
OpenHPC (v3.1)
Cluster Building Recipes

openEuler 22.03 SP3 Base OS

Warewulf/OpenPBS Edition for Linux* (aarch64)

Document Last Update: 2024-04-26

Document Revision: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Legal Notice

Copyright © 2016-2023, OpenHPC, a Linux Foundation Collaborative Project. All rights reserved.

This documentation is licensed under the Creative Commons At-
tribution 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation in the U.S. and/or other countries.
Altair, the Altair logo, OpenPBS, and other Altair marks are trademarks of Altair Engineering, Inc. in the U.S. and/or other
countries.
*Other names and brands may be claimed as the property of others.

2 Rev: efe9a7719

http://creativecommons.org/licenses/by/4.0

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Contents

1 Introduction 5
1.1 Target Audience . 5
1.2 Requirements/Assumptions . 5
1.3 Inputs . 6

2 Install Base Operating System (BOS) 7

3 Install OpenHPC Components 7
3.1 Enable OpenHPC repository for local use . 7
3.2 Installation template . 8
3.3 Add provisioning services on master node . 8
3.4 Add resource management services on master node . 9
3.5 Complete basic Warewulf setup for master node . 9
3.6 Define compute image for provisioning . 10

3.6.1 Build initial BOS image . 10
3.6.2 Add OpenHPC components . 10
3.6.3 Customize system configuration . 11
3.6.4 Additional Customization (optional) . 12

3.6.4.1 Enable forwarding of system logs . 12
3.6.4.2 Add ClusterShell . 13
3.6.4.3 Add genders . 13
3.6.4.4 Add Magpie . 13
3.6.4.5 Add ConMan . 13
3.6.4.6 Add NHC . 14

3.6.5 Import files . 14
3.7 Finalizing provisioning configuration . 14

3.7.1 Assemble bootstrap image . 14
3.7.2 Assemble Virtual Node File System (VNFS) image . 15
3.7.3 Register nodes for provisioning . 15
3.7.4 Optional kernel arguments . 16
3.7.5 Optionally configure stateful provisioning . 16

3.8 Boot compute nodes . 17

4 Install OpenHPC Development Components 18
4.1 Development Tools . 18
4.2 Compilers . 18
4.3 MPI Stacks . 18
4.4 Performance Tools . 19
4.5 Setup default development environment . 19
4.6 3rd Party Libraries and Tools . 19
4.7 Optional Development Tool Builds . 20

5 Resource Manager Startup 22

6 Run a Test Job 22
6.1 Interactive execution . 23
6.2 Batch execution . 24

3 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Appendices 25
A Installation Template . 25
B Upgrading OpenHPC Packages . 26
C Integration Test Suite . 27
D Customization . 29

D.1 Adding local Lmod modules to OpenHPC hierarchy 29
D.2 Rebuilding Packages from Source . 30

E Package Manifest . 31
F Package Signatures . 43

4 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

1 Introduction

This guide presents a simple cluster installation procedure using components from the OpenHPC software
stack. OpenHPC represents an aggregation of a number of common ingredients required to deploy and
manage an HPC Linux* cluster including provisioning tools, resource management, I/O clients, develop-
ment tools, and a variety of scientific libraries. These packages have been pre-built with HPC integration
in mind while conforming to common Linux distribution standards. The documentation herein is intended
to be reasonably generic, but uses the underlying motivation of a small, 4-node stateless cluster installation
to define a step-by-step process. Several optional customizations are included and the intent is that these
collective instructions can be modified as needed for local site customizations.

Base Linux Edition: this edition of the guide highlights installation without the use of a companion con-
figuration management system and directly uses distro-provided package management tools for component
selection. The steps that follow also highlight specific changes to system configuration files that are required
as part of the cluster install process.

1.1 Target Audience

This guide is targeted at experienced Linux system administrators for HPC environments. Knowledge of
software package management, system networking, and PXE booting is assumed. Command-line input
examples are highlighted throughout this guide via the following syntax:

[sms]# echo "OpenHPC hello world"

Unless specified otherwise, the examples presented are executed with elevated (root) privileges. The
examples also presume use of the BASH login shell, though the equivalent commands in other shells can
be substituted. In addition to specific command-line instructions called out in this guide, an alternate
convention is used to highlight potentially useful tips or optional configuration options. These tips are
highlighted via the following format:

Tip

Life is a tale told by an idiot, full of sound and fury signifying nothing. –Willy Shakes

1.2 Requirements/Assumptions

This installation recipe assumes the availability of a single head node master, and four compute nodes. The
master node serves as the overall system management server (SMS) and is provisioned with openEuler 22.03
SP3 and is subsequently configured to provision the remaining compute nodes with Warewulf in a stateless
configuration. The terms master and SMS are used interchangeably in this guide. For power management,
we assume that the compute node baseboard management controllers (BMCs) are available via IPMI from
the chosen master host. For file systems, we assume that the chosen master server will host an NFS file
system that is made available to the compute nodes.

An outline of the physical architecture discussed is shown in Figure 1 and highlights the high-level
networking configuration. The master host requires at least two Ethernet interfaces with eth0 connected to
the local data center network and eth1 used to provision and manage the cluster backend (note that these
interface names are examples and may be different depending on local settings and OS conventions). Two
logical IP interfaces are expected to each compute node: the first is the standard Ethernet interface that

5 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

eth1eth0
Data

Center
Network

tcp networking

to compute eth interface
to compute BMC interface

compute
nodes

Master
(SMS)

Figure 1: Overview of physical cluster architecture.

will be used for provisioning and resource management. The second is used to connect to each host’s BMC
and is used for power management and remote console access. Physical connectivity for these two logical
IP networks is often accommodated via separate cabling and switching infrastructure; however, an alternate
configuration can also be accommodated via the use of a shared NIC, which runs a packet filter to divert
management packets between the host and BMC. Independent of the actual networking configuration it is
recommended to have additional security boundaries like a firewall to protect the network interfaces from
the Internet.

1.3 Inputs

As this recipe details installing a cluster starting from bare-metal, there is a requirement to define IP ad-
dresses and gather hardware MAC addresses in order to support a controlled provisioning process. These
values are necessarily unique to the hardware being used, and this document uses variable substitution
(${variable}) in the command-line examples that follow to highlight where local site inputs are required.
A summary of the required and optional variables used throughout this recipe are presented below. Note
that while the example definitions above correspond to a small 4-node compute subsystem, the compute
parameters are defined in array format to accommodate logical extension to larger node counts.

• ${sms name} # Hostname for SMS server

• ${sms ip} # Internal IP address on SMS server

• ${sms eth internal} # Internal Ethernet interface on SMS

• ${eth provision} # Provisioning interface for computes

• ${internal netmask} # Subnet netmask for internal network

• ${ntp server} # Local ntp server for time synchronization

• ${bmc username} # BMC username for use by IPMI

• ${bmc password} # BMC password for use by IPMI

• ${num computes} # Total # of desired compute nodes

• ${c ip[0]}, ${c ip[1]}, ... # Desired compute node addresses

• ${c bmc[0]}, ${c bmc[1]}, ... # BMC addresses for computes

• ${c mac[0]}, ${c mac[1]}, ... # MAC addresses for computes

• ${c name[0]}, ${c name[1]}, ... # Host names for computes

• ${compute regex} # Regex matching all compute node names (e.g. “c*”)

• ${compute prefix} # Prefix for compute node names (e.g. “c”)

Optional:

• ${kargs} # Kernel boot arguments

6 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

2 Install Base Operating System (BOS)

In an external setting, installing the desired BOS on a master SMS host typically involves booting from a
DVD ISO image on a new server. With this approach, insert the openEuler 22.03 SP3 DVD, power cycle the
host, and follow the distro provided directions to install the BOS on your chosen master host. Alternatively,
if choosing to use a pre-installed server, please verify that it is provisioned with the required openEuler 22.03
SP3 distribution.

Prior to beginning the installation process of OpenHPC components, several additional considerations
are noted here for the SMS host configuration. First, the installation recipe herein assumes that the SMS
host name is resolvable locally. Depending on the manner in which you installed the BOS, there may be an
adequate entry already defined in /etc/hosts. If not, the following addition can be used to identify your
SMS host.

[sms]# echo ${sms_ip} ${sms_name} >> /etc/hosts

While it is theoretically possible to enable SELinux on a cluster provisioned with Warewulf, doing so is
beyond the scope of this document. Even the use of permissive mode can be problematic and we therefore
recommend disabling SELinux on the master SMS host. If SELinux components are installed locally, the
selinuxenabled command can be used to determine if SELinux is currently enabled. If enabled, consult
the distro documentation for information on how to disable.

Finally, provisioning services rely on DHCP, TFTP, and HTTP network protocols. Depending on the
local BOS configuration on the SMS host, default firewall rules may prohibit these services. Consequently,
this recipe assumes that the local firewall running on the SMS host is disabled (it is still recommended to
have additional security boundaries like a firewall to protect the cluster from the Internet). If installed, the
default firewall service can be disabled as follows:

[sms]# systemctl disable firewalld

[sms]# systemctl stop firewalld

3 Install OpenHPC Components

With the BOS installed and booted, the next step is to add desired OpenHPC packages onto the master
server in order to provide provisioning and resource management services for the rest of the cluster. The
following subsections highlight this process.

3.1 Enable OpenHPC repository for local use

To begin, enable use of the OpenHPC repository by adding it to the local list of available package repositories.
Note that this requires network access from your master server to the OpenHPC repository, or alternatively,
that the OpenHPC repository be mirrored locally. In cases where network external connectivity is available,
OpenHPC provides an ohpc-release package that includes GPG keys for package signing and enabling the
repository. The example which follows illustrates installation of the ohpc-release package directly from the
OpenHPC build server.

[sms]# dnf install http://repos.openhpc.community/OpenHPC/3/openEuler_22.03/aarch64/ohpc-release-3-1.oe2203.aarch64.rpm

7 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Tip

Many sites may find it useful or necessary to maintain a local copy of the OpenHPC repositories. To facilitate
this need, standalone tar archives are provided – one containing a repository of binary packages as well as any
available updates, and one containing a repository of source RPMS. The tar files also contain a simple bash
script to configure the package manager to use the local repository after download. To use, simply unpack
the tarball where you would like to host the local repository and execute the make repo.sh script. Tar files
for this release can be found at http://repos.openhpc.community/dist/3.1

In addition to the OpenHPC package repository, the master host also requires access to the standard base
OS distro repositories in order to resolve necessary dependencies. For openEuler 22.03 SP3, the requirements
are to have access to the OS, Everything, EPOL main and EPOL update repositories. Note that the OS,
Everything and EPOL main repositories are typically enabled by default. To enable the EPOL update
repository on openEuler-22.03, you can run the following command:

[sms]# wget -P /etc/yum.repos.d https://eur.openeuler.openatom.cn/coprs/mgrigorov/OpenHPC/repo/openeuler-22.03_LTS_SP3/mgrigorov-OpenHPC-openeuler-22.03_LTS_SP3.repo
[sms]# dnf -y install openeuler-extra-repos

By default all repositories use http://repo.openeuler.org. For better network speed it could be replaced
with any of the mirrors listed here.

3.2 Installation template

The collection of command-line instructions that follow in this guide, when combined with local site inputs,
can be used to implement a bare-metal system installation and configuration. The format of these com-
mands is intended to be usable via direct cut and paste (with variable substitution for site-specific settings).
Alternatively, the OpenHPC documentation package (docs-ohpc) includes a template script which includes
a summary of all of the commands used herein. This script can be used in conjunction with a simple text
file to define the local site variables defined in the previous section (§ 1.3) and is provided as a convenience
for administrators. For additional information on accessing this script, please see Appendix A.

3.3 Add provisioning services on master node

With the OpenHPC repository enabled, we can now begin adding desired components onto the master server.
This repository provides a number of aliases that group logical components together in order to help aid
in this process. For reference, a complete list of available group aliases and RPM packages available via
OpenHPC are provided in Appendix E. To add support for provisioning services, the following commands
illustrate addition of a common base package followed by the Warewulf provisioning system.

Install base meta-packages

[sms]# dnf -y install ohpc-base

[sms]# dnf -y install ohpc-warewulf

[sms]# dnf -y install hwloc-ohpc

8 Rev: efe9a7719

http://repos.openhpc.community/dist/3.1
https://www.openeuler.org/en/mirror/list/

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Tip

Many server BIOS configurations have PXE network booting configured as the primary option in the boot
order by default. If your compute nodes have a different device as the first in the sequence, the ipmitool

utility can be used to enable PXE.

[sms]# ipmitool -E -I lanplus -H ${bmc_ipaddr} -U root chassis bootdev pxe options=persistent

HPC systems rely on synchronized clocks throughout the system and the NTP protocol can be used to
facilitate this synchronization. To enable NTP services on the SMS host with a specific server ${ntp server},
and allow this server to serve as a local time server for the cluster, issue the following:

[sms]# systemctl enable chronyd.service

[sms]# echo "local stratum 10" >> /etc/chrony.conf

[sms]# echo "server ${ntp_server}" >> /etc/chrony.conf

[sms]# echo "allow all" >> /etc/chrony.conf

[sms]# systemctl restart chronyd

Tip

Note that the “allow all” option specified for the chrony time daemon allows all servers on the local network
to be able to synchronize with the SMS host. Alternatively, you can restrict access to fixed IP ranges and an
example config line allowing access to a local class B subnet is as follows:

allow 192.168.0.0/16

3.4 Add resource management services on master node

OpenHPC provides multiple options for distributed resource management. The following command adds the
OpenPBS workload manager server components to the chosen master host. Note that client-side components
will be added to the corresponding compute image in a subsequent step.

[sms]# dnf -y install openpbs-server-ohpc

Other versions of this guide are available that describe installation of other resource management systems,
and they can be found in the docs-ohpc package.

3.5 Complete basic Warewulf setup for master node

At this point, all of the packages necessary to use Warewulf on the master host should be installed. Next,
we need to update several configuration files in order to allow Warewulf to work with openEuler 22.03 SP3
and to support local provisioning using a second private interface (refer to Figure 1).

Tip

By default, Warewulf is configured to provision over the eth1 interface and the steps below include updating
this setting to override with a potentially alternatively-named interface specified by ${sms eth internal}.

9 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Configure Warewulf provisioning to use desired internal interface

[sms]# perl -pi -e "s/device = eth1/device = ${sms_eth_internal}/" /etc/warewulf/provision.conf

Enable internal interface for provisioning

[sms]# ip link set dev ${sms_eth_internal} up

[sms]# ip address add ${sms_ip}/${internal_netmask} broadcast + dev ${sms_eth_internal}

Restart/enable relevant services to support provisioning

[sms]# systemctl enable httpd.service

[sms]# systemctl restart httpd

[sms]# systemctl enable dhcpd.service

[sms]# systemctl enable tftp.socket

[sms]# systemctl start tftp.socket

3.6 Define compute image for provisioning

With the provisioning services enabled, the next step is to define and customize a system image that can
subsequently be used to provision one or more compute nodes. The following subsections highlight this
process.

3.6.1 Build initial BOS image

The OpenHPC build of Warewulf includes specific enhancements enabling support for openEuler 22.03 SP3.
The following steps illustrate the process to build a minimal, default image for use with Warewulf. We begin
by defining a directory structure on the master host that will represent the root filesystem of the compute
node. The default location for this example is in /opt/ohpc/admin/images/openeuler22.03.

Tip

Warewulf is configured by default to access an external repository (repo.openeuler.org) during the wwmkchroot
process. If the master host cannot reach the public openEuler mirrors, or if you prefer to access a locally
cached mirror, set the ${YUM MIRROR} environment variable to your desired repo location prior to running the
wwmkchroot command below. For example:

Override default OS repository (optional) - set YUM_MIRROR variable to desired repo location

[sms]# export YUM_MIRROR=${BOS_MIRROR}

Define chroot location

[sms]# export CHROOT=/opt/ohpc/admin/images/openeuler22.03

Build initial chroot image

[sms]# wwmkchroot -v openeuler-22.03 $CHROOT
Enable OpenHPC and openEuler repos inside chroot

[sms]# dnf -y --installroot $CHROOT install openEuler-release

[sms]# cp -p /etc/yum.repos.d/OpenHPC*.repo $CHROOT/etc/yum.repos.d

3.6.2 Add OpenHPC components

The wwmkchroot process used in the previous step is designed to provide a minimal openEuler 22.03 SP3
configuration. Next, we add additional components to include resource management client services, NTP
support, and other additional packages to support the default OpenHPC environment. This process augments

10 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

the chroot-based install performed by wwmkchroot to modify the base provisioning image and will access the
BOS and OpenHPC repositories to resolve package install requests. We begin by installing a few common
base packages:

Install compute node base meta-package

[sms]# dnf -y --installroot=$CHROOT install ohpc-base-compute

To access the remote repositories by hostname (and not IP addresses), the chroot environment needs to
be updated to enable DNS resolution. Assuming that the master host has a working DNS configuration in
place, the chroot environment can be updated with a copy of the configuration as follows:

[sms]# cp -p /etc/resolv.conf $CHROOT/etc/resolv.conf

Now, we can include additional required components to the compute instance including resource manager
client, NTP, and development environment modules support.

Add OpenPBS client support

[sms]# dnf -y --installroot=$CHROOT install openpbs-execution-ohpc

[sms]# perl -pi -e "s/PBS_SERVER=\S+/PBS_SERVER=${sms_name}/" $CHROOT/etc/pbs.conf
[sms]# echo "PBS_LEAF_NAME=${sms_name}" >> /etc/pbs.conf

[sms]# chroot $CHROOT opt/pbs/libexec/pbs_habitat

[sms]# perl -pi -e "s/\$clienthost \S+/\$clienthost ${sms_name}/" $CHROOT/var/spool/pbs/mom_priv/config
[sms]# echo "\$usecp *:/home /home" >> $CHROOT/var/spool/pbs/mom_priv/config
[sms]# chroot $CHROOT systemctl enable pbs

Add Network Time Protocol (NTP) support

[sms]# dnf -y --installroot=$CHROOT install chrony

[sms]# echo "server ${sms_ip} iburst" >> $CHROOT/etc/chrony.conf

Add kernel drivers (matching kernel version on SMS node)

[sms]# dnf -y --installroot=$CHROOT install kernel-`uname -r`

Include modules user environment

[sms]# dnf -y --installroot=$CHROOT install lmod-ohpc

3.6.3 Customize system configuration

Prior to assembling the image, it is advantageous to perform any additional customization within the chroot
environment created for the desired compute instance. The following steps document the process to add a
local ssh key created by Warewulf to support remote access, and enable NFS mounting of a $HOME file
system and the public OpenHPC install path (/opt/ohpc/pub) that will be hosted by the master host in
this example configuration.

Initialize warewulf database and ssh_keys

[sms]# wwinit database

[sms]# wwinit ssh_keys

Add NFS client mounts of /home and /opt/ohpc/pub to base image

[sms]# echo "${sms_ip}:/home /home nfs nfsvers=4,nodev,nosuid 0 0" >> $CHROOT/etc/fstab
[sms]# echo "${sms_ip}:/opt/ohpc/pub /opt/ohpc/pub nfs nfsvers=4,nodev 0 0" >> $CHROOT/etc/fstab

Export /home and OpenHPC public packages from master server

[sms]# echo "/home *(rw,no_subtree_check,fsid=10,no_root_squash)" >> /etc/exports

[sms]# echo "/opt/ohpc/pub *(ro,no_subtree_check,fsid=11)" >> /etc/exports

11 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Finalize NFS config and restart

[sms]# exportfs -a

[sms]# systemctl restart nfs-server

[sms]# systemctl enable nfs-server

3.6.4 Additional Customization (optional)

This section highlights common additional customizations that can optionally be applied to the local cluster
environment. These customizations include:

• Enable syslog forwarding
• Add ClusterShell
• Add mrsh

• Add genders
• Add ConMan

Details on the steps required for each of these customizations are discussed further in the following sections.

3.6.4.1 Enable forwarding of system logs It is often desirable to consolidate system logging infor-
mation for the cluster in a central location, both to provide easy access to the data, and to reduce the impact
of storing data inside the stateless compute node’s memory footprint. The following commands highlight
the steps necessary to configure compute nodes to forward their logs to the SMS, and to allow the SMS to
accept these log requests.

Configure SMS to receive messages and reload rsyslog configuration

[sms]# echo ’module(load="imudp")’ >> /etc/rsyslog.d/ohpc.conf

[sms]# echo ’input(type="imudp" port="514")’ >> /etc/rsyslog.d/ohpc.conf

[sms]# systemctl restart rsyslog

Define compute node forwarding destination

[sms]# echo "*.* @${sms_ip}:514" >> $CHROOT/etc/rsyslog.conf
[sms]# echo "Target=\"${sms_ip}\" Protocol=\"udp\"" >> $CHROOT/etc/rsyslog.conf

Disable most local logging on computes. Emergency and boot logs will remain on the compute nodes

[sms]# perl -pi -e "s/^*\.info/\\#*\.info/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^authpriv/\\#authpriv/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^mail/\\#mail/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^cron/\\#cron/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^uucp/\\#uucp/" $CHROOT/etc/rsyslog.conf

12 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

3.6.4.2 Add ClusterShell ClusterShell is an event-based Python library to execute commands in par-
allel across cluster nodes. Installation and basic configuration defining three node groups (adm, compute,
and all) is as follows:

Install ClusterShell

[sms]# dnf -y install clustershell

Setup node definitions

[sms]# cd /etc/clustershell/groups.d

[sms]# mv local.cfg local.cfg.orig

[sms]# echo "adm: ${sms_name}" > local.cfg

[sms]# echo "compute: ${compute_prefix}[1-${num_computes}]" >> local.cfg

[sms]# echo "all: @adm,@compute" >> local.cfg

3.6.4.3 Add genders genders is a static cluster configuration database or node typing database used
for cluster configuration management. Other tools and users can access the genders database in order to
make decisions about where an action, or even what action, is appropriate based on associated types or
”genders”. Values may also be assigned to and retrieved from a gender to provide further granularity. The
following example highlights installation and configuration of two genders: compute and bmc.

Install genders

[sms]# dnf -y install genders-ohpc

Generate a sample genders file

[sms]# echo -e "${sms_name}\tsms" > /etc/genders

[sms]# for ((i=0; i<$num_computes; i++)) ; do

echo -e "${c_name[$i]}\tcompute,bmc=${c_bmc[$i]}"
done >> /etc/genders

3.6.4.4 Add Magpie Magpie contains a number of scripts to aid in running a variety of big data
software frameworks within HPC queuing environments. Examples include Hadoop, Spark, Hbase, Storm,
Pig, Mahout, Phoenix, Kafka, Zeppelin, and Zookeeper. Consult the online repository for more information
on using these scripts; basic installation is outlined as follows:

Install magpie

[sms]# dnf -y install magpie-ohpc

3.6.4.5 Add ConMan ConMan is a serial console management program designed to support a large
number of console devices and simultaneous users. It supports logging console device output and connecting
to compute node consoles via IPMI serial-over-lan. Installation and example configuration is outlined below.

Install conman to provide a front-end to compute consoles and log output

[sms]# dnf -y install conman-ohpc

Configure conman for computes (note your IPMI password is required for console access)

[sms]# for ((i=0; i<$num_computes; i++)) ; do

echo -n 'CONSOLE name="'${c_name[$i]}'" dev="ipmi:'${c_bmc[$i]}'" '
echo 'ipmiopts="'U:${bmc_username},P:${IPMI_PASSWORD:-undefined},W:solpayloadsize'"'

done >> /etc/conman.conf

Enable and start conman

[sms]# systemctl enable conman

[sms]# systemctl start conman

13 Rev: efe9a7719

https://github.com/LLNL/magpie

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Note that an additional kernel boot option is typically necessary to enable serial console output. This option
is highlighted in §3.7.4 after compute nodes have been registered with the provisioning system.

3.6.4.6 Add NHC Resource managers often provide for a periodic ”node health check” to be performed
on each compute node to verify that the node is working properly. Nodes which are determined to be
”unhealthy” can be marked as down or offline so as to prevent jobs from being scheduled or run on them.
This helps increase the reliability and throughput of a cluster by reducing preventable job failures due to
misconfiguration, hardware failure, etc. OpenHPC distributes NHC to fulfill this requirement.

In a typical scenario, the NHC driver script is run periodically on each compute node by the resource
manager client daemon. It loads its configuration file to determine which checks are to be run on the current
node (based on its hostname). Each matching check is run, and if a failure is encountered, NHC will exit
with an error message describing the problem. It can also be configured to mark nodes offline so that the
scheduler will not assign jobs to bad nodes, reducing the risk of system-induced job failures.

Install NHC on master and compute nodes

[sms]# dnf -y install nhc-ohpc

[sms]# dnf -y --installroot=$CHROOT install nhc-ohpc

3.6.5 Import files

The Warewulf system includes functionality to import arbitrary files from the provisioning server for distri-
bution to managed hosts. This is one way to distribute user credentials to compute nodes. To import local
file-based credentials, issue the following:

[sms]# wwsh file import /etc/passwd

[sms]# wwsh file import /etc/group

[sms]# wwsh file import /etc/shadow

3.7 Finalizing provisioning configuration

Warewulf employs a two-stage boot process for provisioning nodes via creation of a bootstrap image that
is used to initialize the process, and a virtual node file system capsule containing the full system image.
This section highlights creation of the necessary provisioning images, followed by the registration of desired
compute nodes.

3.7.1 Assemble bootstrap image

The bootstrap image includes the runtime kernel and associated modules, as well as some simple scripts to
complete the provisioning process. The following commands highlight the inclusion of additional drivers and
creation of the bootstrap image based on the running kernel.

(Optional) Include drivers from kernel updates; needed if enabling additional kernel modules on computes

[sms]# export WW_CONF=/etc/warewulf/bootstrap.conf

[sms]# echo "drivers += updates/kernel/" >> $WW_CONF

Build bootstrap image

[sms]# wwbootstrap `uname -r`

14 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

3.7.2 Assemble Virtual Node File System (VNFS) image

With the local site customizations in place, the following step uses the wwvnfs command to assemble a VNFS
capsule from the chroot environment defined for the compute instance.

[sms]# wwvnfs --chroot $CHROOT

3.7.3 Register nodes for provisioning

In preparation for provisioning, we can now define the desired network settings for four example compute
nodes with the underlying provisioning system and restart the dhcp service. Note the use of variable names
for the desired compute hostnames, node IPs, and MAC addresses which should be modified to accommodate
local settings and hardware. By default, Warewulf uses network interface names of the eth# variety and adds
kernel boot arguments to maintain this scheme on newer kernels. Consequently, when specifying the desired
provisioning interface via the $eth provision variable, it should follow this convention. Alternatively, if
you prefer to use the predictable network interface naming scheme (e.g. names like en4s0f0), additional
steps are included to alter the default kernel boot arguments and take the eth# named interface down after
bootstrapping so the normal init process can bring it up again using the desired name.

The final step in this process associates the VNFS image assembled in previous steps with the newly
defined compute nodes, utilizing the user credential files and munge key that were imported in §3.6.5.

Set provisioning interface as the default networking device

[sms]# echo "GATEWAYDEV=${eth_provision}" > /tmp/network.$$
[sms]# wwsh -y file import /tmp/network.$$ --name network

[sms]# wwsh -y file set network --path /etc/sysconfig/network --mode=0644 --uid=0

Add nodes to Warewulf data store

[sms]# for ((i=0; i<$num_computes; i++)) ; do

wwsh -y node new ${c_name[i]} --ipaddr=${c_ip[i]} --hwaddr=${c_mac[i]} -D ${eth_provision}
done

Additional step required if desiring to use predictable network interface

naming schemes (e.g. en4s0f0). Skip if using eth# style names.

[sms]# export kargs="${kargs} net.ifnames=1,biosdevname=1"

[sms]# wwsh provision set --postnetdown=1 "${compute_regex}"

Define provisioning image for hosts

[sms]# wwsh -y provision set "${compute_regex}" --vnfs=openeuler22.03 --bootstrap=`uname -r` \

--files=dynamic_hosts,passwd,group,shadow,network

15 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Tip

Warewulf includes a utility named wwnodescan to automatically register new compute nodes versus the
outlined node-addition approach which requires hardware MAC addresses to be gathered in advance. With
wwnodescan, nodes will be added to the Warewulf database in the order in which their DHCP requests are
received by the master, so care must be taken to boot nodes in the order one wishes to see preserved in the
Warewulf database. The IP address provided will be incremented after each node is found, and the utility
will exit after all specified nodes have been found. Example usage is highlighted below:

[sms]# wwnodescan --netdev=${eth_provision} --ipaddr=${c_ip[0]} --netmask=${internal_netmask} \

--vnfs=openeuler22.03 --bootstrap=`uname -r` --listen=${sms_eth_internal} ${c_name[0]}-${c_name[3]}

Restart dhcp / update PXE

[sms]# systemctl restart dhcpd

[sms]# wwsh pxe update

3.7.4 Optional kernel arguments

If you chose to enable ConMan in §3.6.4.5, additional warewulf configuration is needed as follows:

Define node kernel arguments to support SOL console

[sms]# wwsh -y provision set "${compute_regex}" --console=ttyS1,115200

If any components have added to the boot time kernel command line arguments for the compute nodes, the
following command is required to store the configuration in Warewulf:

Set optional compute node kernel command line arguments.

[sms]# wwsh -y provision set "${compute_regex}" --kargs="${kargs}"

3.7.5 Optionally configure stateful provisioning

Warewulf normally defaults to running the assembled VNFS image out of system memory in a stateless
configuration. Alternatively, Warewulf can also be used to partition and format persistent storage such that
the VNFS image can be installed locally to disk in a stateful manner. This does, however, require that a
boot loader (GRUB) be added to the image as follows:

Add GRUB2 bootloader and re-assemble VNFS image

[sms]# dnf -y --installroot=$CHROOT install grub2

[sms]# wwvnfs --chroot $CHROOT

Enabling stateful nodes also requires additional site-specific, disk-related parameters in the Warewulf con-
figuration, and several example partitioning scripts are provided in the distribution.

Select (and customize) appropriate parted layout example

[sms]# cp /etc/warewulf/filesystem/examples/gpt_example.cmds /etc/warewulf/filesystem/gpt.cmds

[sms]# wwsh provision set --filesystem=gpt "${compute_regex}"
[sms]# wwsh provision set --bootloader=sda "${compute_regex}"

16 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Tip

Those provisioning compute nodes in UEFI mode will install a slightly different set of packages in to the
VNFS. Warewulf also provides an example EFI filesystem layout.

Add GRUB2 bootloader and re-assemble VNFS image

[sms]# dnf -y --installroot=$CHROOT install grub2-efi grub2-efi-modules

[sms]# wwvnfs --chroot $CHROOT
[sms]# cp /etc/warewulf/filesystem/examples/efi_example.cmds /etc/warewulf/filesystem/efi.cmds

[sms]# wwsh provision set --filesystem=efi "${compute_regex}"
[sms]# wwsh provision set --bootloader=sda "${compute_regex}"

Upon subsequent reboot of the modified nodes, Warewulf will partition and format the disk to host the
desired VNFS image. Once the image is installed to disk, warewulf can be configured to use the nodes’ local
storage as the boot device.

Configure local boot (after successful provisioning)

[sms]# wwsh provision set --bootlocal=normal "${compute_regex}"

3.8 Boot compute nodes

At this point, the master server should be able to boot the newly defined compute nodes. Assuming
that the compute node BIOS settings are configured to boot over PXE, all that is required to initiate the
provisioning process is to power cycle each of the desired hosts using IPMI access. The following commands
use the ipmitool utility to initiate power resets on each of the four compute hosts. Note that the utility
requires that the IPMI PASSWORD environment variable be set with the local BMC password in order to work
interactively.

[sms]# for ((i=0; i<${num_computes}; i++)) ; do

ipmitool -E -I lanplus -H ${c_bmc[$i]} -U ${bmc_username} -P ${bmc_password} chassis power reset

done

Once kicked off, the boot process should take less than 5 minutes (depending on BIOS post times) and
you can verify that the compute hosts are available via ssh, or via parallel ssh tools to multiple hosts. For
example, to run a command on the newly imaged compute hosts using pdsh, execute the following:

[sms]# pdsh -w ${compute_prefix}[1-${num_computes}] uptime

c1 05:03am up 0:02, 0 users, load average: 0.20, 0.13, 0.05

c2 05:03am up 0:02, 0 users, load average: 0.20, 0.14, 0.06

c3 05:03am up 0:02, 0 users, load average: 0.19, 0.15, 0.06

c4 05:03am up 0:02, 0 users, load average: 0.15, 0.12, 0.05

Tip

While the pxelinux.0 and lpxelinux.0 files that ship with Warewulf to enable network boot support a
wide range of hardware, some hosts may boot more reliably or faster using the BOS versions provided
via the syslinux-tftpboot package. If you encounter PXE issues, consider replacing the pxelinux.0 and
lpxelinux.0 files supplied with warewulf-provision-ohpc with versions from syslinux-tftpboot.

17 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

4 Install OpenHPC Development Components

The install procedure outlined in §3 highlighted the steps necessary to install a master host, assemble
and customize a compute image, and provision several compute hosts from bare-metal. With these steps
completed, additional OpenHPC-provided packages can now be added to support a flexible HPC development
environment including development tools, C/C++/FORTRAN compilers, MPI stacks, and a variety of 3rd
party libraries. The following subsections highlight the additional software installation procedures.

4.1 Development Tools

To aid in general development efforts, OpenHPC provides recent versions of the GNU autotools collection,
the Valgrind memory debugger, EasyBuild, and Spack. These can be installed as follows:

Install autotools meta-package

[sms]# dnf -y install ohpc-autotools

[sms]# dnf -y install EasyBuild-ohpc

[sms]# dnf -y install hwloc-ohpc

[sms]# dnf -y install spack-ohpc

[sms]# dnf -y install valgrind-ohpc

4.2 Compilers

OpenHPC presently packages the GNU compiler toolchain integrated with the underlying Lmod modules
system in a hierarchical fashion. The modules system will conditionally present compiler-dependent software
based on the toolchain currently loaded.

[sms]# dnf -y install gnu13-compilers-ohpc

4.3 MPI Stacks

For MPI development and runtime support, OpenHPC provides pre-packaged builds for two MPI families
that are compatible with both ethernet and high-speed fabrics. These MPI stacks can be installed as follows:

[sms]# dnf -y install openmpi5-gnu13-ohpc mpich-ofi-gnu13-ohpc

Note that OpenHPC 2.x introduces the use of two related transport layers for the MPICH and OpenMPI
builds that support a variety of underlying fabrics: UCX (Unified Communication X) and OFI (OpenFabrics
interfaces). In the case of OpenMPI, a monolithic build is provided which supports both transports and
end-users can customize their runtime preferences with environment variables. For MPICH, two separate
builds are provided and the example above highlighted installing the ofi variant. However, the packaging is
designed such that both versions can be installed simultaneously and users can switch between the two via
normal module command semantics. Alternatively, a site can choose to install the ucx variant instead as a
drop-in MPICH replacement:

[sms]# dnf -y install mpich-ucx-gnu13-ohpc

In the case where both MPICH variants are installed, two modules will be visible in the end-user envi-
ronment and an example of this configuration is highlighted is below.

18 Rev: efe9a7719

https://www.openucx.org
https://ofiwg.github.io/libfabric/

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

[sms]# module avail mpich

-------------------- /opt/ohpc/pub/moduledeps/gnu13 ---------------------

mpich/3.4.3-ofi mpich/3.4.3-ucx (D)

4.4 Performance Tools

OpenHPC provides a variety of open-source tools to aid in application performance analysis (refer to Ap-
pendix E for a listing of available packages). This group of tools can be installed as follows:

Install perf-tools meta-package

[sms]# dnf -y install ohpc-gnu13-perf-tools

4.5 Setup default development environment

System users often find it convenient to have a default development environment in place so that compilation
can be performed directly for parallel programs requiring MPI. This setup can be conveniently enabled via
modules and the OpenHPC modules environment is pre-configured to load an ohpc module on login (if
present). The following package install provides a default environment that enables autotools, the GNU
compiler toolchain, and the OpenMPI stack.

[sms]# dnf -y install lmod-defaults-gnu13-openmpi5-ohpc

Tip

If you want to change the default environment from the suggestion above, OpenHPC also provides additional
default options using the GNU compiler toolchain with multiple MPICH variants or MVAPICH2. Relevant
lmod-default packages names are as follows:

• lmod-defaults-gnu13-mpich-ofi-ohpc
• lmod-defaults-gnu13-mpich-ucx-ohpc

4.6 3rd Party Libraries and Tools

OpenHPC provides pre-packaged builds for a number of popular open-source tools and libraries used by HPC
applications and developers. For example, OpenHPC provides builds for FFTW and HDF5 (including serial
and parallel I/O support), and the GNU Scientific Library (GSL). Again, multiple builds of each package
are available in the OpenHPC repository to support multiple compiler and MPI family combinations where
appropriate. Note, however, that not all combinatorial permutations may be available for components where
there are known license incompatibilities. The general naming convention for builds provided by OpenHPC
is to append the compiler and MPI family name that the library was built against directly into the package
name. For example, libraries that do not require MPI as part of the build process adopt the following RPM
name:

package-<compiler family>-ohpc-<package version>-<release>.rpm

Packages that do require MPI as part of the build expand upon this convention to additionally include the
MPI family name as follows:

19 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

package-<compiler family>-<mpi family>-ohpc-<package version>-<release>.rpm

To illustrate this further, the command below queries the locally configured repositories to identify all of
the available PETSc packages that were built with the GNU toolchain. The resulting output that is included
shows that pre-built versions are available for each of the supported MPI families presented in §4.3.

[sms]# dnf search petsc-gnu13 ohpc

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

=========================== N/S matched: petsc-gnu13, ohpc ===========================

petsc-gnu13-mpich-ohpc.x86_64 : Portable Extensible Toolkit for Scientific Computation

petsc-gnu13-openmpi5-ohpc.x86_64 : Portable Extensible Toolkit for Scientific Computation

Tip

OpenHPC-provided 3rd party builds are configured to be installed into a common top-level repository so that
they can be easily exported to desired hosts within the cluster. This common top-level path (/opt/ohpc/pub)
was previously configured to be mounted on compute nodes in §3.6.3, so the packages will be immediately
available for use on the cluster after installation on the master host.

For convenience, OpenHPC provides package aliases for these 3rd party libraries and utilities that can
be used to install available libraries for use with the GNU compiler family toolchain. For parallel libraries,
aliases are grouped by MPI family toolchain so that administrators can choose a subset should they favor a
particular MPI stack. Please refer to Appendix E for a more detailed listing of all available packages in each
of these functional areas. To install all available package offerings within OpenHPC, issue the following:

Install 3rd party libraries/tools meta-packages built with GNU toolchain

[sms]# dnf -y install ohpc-gnu13-serial-libs

[sms]# dnf -y install ohpc-gnu13-io-libs

[sms]# dnf -y install ohpc-gnu13-python-libs

[sms]# dnf -y install ohpc-gnu13-runtimes

Install parallel lib meta-packages for all available MPI toolchains

[sms]# dnf -y install ohpc-gnu13-mpich-parallel-libs

[sms]# dnf -y install ohpc-gnu13-openmpi5-parallel-libs

4.7 Optional Development Tool Builds

In addition to the 3rd party development libraries built using the open source toolchains mentioned in §4.6,
OpenHPC also provides a subset of optional builds compatible with the Arm Compiler for Linux. These
packages provide a similar hierarchical user environment experience as other compiler families present in
OpenHPC. To take advantage of the available builds, the version 22.1 of the Arm Compiler for Linux (and
any required licenses) must be downloaded and installed separately. See the following for more information
on obtaining this toolchain:

https://developer.arm.com/downloads/-/arm-compiler-for-linux

20 Rev: efe9a7719

https://developer.arm.com/downloads/-/arm-compiler-for-linux

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Tip

As noted in §3.6.3, the default installation path for OpenHPC (/opt/ohpc/pub) is exported over
NFS from the master to the compute nodes, but the Arm Linux compiler installer defaults to a path
of /opt/arm. To make the Arm Linux compiler available to the compute nodes one must add an
additional NFS export for /opt/arm that is mounted on desired compute nodes.

Once installed locally, the OpenHPC compatible packages can be installed using standard package man-
ager semantics after installation of a compatibility package. To enable all 3rd party builds available in
OpenHPC that are compatible with Arm Linux Compiler, issue the following:

Install OpenHPC compatibility packages (requires prior installation of Arm Linux Compiler)

[sms]# dnf -y install arm1-compilers-devel-ohpc

Install 3rd party libraries/tools meta-packages built with Arm vendor toolchain

[sms]# dnf -y install ohpc-arm1-serial-libs

[sms]# dnf -y install ohpc-arm1-io-libs

[sms]# dnf -y install ohpc-arm1-perf-tools

[sms]# dnf -y install ohpc-arm1-python3-libs

[sms]# dnf -y install ohpc-arm1-mpich-parallel-libs

[sms]# dnf -y install ohpc-arm1-openmpi5-parallel-libs

21 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

5 Resource Manager Startup

In section §3, the OpenPBS workload manager was installed and configured for use on both the master host
and compute node instances. With the cluster nodes up and functional, we can now startup the resource
manager services on the master host in preparation for running user jobs.

The following command can be used to startup the necessary services to support resource management
under OpenPBS.

start PBS daemons on master host

[sms]# systemctl enable pbs

[sms]# systemctl start pbs

In the default configuration, the compute hosts have not been added to the OpenPBS resource man-
ager. To add the compute hosts, execute the following to register each host and apply several key global
configuration options.

initialize PBS path

[sms]# . /etc/profile.d/pbs.sh

enable user environment propagation (needed for modules support)

[sms]# qmgr -c "set server default_qsub_arguments= -V"

enable uniform multi-node MPI task distribution

[sms]# qmgr -c "set server resources_default.place=scatter"

enable support for job accounting

[sms]# qmgr -c "set server job_history_enable=True"

register compute hosts with PBS

[sms]# for host in "${c_name[@]}"; do

qmgr -c "create node $host"
done

6 Run a Test Job

With the resource manager enabled for production usage, users should now be able to run jobs. To demon-
strate this, we will add a “test” user on the master host that can be used to run an example job.

[sms]# useradd -m test

Warewulf installs a utility on the compute nodes to automatically synchronize known files from the
provisioning server at five minute intervals. In this recipe, recall that we previously registered credential files
with Warewulf (e.g. passwd, group, and shadow) so that these files would be propagated during compute
node imaging. However, with the addition of a new “test” user above, the files have been outdated and we
need to update the Warewulf database to incorporate the additions. This re-sync process can be accomplished
as follows:

[sms]# wwsh file resync passwd shadow group

22 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Tip

After re-syncing to notify Warewulf of file modifications made on the master host, it should take approximately
5 minutes for the changes to propagate. However, you can also manually pull the changes from compute nodes
via the following:

[sms]# pdsh -w ${compute_prefix}[1-${num_computes}] /warewulf/bin/wwgetfiles

OpenHPC includes a simple “hello-world” MPI application in the /opt/ohpc/pub/examples directory
that can be used for this quick compilation and execution. OpenHPC also provides a companion job-launch
utility named prun that is installed in concert with the pre-packaged MPI toolchains. This convenience
script provides a mechanism to abstract job launch across different resource managers and MPI stacks such
that a single launch command can be used for parallel job launch in a variety of OpenHPC environments.
It also provides a centralizing mechanism for administrators to customize desired environment settings for
their users.

6.1 Interactive execution

To use the newly created “test” account to compile and execute the application interactively through the
resource manager, execute the following (note the use of mpiexec for parallel job launch which summarizes
the underlying native job launch mechanism being used):

Switch to "test" user

[sms]# su - test

Compile MPI "hello world" example

[test@sms ~]$ mpicc -O3 /opt/ohpc/pub/examples/mpi/hello.c

Submit interactive job request and use prun to launch executable

[test@sms ~]$ qsub -I -l select=2:mpiprocs=4

[test@c1 ~]$ prun ./a.out

[prun] Master compute host = c1

[prun] Resource manager = openpbs

[prun] Launch cmd = mpiexec.hydra -rmk pbs ./a.out

Hello, world (8 procs total)

--> Process # 0 of 8 is alive. -> c1

--> Process # 1 of 8 is alive. -> c1

--> Process # 2 of 8 is alive. -> c1

--> Process # 3 of 8 is alive. -> c1

--> Process # 4 of 8 is alive. -> c2

--> Process # 5 of 8 is alive. -> c2

--> Process # 6 of 8 is alive. -> c2

--> Process # 7 of 8 is alive. -> c2

23 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Tip

The following table provides approximate command equivalences between OpenPBS and SLURM:

Command OpenPBS SLURM

Submit batch job qsub [job script] sbatch [job script]

Request interactive shell qsub -I /bin/bash salloc

Delete job qdel [job id] scancel [job id]

Queue status qstat -q sinfo

Job status qstat -f [job id] scontrol show job [job id]

Node status pbsnodes [node name] scontrol show node [node id]

6.2 Batch execution

For batch execution, OpenHPC provides a simple job script for reference (also housed in the /opt/ohpc/

pub/examples directory. This example script can be used as a starting point for submitting batch jobs to
the resource manager and the example below illustrates use of the script to submit a batch job for execution
using the same executable referenced in the previous interactive example.

Copy example job script

[test@sms ~]$ cp /opt/ohpc/pub/examples/openpbs/job.mpi .

Examine contents (and edit to set desired job sizing characteristics)

[test@sms ~]$ cat job.mpi

#!/bin/bash

#--

Job name

#PBS -N test

Name of stdout output file

#PBS -o job.out

Total number of nodes and MPI tasks/node requested

#PBS -l select=2:mpiprocs=4

Run time (hh:mm:ss) - 1.5 hours

#PBS -l walltime=01:30:00

#--

Change to submission directory

cd $PBS_O_WORKDIR

Launch MPI-based executable

prun ./a.out

Submit job for batch execution

[test@sms ~]$ qsub job.mpi

5.master

24 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Appendices

A Installation Template

This appendix highlights the availability of a companion installation script that is included with OpenHPC
documentation. This script, when combined with local site inputs, can be used to implement a starting
recipe for bare-metal system installation and configuration. This template script is used during validation
efforts to test cluster installations and is provided as a convenience for administrators as a starting point for
potential site customization.

Tip

Note that the template script provided is intended for use during initial installation and is not designed for
repeated execution. If modifications are required after using the script initially, we recommend running the
relevant subset of commands interactively.

The template script relies on the use of a simple text file to define local site variables that were outlined
in §1.3. By default, the template installation script attempts to use local variable settings sourced from
the /opt/ohpc/pub/doc/recipes/vanilla/input.local file, however, this choice can be overridden by
the use of the ${OHPC INPUT LOCAL} environment variable. The template install script is intended for
execution on the SMS master host and is installed as part of the docs-ohpc package into /opt/ohpc/pub/

doc/recipes/vanilla/recipe.sh. After enabling the OpenHPC repository and reviewing the guide for
additional information on the intent of the commands, the general starting approach for using this template
is as follows:

1. Install the docs-ohpc package

[sms]# dnf -y install docs-ohpc

2. Copy the provided template input file to use as a starting point to define local site settings:

[sms]# cp /opt/ohpc/pub/doc/recipes/openeuler22.03/input.local input.local

3. Update input.local with desired settings

4. Copy the template installation script which contains command-line instructions culled from this guide.

[sms]# cp -p /opt/ohpc/pub/doc/recipes/openeuler22.03/aarch64/warewulf/OpenPBS/recipe.sh .

5. Review and edit recipe.sh to suite.

6. Use environment variable to define local input file and execute recipe.sh to perform a local installation.

[sms]# export OHPC_INPUT_LOCAL=./input.local

[sms]# ./recipe.sh

25 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

B Upgrading OpenHPC Packages

As newer OpenHPC releases are made available, users are encouraged to upgrade their locally installed
packages against the latest repository versions to obtain access to bug fixes and newer component versions.
This can be accomplished with the underlying package manager as OpenHPC packaging maintains versioning
state across releases. Also, package builds available from the OpenHPC repositories have “-ohpc” appended
to their names so that wild cards can be used as a simple way to obtain updates. The following general
procedure highlights a method for upgrading existing installations. When upgrading from a minor release
older than v3, you will first need to update your local OpenHPC repository configuration to point against
the v3 release (or update your locally hosted mirror). Refer to §3.1 for more details on enabling the latest
repository. In contrast, when upgrading between micro releases on the same branch (e.g. from v3 to 3.2),
there is no need to adjust local package manager configurations when using the public repository as rolling
updates are pre-configured.

1. (Optional) Ensure repo metadata is current (on head node and in chroot location(s)). Package man-
agers will naturally do this on their own over time, but if you are wanting to access updates immediately
after a new release, the following can be used to sync to the latest.

[sms]# dnf clean expire-cache

[sms]# dnf --installroot=$CHROOT clean expire-cache

2. Upgrade master (SMS) node

[sms]# dnf -y upgrade "*-ohpc"

Any new Base OS provided dependencies can be installed by

updating the ohpc-base metapackage

[sms]# dnf -y upgrade "ohpc-base"

3. Upgrade packages in compute image

[sms]# dnf -y --installroot=$CHROOT upgrade "*-ohpc"

Any new compute-node Base OS provided dependencies can be installed by

updating the ohpc-base-compute metapackage

[sms]# dnf -y --installroot=$CHROOT upgrade "ohpc-base-compute"

4. Rebuild image(s)

[sms]# wwvnfs --chroot $CHROOT

In the case where packages were upgraded within the chroot compute image, you will need to reboot the
compute nodes when convenient to enable the changes.

26 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

C Integration Test Suite

This appendix details the installation and basic use of the integration test suite used to support OpenHPC
releases. This suite is not intended to replace the validation performed by component development teams,
but is instead, devised to confirm component builds are functional and interoperable within the modular
OpenHPC environment. The test suite is generally organized by components and the OpenHPC CI workflow
relies on running the full suite using Jenkins to test multiple OS configurations and installation recipes. To
facilitate customization and running of the test suite locally, we provide these tests in a standalone RPM.

[sms]# dnf -y install test-suite-ohpc

The RPM installation creates a user named ohpc-test to house the test suite and provide an isolated
environment for execution. Configuration of the test suite is done using standard GNU autotools semantics
and the BATS shell-testing framework is used to execute and log a number of individual unit tests. Some
tests require privileged execution, so a different combination of tests will be enabled depending on which user
executes the top-level configure script. Non-privileged tests requiring execution on one or more compute
nodes are submitted as jobs through the OpenPBS resource manager. The tests are further divided into
“short” and “long” run categories. The short run configuration is a subset of approximately 180 tests to
demonstrate basic functionality of key components (e.g. MPI stacks) and should complete in 10-20 minutes.
The long run (around 1000 tests) is comprehensive and can take an hour or more to complete.

Most components can be tested individually, but a default configuration is setup to enable collective
testing. To test an isolated component, use the configure option to disable all tests, then re-enable the
desired test to run. The --help option to configure will display all possible tests. By default, the test
suite will endeavor to run tests for multiple MPI stacks where applicable. To restrict tests to only a subset
of MPI families, use the --with-mpi-families option (e.g. --with-mpi-families="openmpi4"). Example
output is shown below (some output is omitted for the sake of brevity).

[sms]# su - ohpc-test

[test@sms ~]$ cd tests

[test@sms ~]$./configure --disable-all --enable-fftw

checking for a BSD-compatible install... /bin/install -c

checking whether build environment is sane... yes

...

-- SUMMARY ---

Package version............... : test-suite-2.0.0

Build user.................... : ohpc-test

Build host.................... : sms001

Configure date................ : 2020-10-05 08:22

Build architecture............ : aarch64

Compiler Families............. : gnu9

MPI Families.................. : mpich mvapich2 openmpi4

Python Families............... : python3

Resource manager : OpenPBS

Test suite configuration...... : short

...

Libraries:

Adios : disabled

Boost : disabled

Boost MPI................. : disabled

FFTW...................... : enabled

GSL....................... : disabled

HDF5...................... : disabled

HYPRE..................... : disabled

...

27 Rev: efe9a7719

https://jenkins.io
https://jenkins.io

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Many OpenHPC components exist in multiple flavors to support multiple compiler and MPI runtime
permutations, and the test suite takes this in to account by iterating through these combinations by default.
If make check is executed from the top-level test directory, all configured compiler and MPI permutations
of a library will be exercised. The following highlights the execution of the FFTW related tests that were
enabled in the previous step.

[test@sms ~]$ make check

make --no-print-directory check-TESTS

PASS: libs/fftw/ohpc-tests/test_mpi_families

==

Testsuite summary for test-suite 2.0.0

==

TOTAL: 1

PASS: 1

SKIP: 0

XFAIL: 0

FAIL: 0

XPASS: 0

ERROR: 0

==

[test@sms ~]$ cat libs/fftw/tests/family-gnu*/rm_execution.log

1..3

ok 1 [libs/FFTW] Serial C binary runs under resource manager (OpenPBS/gnu9/mpich)

ok 2 [libs/FFTW] MPI C binary runs under resource manager (OpenPBS/gnu9/mpich)

ok 3 [libs/FFTW] Serial Fortran binary runs under resource manager (OpenPBS/gnu9/mpich)

PASS rm_execution (exit status: 0)

1..3

ok 1 [libs/FFTW] Serial C binary runs under resource manager (OpenPBS/gnu9/mvapich2)

ok 2 [libs/FFTW] MPI C binary runs under resource manager (OpenPBS/gnu9/mvapich2)

ok 3 [libs/FFTW] Serial Fortran binary runs under resource manager (OpenPBS/gnu9/mvapich2)

PASS rm_execution (exit status: 0)

1..3

ok 1 [libs/FFTW] Serial C binary runs under resource manager (OpenPBS/gnu9/openmpi4)

ok 2 [libs/FFTW] MPI C binary runs under resource manager (OpenPBS/gnu9/openmpi4)

ok 3 [libs/FFTW] Serial Fortran binary runs under resource manager (OpenPBS/gnu9/openmpi4)

PASS rm_execution (exit status: 0)

28 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

D Customization

D.1 Adding local Lmod modules to OpenHPC hierarchy

Locally installed applications can easily be integrated in to OpenHPC systems by following the Lmod con-
vention laid out by the provided packages. Two sample module files are included in the examples-ohpc

package—one representing an application with no compiler or MPI runtime dependencies, and one depen-
dent on OpenMPI and the GNU toolchain. Simply copy these files to the prescribed locations, and the lmod

application should pick them up automatically.

[sms]# mkdir /opt/ohpc/pub/modulefiles/example1

[sms]# cp /opt/ohpc/pub/examples/example.modulefile \

/opt/ohpc/pub/modulefiles/example1/1.0

[sms]# mkdir /opt/ohpc/pub/moduledeps/gnu7-openmpi3/example2

[sms]# cp /opt/ohpc/pub/examples/example-mpi-dependent.modulefile \

/opt/ohpc/pub/moduledeps/gnu7-openmpi3/example2/1.0

[sms]# module avail

----------------------------------- /opt/ohpc/pub/moduledeps/gnu7-openmpi3 -----------------------------------

adios/1.12.0 imb/2018.0 netcdf-fortran/4.4.4 ptscotch/6.0.4 sionlib/1.7.1

boost/1.65.1 mpi4py/2.0.0 netcdf/4.4.1.1 scalapack/2.0.2 slepc/3.7.4

example2/1.0 mpiP/3.4.1 petsc/3.7.6 scalasca/2.3.1 superlu_dist/4.2

fftw/3.3.6 mumps/5.1.1 phdf5/1.10.1 scipy/0.19.1 tau/2.26.1

hypre/2.11.2 netcdf-cxx/4.3.0 pnetcdf/1.8.1 scorep/3.1 trilinos/12.10.1

--------------------------------------- /opt/ohpc/pub/moduledeps/gnu7 --

R/3.4.2 metis/5.1.0 ocr/1.0.1 pdtoolkit/3.24 superlu/5.2.1

gsl/2.4 mpich/3.2 openblas/0.2.20 plasma/2.8.0

hdf5/1.10.1 numpy/1.13.1 openmpi3/3.0.0 (L) scotch/6.0.4

-- /opt/ohpc/admin/modulefiles ---

spack/0.10.0

--- /opt/ohpc/pub/modulefiles --

EasyBuild/3.4.1 cmake/3.9.2 hwloc/1.11.8 pmix/1.2.3 valgrind/3.13.0

autotools (L) example1/1.0 (L) llvm5/5.0.0 prun/1.2 (L)

clustershell/1.8 gnu7/7.2.0 (L) ohpc (L) singularity/2.4

Where:

L: Module is loaded

Use "module spider" to find all possible modules.

Use "module keyword key1 key2 ..." to search for all possible modules matching any of the "keys".

29 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

D.2 Rebuilding Packages from Source

Users of OpenHPC may find it desirable to rebuild one of the supplied packages to apply build customizations
or satisfy local requirements. One way to accomplish this is to install the appropriate source RPM, modify
the spec file as needed, and rebuild to obtain an updated binary RPM. OpenHPC spec files contain macros
to facilitate local customizations of compiler, compilation flags and MPI family. A brief example using the
FFTW library is highlighted below. Note that the source RPMs can be downloaded from the community
repository server at http://repos.openhpc.community via a web browser or directly via dnf as highlighted
below. In this example we make an explicit change to FFTW’s configuration, as well as modifying the
CFLAGS environment variable. The package is also tagged with an additional delimiter to allow easy
co-installation and use.

Install rpm-build package and dnf tools from base OS distro
[test@sms ~]$ sudo dnf -y install rpm-build dnf-plugins-core

Install FFTW’s build dependencies
[test@sms ~]$ sudo dnf builddep fftw-gnu9-openmpi4-ohpc

Download SRPM from OpenHPC repository and install locally
[test@sms ~]$ dnf download --source fftw-gnu9-openmpi4-ohpc
[test@sms ~]$ rpm -i ./fftw-gnu9-openmpi4-ohpc-3.3.8-5.1.ohpc.2.0.src.rpm

Modify spec file as desired
[test@sms ~]$ cd ~/rpmbuild/SPECS
[test@sms ~rpmbuild/SPECS]$ perl -pi -e "s/enable-static=no/enable-static=yes/" fftw.spec

Increment RPM release so the package manager will see an update
[test@sms ~rpmbuild/SPECS]$ perl -pi -e "s/Release: 5.1/Release: 6.1/" fftw.spec

Rebuild binary RPM. Note that additional directives can be specified to modify build
[test@sms ~rpmbuild/SPECS]$ rpmbuild -bb --define "OHPC_CFLAGS ’-O3 -mtune=native’" \

--define "OHPC_CUSTOM_DELIM static" fftw.spec

Install the new package
[test@sms ~rpmbuild/SPECS]$ sudo dnf -y install \

../RPMS/aarch64/fftw-gnu9-openmpi4-static-ohpc.2.0-3.3.8-6.1.aarch64.rpm

The new module file appears along side the default
[test@sms ~]$ module avail fftw

--------------------------/opt/ohpc/pub/moduledeps/gnu9-openmpi4 ---------------------------
fftw/3.3.8-static fftw/3.3.8 (D)

30 Rev: efe9a7719

http://repos.openhpc.community

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

E Package Manifest

This appendix provides a summary of available meta-package groupings and all of the individual RPM
packages that are available as part of this OpenHPC release. The meta-packages provide a mechanism to
group related collections of RPMs by functionality and provide a convenience mechanism for installation. A
list of the available meta-packages and a brief description is presented in Table 1.

31 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 1: Available OpenHPC Meta-packages

Group Name Description

ohpc-autotools Collection of GNU autotools packages.

ohpc-base Collection of base packages.

ohpc-base-compute Collection of compute node base packages.

ohpc-gnu12-geopm Global Extensible Open Power Manager for use with GNU compiler
toolchain.

ohpc-gnu12-io-libs Collection of IO library builds for use with GNU compiler toolchain.

ohpc-gnu12-mpich-io-libs Collection of IO library builds for use with GNU compiler toolchain and the
MPICH runtime.

ohpc-gnu12-mpich-parallel-libs Collection of parallel library builds for use with GNU compiler toolchain and
the MPICH runtime.

ohpc-gnu12-mpich-perf-tools Collection of performance tool builds for use with GNU compiler toolchain
and the MPICH runtime.

ohpc-gnu12-openmpi4-io-libs Collection of IO library builds for use with GNU compiler toolchain and the
OpenMPI runtime.

ohpc-gnu12-openmpi4-parallel-libs Collection of parallel library builds for use with GNU compiler toolchain and
the OpenMPI runtime.

ohpc-gnu12-openmpi4-perf-tools Collection of performance tool builds for use with GNU compiler toolchain
and the OpenMPI runtime.

ohpc-gnu12-parallel-libs Collection of parallel library builds for use with GNU compiler toolchain.

ohpc-gnu12-perf-tools Collection of performance tool builds for use with GNU compiler toolchain.

ohpc-gnu12-python-libs Collection of python related library builds for use with GNU compiler
toolchain.

ohpc-gnu12-python3-libs Collection of python3 related library builds for use with GNU compiler
toolchain.

ohpc-gnu12-runtimes Collection of runtimes for use with GNU compiler toolchain.

ohpc-gnu12-serial-libs Collection of serial library builds for use with GNU compiler toolchain.

ohpc-gnu13-geopm Global Extensible Open Power Manager for use with GNU compiler
toolchain.

ohpc-gnu13-io-libs Collection of IO library builds for use with GNU compiler toolchain.

ohpc-gnu13-mpich-io-libs Collection of IO library builds for use with GNU compiler toolchain and the
MPICH runtime.

ohpc-gnu13-mpich-parallel-libs Collection of parallel library builds for use with GNU compiler toolchain and
the MPICH runtime.

ohpc-gnu13-mpich-perf-tools Collection of performance tool builds for use with GNU compiler toolchain
and the MPICH runtime.

ohpc-gnu13-openmpi5-io-libs Collection of IO library builds for use with GNU compiler toolchain and the
OpenMPI runtime.

ohpc-gnu13-openmpi5-parallel-libs Collection of parallel library builds for use with GNU compiler toolchain and
the OpenMPI runtime.

ohpc-gnu13-openmpi5-perf-tools Collection of performance tool builds for use with GNU compiler toolchain
and the OpenMPI runtime.

ohpc-gnu13-parallel-libs Collection of parallel library builds for use with GNU compiler toolchain.

ohpc-gnu13-perf-tools Collection of performance tool builds for use with GNU compiler toolchain.

ohpc-gnu13-python-libs Collection of python related library builds for use with GNU compiler
toolchain.

ohpc-gnu13-python3-libs Collection of python3 related library builds for use with GNU compiler
toolchain.

ohpc-gnu13-runtimes Collection of runtimes for use with GNU compiler toolchain.

ohpc-gnu13-serial-libs Collection of serial library builds for use with GNU compiler toolchain.

ohpc-slurm-client Collection of client packages for SLURM.

ohpc-slurm-server Collection of server packages for SLURM.

ohpc-warewulf Collection of base packages for Warewulf provisioning.

32 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

What follows next in this Appendix is a series of tables that summarize the underlying RPM packages
available in this OpenHPC release. These packages are organized by groupings based on their general
functionality and each table provides information for the specific RPM name, version, brief summary, and
the web URL where additional information can be obtained for the component. Note that many of the 3rd
party community libraries that are pre-packaged with OpenHPC are built using multiple compiler and MPI
families. In these cases, the RPM package name includes delimiters identifying the development environment
for which each package build is targeted. Additional information on the OpenHPC package naming scheme
is presented in §4.6. The relevant package groupings and associated Table references are as follows:

• Administrative tools (Table 2)
• Provisioning (Table 3)
• Resource management (Table 4)
• Compiler families (Table 5)
• MPI families (Table 6)
• Development tools (Table 7)
• Performance analysis tools (Table 8)
• IO Libraries (Table 9)
• Runtimes (Table 10)
• Serial/Threaded Libraries (Table 11)
• Parallel Libraries (Table 12)

33 Rev: efe9a7719

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 2: Administrative Tools

RPM Package Name Version Info/URL

conman-ohpc 0.3.1
ConMan: The Console Manager.
http://dun.github.io/conman

docs-ohpc 3.1.0
OpenHPC documentation.
https://github.com/openhpc/ohpc

examples-ohpc 2.0
Example source code and templates for use within OpenHPC
environment. https://github.com/openhpc/ohpc

genders-ohpc 1.27
Static cluster configuration database.
https://github.com/chaos/genders

hpc-workspace-ohpc 1.4.0
Temporary workspace management.
https://github.com/holgerBerger/hpc-workspace

lmod-defaults-gnu12-mpich-ofi-ohpc 2.0
OpenHPC default login environments.
https://github.com/openhpc/ohpc

lmod-defaults-gnu12-mpich-ucx-ohpc 2.0
OpenHPC default login environments.
https://github.com/openhpc/ohpc

lmod-defaults-gnu12-openmpi4-ohpc
2.0

OpenHPC default login environments.
https://github.com/openhpc/ohpclmod-defaults-gnu13-openmpi5-ohpc

lmod-ohpc 8.7.37
Lua based Modules (lmod).
https://github.com/TACC/Lmod

losf-ohpc 0.56.0
A Linux operating system framework for managing HPC clus-
ters. https://github.com/hpcsi/losf

mrsh-ohpc 2.12
Remote shell program that uses munge authentication.
https://github.com/chaos/mrsh

nhc-ohpc 1.4.3
LBNL Node Health Check.
https://github.com/mej/nhc

ohpc-release 3
OpenHPC release files.
https://github.com/openhpc/ohpc

pdsh-ohpc 2.35
Parallel remote shell program.
https://github.com/chaos/pdsh

prun-ohpc 2.2
Convenience utility for parallel job launch.
https://github.com/openhpc/ohpc

test-suite-ohpc 3.1.0
Integration test suite for OpenHPC.
https://github.com/openhpc/ohpc/tests

34 Rev: efe9a7719

http://dun.github.io/conman
https://github.com/openhpc/ohpc
https://github.com/openhpc/ohpc
https://github.com/chaos/genders
https://github.com/holgerBerger/hpc-workspace
https://github.com/openhpc/ohpc
https://github.com/openhpc/ohpc
https://github.com/openhpc/ohpc
https://github.com/TACC/Lmod
https://github.com/hpcsi/losf
https://github.com/chaos/mrsh
https://github.com/mej/nhc
https://github.com/openhpc/ohpc
https://github.com/chaos/pdsh
https://github.com/openhpc/ohpc
https://github.com/openhpc/ohpc/tests

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 3: Provisioning

RPM Package Name Version Info/URL

warewulf-common-ohpc 3.10.0
Scalable systems management suite for high performance
clusters. http://warewulf.lbl.gov

warewulf-ipmi-ohpc-initramfs-aarch64 3.10.0
Warewulf - Add IPMI to aarch64 initramfs.
http://warewulf.lbl.gov

warewulf-ipmi-ohpc-initramfs-x86 64 3.10.0
Warewulf - Add IPMI to x86 64 initramfs.
http://warewulf.lbl.gov

warewulf-provision-ohpc-gpl sources 3.10.0
Warewulf - GPL sources used in Warewulf provisioning.
http://warewulf.lbl.gov

warewulf-cluster-ohpc 3.10.0
Warewulf - HPC cluster configuration.
http://warewulf.lbl.gov

warewulf-ipmi-ohpc 3.10.0
Warewulf - IPMI support.
http://warewulf.lbl.gov

warewulf-common-ohpc-localdb 3.10.0
Warewulf - Install local database server.
http://warewulf.lbl.gov

warewulf-provision-ohpc 3.10.0
Warewulf - System provisioning core.
http://warewulf.lbl.gov

warewulf-provision-ohpc-server 3.10.0
Warewulf - System provisioning server.
http://warewulf.lbl.gov

warewulf-vnfs-ohpc 3.10.0
Warewulf - Virtual Node File System support.
http://warewulf.lbl.gov

warewulf-provision-ohpc-server-ipxe-aarch64 3.10.0
Warewulf - iPXE Bootloader for aarch64.
http://warewulf.lbl.gov

warewulf-provision-ohpc-server-ipxe-x86 64 3.10.0
Warewulf - iPXE Bootloader for x86 64.
http://warewulf.lbl.gov

warewulf-provision-ohpc-initramfs-aarch64 3.10.0
Warewulf - initramfs base for aarch64.
http://warewulf.lbl.gov

warewulf-provision-ohpc-initramfs-x86 64 3.10.0
Warewulf - initramfs base for x86 64.
http://warewulf.lbl.gov

warewulf-ohpc 4.4.0
A provisioning system for large clusters of bare metal
and/or virtual systems. https://github.com/hpcng/
warewulf

35 Rev: efe9a7719

http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
https://github.com/hpcng/warewulf
https://github.com/hpcng/warewulf

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 4: Resource Management

RPM Package Name Version Info/URL

magpie-ohpc 3.0
Scripts for running Big Data software in HPC environments.
https://github.com/LLNL/magpie

openpbs-execution-ohpc 22.05.11
OpenPBS for an execution host.
http://www.openpbs.org

openpbs-client-ohpc 22.05.11
OpenPBS for a client host.
http://www.openpbs.org

openpbs-server-ohpc 22.05.11
OpenPBS for a server host.
http://www.openpbs.org

pmix-ohpc 4.2.9
An extended/exascale implementation of PMI.
https://pmix.github.io/pmix

slurm-devel-ohpc 23.11.6
Development package for Slurm.
https://slurm.schedmd.com

slurm-example-configs-ohpc 23.11.6
Example config files for Slurm.
https://slurm.schedmd.com

slurm-sview-ohpc 23.11.6
Graphical user interface to view and modify Slurm state.
https://slurm.schedmd.com

slurm-pam slurm-ohpc 23.11.6
PAM module for restricting access to compute nodes via Slurm.
https://slurm.schedmd.com

slurm-perlapi-ohpc 23.11.6
Perl API to Slurm.
https://slurm.schedmd.com

slurm-contribs-ohpc 23.11.6
Perl tool to print Slurm job state information.
https://slurm.schedmd.com

slurm-ohpc 23.11.6
Slurm Workload Manager.
https://slurm.schedmd.com

slurm-sackd-ohpc 23.11.6
Slurm authentication daemon.
https://slurm.schedmd.com

slurm-slurmd-ohpc 23.11.6
Slurm compute node daemon.
https://slurm.schedmd.com

slurm-slurmctld-ohpc 23.11.6
Slurm controller daemon.
https://slurm.schedmd.com

slurm-slurmdbd-ohpc 23.11.6
Slurm database daemon.
https://slurm.schedmd.com

slurm-libpmi-ohpc 23.11.6
Slurmś implementation of the pmi libraries.
https://slurm.schedmd.com

slurm-torque-ohpc 23.11.6
Torque/PBS wrappers for transition from Torque/PBS to Slurm.
https://slurm.schedmd.com

slurm-openlava-ohpc 23.11.6
openlava/LSF wrappers for transition from OpenLava/LSF to
Slurm. https://slurm.schedmd.com

36 Rev: efe9a7719

https://github.com/LLNL/magpie
http://www.openpbs.org
http://www.openpbs.org
http://www.openpbs.org
https://pmix.github.io/pmix
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com
https://slurm.schedmd.com

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 5: Compiler Families

RPM Package Name Version Info/URL

arm1-compilers-devel-ohpc 3.0
OpenHPC compatibility package for Arm HPC compiler.
https://github.com/openhpc/ohpc

gnu12-compilers-ohpc 12.2.0
The GNU C Compiler and Support Files.
http://gcc.gnu.org

gnu13-compilers-ohpc 13.2.0
The GNU C Compiler and Support Files.
http://gcc.gnu.org

Table 6: MPI Families / Communication Libraries

RPM Package Name Version Info/URL

libfabric-ohpc 1.18.0
User-space RDMA Fabric Interfaces.
http://www.github.com/ofiwg/libfabric

mpich-ofi-gnu12-ohpc
3.4.3

MPICH MPI implementation.
http://www.mpich.orgmpich-ofi-gnu13-ohpc

mpich-ucx-gnu12-ohpc
3.4.3

MPICH MPI implementation.
http://www.mpich.orgmpich-ucx-gnu13-ohpc

openmpi4-gnu12-ohpc
4.1.5

A powerful implementation of MPI/SHMEM.
http://www.open-mpi.org

openmpi4-gnu13-ohpc
openmpi4-pmix-gnu12-ohpc

openmpi5-gnu13-ohpc
5.0.3

A powerful implementation of MPI/SHMEM.
http://www.open-mpi.orgopenmpi5-pmix-gnu13-ohpc

ucx-ohpc 1.15.0
UCX is a communication library implementing high-
performance messaging. http://www.openucx.org

37 Rev: efe9a7719

https://github.com/openhpc/ohpc
http://gcc.gnu.org
http://gcc.gnu.org
http://www.github.com/ofiwg/libfabric
http://www.mpich.org
http://www.mpich.org
http://www.open-mpi.org
http://www.open-mpi.org
http://www.openucx.org

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 7: Development Tools

RPM Package Name Version Info/URL

EasyBuild-ohpc 4.9.1
Software build and installation framework.
https://easybuilders.github.io/easybuild

automake-ohpc 1.16.5
A GNU tool for automatically creating Makefiles.
http://www.gnu.org/software/automake

autoconf-ohpc 2.71
A GNU tool for automatically configuring source code.
http://www.gnu.org/software/autoconf

cmake-ohpc 3.24.2
CMake is an open-source, cross-platform family of tools
designed to build, test and package software. https://
cmake.org

hwloc-ohpc 2.9.3
Portable Hardware Locality.
http://www.open-mpi.org/projects/hwloc

libtool-ohpc 2.4.6
The GNU Portable Library Tool.
http://www.gnu.org/software/libtool

python3-scipy-gnu12-mpich-ohpc

1.5.4
Scientific Tools for Python.
http://www.scipy.org

python3-scipy-gnu12-openmpi4-ohpc
python3-scipy-gnu13-mpich-ohpc

python3-scipy-gnu13-openmpi5-ohpc

python3-numpy-gnu12-ohpc 1.19.5 NumPy array processing for numbers, strings, records and
objects. https://github.com/numpy/numpypython3-numpy-gnu13-ohpc 1.26.4

python3-mpi4py-gnu12-mpich-ohpc
3.1.4 Python bindings for the Message Passing Interface (MPI)

standard.
https://github.com/mpi4py/mpi4py

python3-mpi4py-gnu12-openmpi4-
ohpc

python3-mpi4py-gnu13-mpich-ohpc
3.1.5

python3-mpi4py-gnu13-openmpi5-
ohpc

spack-ohpc 0.21.2
HPC software package management.
https://github.com/spack/spack

valgrind-ohpc 3.20.0
Valgrind Memory Debugger.
http://www.valgrind.org

38 Rev: efe9a7719

https://easybuilders.github.io/easybuild
http://www.gnu.org/software/automake
http://www.gnu.org/software/autoconf
https://cmake.org
https://cmake.org
http://www.open-mpi.org/projects/hwloc
http://www.gnu.org/software/libtool
http://www.scipy.org
https://github.com/numpy/numpy
https://github.com/mpi4py/mpi4py
https://github.com/spack/spack
http://www.valgrind.org

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 8: Performance Analysis Tools

RPM Package Name Version Info/URL

dimemas-gnu12-mpich-ohpc

5.4.2
Dimemas tool.
https://tools.bsc.es

dimemas-gnu12-openmpi4-
ohpc

dimemas-gnu13-mpich-ohpc
dimemas-gnu13-openmpi5-

ohpc

extrae-gnu12-mpich-ohpc

3.8.3
Extrae tool.
https://tools.bsc.es

extrae-gnu12-openmpi4-ohpc
extrae-gnu13-mpich-ohpc

extrae-gnu13-openmpi5-ohpc

imb-gnu12-mpich-ohpc

2021.3
Intel MPI Benchmarks (IMB).
https://software.intel.com/en-us/articles/intel-mpi-benchmarks

imb-gnu12-openmpi4-ohpc
imb-gnu13-mpich-ohpc

imb-gnu13-openmpi5-ohpc

likwid-gnu12-ohpc 5.2.2 Performance tools for the Linux console.
https://github.com/RRZE-HPC/likwidomb-gnu12-mpich-ohpc

6.1
OSU Micro-benchmarks.
https://mvapich.cse.ohio-state.edu/benchmarks

omb-gnu12-openmpi4-ohpc
omb-gnu13-mpich-ohpc

7.3
omb-gnu13-openmpi5-ohpc

paraver-ohpc 4.10.4
Paraver.
https://tools.bsc.es

papi-ohpc 6.0.0
Performance Application Programming Interface.
http://icl.cs.utk.edu/papi

pdtoolkit-gnu12-ohpc
3.25.1

PDT is a framework for analyzing source code.
http://www.cs.uoregon.edu/Research/pdtpdtoolkit-gnu13-ohpc

scalasca-gnu12-mpich-ohpc

2.5
Toolset for performance analysis of large-scale parallel
applications.
http://www.scalasca.org

scalasca-gnu12-openmpi4-ohpc
scalasca-gnu13-mpich-ohpc

scalasca-gnu13-openmpi5-ohpc

scorep-gnu12-mpich-ohpc

7.1
Scalable Performance Measurement Infrastructure for Parallel
Codes.
http://www.vi-hps.org/projects/score-p

scorep-gnu12-openmpi4-ohpc
scorep-gnu13-mpich-ohpc

scorep-gnu13-openmpi5-ohpc

tau-gnu12-mpich-ohpc

2.31.1
Tuning and Analysis Utilities Profiling Package.
http://www.cs.uoregon.edu/research/tau/home.php

tau-gnu12-openmpi4-ohpc
tau-gnu13-mpich-ohpc

tau-gnu13-openmpi5-ohpc

39 Rev: efe9a7719

https://tools.bsc.es
https://tools.bsc.es
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://github.com/RRZE-HPC/likwid
https://mvapich.cse.ohio-state.edu/benchmarks
https://tools.bsc.es
http://icl.cs.utk.edu/papi
http://www.cs.uoregon.edu/Research/pdt
http://www.scalasca.org
http://www.vi-hps.org/projects/score-p
http://www.cs.uoregon.edu/research/tau/home.php

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 9: IO Libraries

RPM Package Name Version Info/URL

adios2-gnu12-mpich-ohpc

2.8.3
The Adaptable IO System v2 (ADIOS2).
https://adios2.readthedocs.io/en/latest/index.html

adios2-gnu12-openmpi4-ohpc
adios2-gnu13-mpich-ohpc

adios2-gnu13-openmpi5-ohpc

hdf5-gnu12-ohpc
1.14.0

A general purpose library and file format for storing scientific
data. http://www.hdfgroup.org/HDF5hdf5-gnu13-ohpc

netcdf-cxx-gnu12-mpich-ohpc
4.3.1

C++ Libraries for the Unidata network Common Data Form.
http://www.unidata.ucar.edu/software/netcdf

netcdf-cxx-gnu12-openmpi4-ohpc
netcdf-cxx-gnu13-mpich-ohpc

netcdf-cxx-gnu13-ohpc
4.3.1

C++ Libraries for the Unidata network Common Data Form.
http://www.unidata.ucar.edu/software/netcdfnetcdf-cxx-gnu13-openmpi5-ohpc

netcdf-fortran-gnu12-mpich-ohpc
4.6.0

Fortran Libraries for the Unidata network Common Data
Form.
http://www.unidata.ucar.edu/software/netcdf

netcdf-fortran-gnu12-openmpi4-
ohpc

netcdf-fortran-gnu13-mpich-ohpc 4.6.1

netcdf-fortran-gnu13-ohpc
4.6.1

Fortran Libraries for the Unidata network Common Data
Form.
http://www.unidata.ucar.edu/software/netcdf

netcdf-fortran-gnu13-openmpi5-
ohpc

netcdf-gnu12-mpich-ohpc
4.9.0 C Libraries for the Unidata network Common Data Form.

http://www.unidata.ucar.edu/software/netcdf
netcdf-gnu12-openmpi4-ohpc

netcdf-gnu13-mpich-ohpc 4.9.2

netcdf-gnu13-ohpc
4.9.2

C Libraries for the Unidata network Common Data Form.
http://www.unidata.ucar.edu/software/netcdfnetcdf-gnu13-openmpi5-ohpc

phdf5-gnu12-mpich-ohpc

1.14.0
A general purpose library and file format for storing scientific
data.
http://www.hdfgroup.org/HDF5

phdf5-gnu12-openmpi4-ohpc
phdf5-gnu13-mpich-ohpc

phdf5-gnu13-openmpi5-ohpc

pnetcdf-gnu12-mpich-ohpc

1.12.3
A Parallel NetCDF library (PnetCDF).
http://cucis.ece.northwestern.edu/projects/PnetCDF

pnetcdf-gnu12-openmpi4-ohpc
pnetcdf-gnu13-mpich-ohpc

pnetcdf-gnu13-openmpi5-ohpc

sionlib-gnu12-mpich-ohpc

1.7.7
Scalable I/O Library for Parallel Access to Task-Local Files.
https://apps.fz-juelich.de/jsc/sionlib/docu/index.html

sionlib-gnu12-openmpi4-ohpc
sionlib-gnu13-mpich-ohpc

sionlib-gnu13-openmpi5-ohpc

40 Rev: efe9a7719

https://adios2.readthedocs.io/en/latest/index.html
http://www.hdfgroup.org/HDF5
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.hdfgroup.org/HDF5
http://cucis.ece.northwestern.edu/projects/PnetCDF
https://apps.fz-juelich.de/jsc/sionlib/docu/index.html

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 10: Runtimes

RPM Package Name Version Info/URL

charliecloud-ohpc 0.15
Lightweight user-defined software stacks for high-performance
computing. https://hpc.github.io/charliecloud

Table 11: Serial/Threaded Libraries

RPM Package Name Version Info/URL

R-gnu12-ohpc
4.2.1

R is a language and environment for statistical computing and
graphics (S-Plus like). http://www.r-project.orgR-gnu13-ohpc

gsl-gnu12-ohpc
2.7.1

GNU Scientific Library (GSL).
http://www.gnu.org/software/gslgsl-gnu13-ohpc

metis-gnu12-ohpc
5.1.0

Serial Graph Partitioning and Fill-reducing Matrix Ordering.
http://glaros.dtc.umn.edu/gkhome/metis/metis/overviewmetis-gnu13-ohpc

openblas-gnu12-ohpc
0.3.21

An optimized BLAS library based on GotoBLAS2.
http://www.openblas.netopenblas-gnu13-ohpc

plasma-gnu12-ohpc
21.8.29

Parallel Linear Algebra Software for Multicore Architectures.
https://icl.utk.edu/plasma/overview/index.htmlplasma-gnu13-ohpc

scotch-gnu12-ohpc
6.0.6

Graph, mesh and hypergraph partitioning library.
http://www.labri.fr/perso/pelegrin/scotchscotch-gnu13-ohpc

superlu-gnu12-ohpc
5.2.1

A general purpose library for the direct solution of linear
equations. http://crd.lbl.gov/∼xiaoye/SuperLUsuperlu-gnu13-ohpc

41 Rev: efe9a7719

https://hpc.github.io/charliecloud
http://www.r-project.org
http://www.gnu.org/software/gsl
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.openblas.net
https://icl.utk.edu/plasma/overview/index.html
http://www.labri.fr/perso/pelegrin/scotch
http://crd.lbl.gov/~xiaoye/SuperLU

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

Table 12: Parallel Libraries

RPM Package Name Version Info/URL

boost-gnu12-mpich-ohpc

1.81.0
Free peer-reviewed portable C++ source libraries.
http://www.boost.org

boost-gnu12-openmpi4-ohpc
boost-gnu13-mpich-ohpc

boost-gnu13-openmpi5-ohpc

fftw-gnu12-mpich-ohpc

3.3.10
A Fast Fourier Transform library.
http://www.fftw.org

fftw-gnu12-openmpi4-ohpc
fftw-gnu13-mpich-ohpc

fftw-gnu13-openmpi5-ohpc

hypre-gnu12-mpich-ohpc

2.18.1
Scalable algorithms for solving linear systems of equations.
http://www.llnl.gov/casc/hypre

hypre-gnu12-openmpi4-ohpc
hypre-gnu13-mpich-ohpc

hypre-gnu13-openmpi5-ohpc

mfem-gnu12-mpich-ohpc

4.4
Lightweight, general, scalable C++ library for finite element
methods.
http://mfem.org

mfem-gnu12-openmpi4-ohpc
mfem-gnu13-mpich-ohpc

mfem-gnu13-openmpi5-ohpc

mumps-gnu12-mpich-ohpc

5.2.1
A MUltifrontal Massively Parallel Sparse direct Solver.
http://graal.ens-lyon.fr/MUMPS

mumps-gnu12-openmpi4-ohpc
mumps-gnu13-mpich-ohpc

mumps-gnu13-openmpi5-ohpc

opencoarrays-gnu12-mpich-ohpc

2.10.0
ABI to leverage the parallel programming features of the
Fortran 2018 DIS.
http://www.opencoarrays.org

opencoarrays-gnu12-openmpi4-
ohpc

opencoarrays-gnu13-mpich-ohpc
opencoarrays-gnu13-openmpi5-

ohpc

petsc-gnu12-mpich-ohpc

3.18.1
Portable Extensible Toolkit for Scientific Computation.
http://www.mcs.anl.gov/petsc

petsc-gnu12-openmpi4-ohpc
petsc-gnu13-mpich-ohpc

petsc-gnu13-openmpi5-ohpc

ptscotch-gnu12-mpich-ohpc

7.0.1
Graph, mesh and hypergraph partitioning library using MPI.
http://www.labri.fr/perso/pelegrin/scotch

ptscotch-gnu12-openmpi4-ohpc
ptscotch-gnu13-mpich-ohpc

ptscotch-gnu13-openmpi5-ohpc

scalapack-gnu12-mpich-ohpc

2.2.0
A subset of LAPACK routines redesigned for heterogeneous
computing.
https://netlib.org/scalapack

scalapack-gnu12-openmpi4-ohpc
scalapack-gnu13-mpich-ohpc

scalapack-gnu13-openmpi5-ohpc

slepc-gnu12-mpich-ohpc

3.18.0
A library for solving large scale sparse eigenvalue problems.
http://slepc.upv.es

slepc-gnu12-openmpi4-ohpc
slepc-gnu13-mpich-ohpc

slepc-gnu13-openmpi5-ohpc

superlu dist-gnu12-mpich-ohpc

6.4.0
A general purpose library for the direct solution of linear
equations.
https://portal.nersc.gov/project/sparse/superlu

superlu dist-gnu12-openmpi4-ohpc
superlu dist-gnu13-mpich-ohpc

superlu dist-gnu13-openmpi5-ohpc

trilinos-gnu12-mpich-ohpc

13.4.0
A collection of libraries of numerical algorithms.
https://trilinos.org

trilinos-gnu12-openmpi4-ohpc
trilinos-gnu13-mpich-ohpc

trilinos-gnu13-openmpi5-ohpc

42 Rev: efe9a7719

http://www.boost.org
http://www.fftw.org
http://www.llnl.gov/casc/hypre
http://mfem.org
http://graal.ens-lyon.fr/MUMPS
http://www.opencoarrays.org
http://www.mcs.anl.gov/petsc
http://www.labri.fr/perso/pelegrin/scotch
https://netlib.org/scalapack
http://slepc.upv.es
https://portal.nersc.gov/project/sparse/superlu
https://trilinos.org

Install Guide (v3.1): openEuler 22.03 SP3/aarch64 + Warewulf + OpenPBS

F Package Signatures

All of the RPMs provided via the OpenHPC repository are signed with a GPG signature. By default, the
underlying package managers will verify these signatures during installation to ensure that packages have
not been altered. The RPMs can also be manually verified and the public signing key fingerprint for the
latest repository is shown below:

Fingerprint: 5392 744D 3C54 3ED5 7847 65E6 8A30 6019 DA565C6C

The following command can be used to verify an RPM once it has been downloaded locally by confirming
if the package is signed, and if so, indicating which key was used to sign it. The example below highlights
usage for a local copy of the docs-ohpc package and illustrates how the key ID matches the fingerprint
shown above.

[sms]# rpm --checksig -v docs-ohpc-*.rpm

docs-ohpc-2.0.0-72.1.ohpc.2.0.x86_64.rpm:

Header V3 RSA/SHA1 Signature, key ID da565c6c: OK

Header SHA256 digest: OK

Header SHA1 digest: OK

Payload SHA256 digest: OK

V3 RSA/SHA1 Signature, key ID da565c6c: OK

MD5 digest: OK

43 Rev: efe9a7719

	Introduction
	Target Audience
	Requirements/Assumptions
	Inputs

	Install Base Operating System (BOS)
	Install OpenHPC Components
	Enable OpenHPC repository for local use
	Installation template
	Add provisioning services on master node
	Add resource management services on master node
	Complete basic Warewulf setup for master node
	Define compute image for provisioning
	Build initial BOS image
	Add OpenHPC components
	Customize system configuration
	Additional Customization (optional)
	Enable forwarding of system logs
	Add ClusterShell
	Add genders
	Add Magpie
	Add ConMan
	Add NHC

	Import files

	Finalizing provisioning configuration
	Assemble bootstrap image
	Assemble Virtual Node File System (VNFS) image
	Register nodes for provisioning
	Optional kernel arguments
	Optionally configure stateful provisioning

	Boot compute nodes

	Install OpenHPC Development Components
	Development Tools
	Compilers
	MPI Stacks
	Performance Tools
	Setup default development environment
	3rd Party Libraries and Tools
	Optional Development Tool Builds

	Resource Manager Startup
	Run a Test Job
	Interactive execution
	Batch execution

	Appendices
	Installation Template
	Upgrading OpenHPC Packages
	Integration Test Suite
	Customization
	Adding local Lmod modules to OpenHPC hierarchy
	Rebuilding Packages from Source

	Package Manifest
	Package Signatures

