
https://www.youtube.com/watch?v=Plv17cvkEgQ&t=2s
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Allow for Zero downtime? 
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What’s the problem now?
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When a container starts it’s not 
when the application is ready for 

getting requests.
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Health checks

Know when the application is ready to accept 
requests (readinessProbe).

Know if the application is healthy (livenessProbe)
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HTTP Check

The kubelet uses a web hook to determine the healthiness of the 
container. The check is deemed successful if the hook returns with 200 
or 399

A HTTP check is ideal for complex applications that 
can return with a 200 status when completely 
initialized.

  httpGet:

    path: /healthz

    port: 8080

  initialDelaySeconds: 15

  periodSeconds: 1

  timeoutSeconds: 1

  failureThreashold: 3

  sucessThreshold: 1
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Container execution Check

The kubelet executes a command inside the container. Exiting the check 
with status 0 is considered a success.

When health should be checked using a script or 
command

 exec:

    command:

    - cat

    - /tmp/health

  initialDelaySeconds: 15

  periodSeconds: 1

  timeoutSeconds: 1

  failureThreashold: 3

  sucessThreshold: 1
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TCP socket Check

The kubelet attempts to open a socket to the container. The container is 
only considered healthy if the check can establish a connection.

A TCP socket check is ideal for applications that do 
not start listening until initialization is complete.

  tcpSocket:

    port: 8080

  initialDelaySeconds: 15

  periodSeconds: 1

  timeoutSeconds: 1

  failureThreashold: 3

  sucessThreshold: 1
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Readiness Probe

A readiness probe determines if a container is ready to service requests. 
If the readiness probe fails a container, the endpoints controller ensures 
the container has its IP address removed from the endpoints of all 
services.
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Demo - Readiness Probe (Code)

oc new-project probesdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

curl http://probesdemo-probesdemo.apps.lcup/ws/unsetready
curl http://probesdemo-probesdemo.apps.lcup/ws/setready

Switch readiness result OK/NOOK
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/probesdemo.yaml#L101-L110
https://www.youtube.com/watch?v=amLzEy3lSY0
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Liveness Probe

A liveness probe checks if the container in which it is configured is still 
running. If the liveness probe fails, the kubelet kills the container, which 
will be subjected to its restart policy.
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Demo - Liveness Probe (Code)

oc new-project probesdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

curl http://probesdemo-probesdemo.apps.lcup/ws/unsetlive

Switch Liveness resultNOOK
Demo en youtube

https://github.com/jorgemoralespou/zerodowntime-talk/blob/master/demos/probesdemo.yaml#L82-L91
https://www.youtube.com/watch?v=amLzEy3lSY0
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What else?
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Don’t kill your current clients (a.k.a Graceful Shutdown)

On shutdown, OpenShift Origin will send a TERM signal to the processes in the container. 

On receiving SIGTERM, an application:

should continue to signal liveness

may stop signalling readiness (in fact, when a Pod deletion starts, Kubernetes automatically 
removes the pod from services irrespective of any readiness probe result)

should continue to accept new connections as long as they arrive

should terminate cleanly if/when possible, e.g. when all connections have completed

After the graceful termination period expires, a process that has not exited will be sent the KILL signal, 
which immediately ends the process. (terminationGracePeriodSeconds defaults to 30 seconds).

Make sure signals get to the process. Use exec
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Make sure signals get to the process. Use exec
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Demo - Propagate signal

oc new-project probesdemo

oc create -f 
https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

oc rsh <pod>
kill 1

Enter the container and kill 1
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Allow for Zero downtime? 
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But deployments make it even 
better
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Result graph
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Demo - Zerodowntime (Code)

oc new-project zerodowntimedemo
oc create -f https://raw.githubusercontent.com/jorgemoralespou/zerodowntime-
talk/master/demos/probesdemo.yaml

# Start load tool

httpress -n 10000 http://probesdemo-zerodowntime.apps.127.0.0.1.nip.io 

# Redeploy lastest application again
oc deploy probesdemo --latest --follow

Deploy a new version of the application
Demo en youtube

https://www.youtube.com/watch?v=juexGDF2Ij8
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Allow for Zero downtime? 
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But what if?
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My application upgrade needs change the 
database?

● If the change can be backwards compatible

– Predeployment hook to update the database

– Blue/Green Deployment - A/B Deployments

– Pipelines orchestrated deployment (a.k.a Continuous Delivery Deployments)

● If the change can not be backwards compatible

– No Zero-Downtime possible (with CAVEATS, but that’s for another meetup)
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Allow for Zero downtime? 
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Remember
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Checklist

Appropriate Deployment strategy

● Recreate

● Rolling - > If possible

● Custom
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Checklist

Healtchecks 

● Liveness 

● Readiness

– HTTPGet

– Command

– TCPSocket
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Checklist

● Propagate signals to your process
● Application/server Graceful 

Shutdown
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Checklist

Data Involved 

● Backwards compatibility

● Use lifecycle hooks
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Checklist

Test under load 

● Rollover

● Rollback
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Checklist

Automate if there is a configuration change involved 

● Pipelines to orchestrate the update

– Rollover 

– Test

– Rollback if error
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Resources
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https://github.com/jorgemoralespou/zerodowntime-talk
http://www.openshift.com
http://www.openshift.org
http://www.openshift.io
http://www.github.com/openshift
https://github.com/openshift-evangelists/oc-cluster-
wrapper

https://github.com/jorgemoralespou/zerodowntime-talk
http://www.github.com/openshift


Build your applications thinking in zero-downtime upgrades @UnPOUcoDe

Questions???



Thank you
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