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Abstract

Prediction, estimation, and control of dynamical systems remain challenging due to nonlinearity.

The Koopman operator is an infinite-dimensional linear operator that evolves the observables of a

dynamical system which we approximate by the dynamic mode decomposition (DMD) algorithm.

Using DMD to predict the evolution of a nonlinear dynamical system over extended time horizons

requires choosing the right observable function defined on the state space. A number of DMDmod-

ifications have been developed to choose the right observable function, such as Extended DMD.

Here, we propose a simple machine learning based approach to find these coordinate transforma-

tions. This is done via a deep autoencoder network. The simple DMD autoencoder is tested and

verified on nonlinear dynamical system time series datasets, including the classic pendulum and an

approximation to fluid flow past a cylinder.

Keywords- Dynamic mode decomposition, Deep learning, Dynamical systems, Koopman analysis,

Observable functions.

Introduction

Predictions of nonlinear dynamical systems is a fundamental problem in engineering. Whenever

possible, it is desirable to work in a linear framework. Linear dynamical systems have closed form

solutions. Moreover, there are many techniques for analyzing linear dynamical systems. The Dy-

namic Mode Decomposition is a computational method for mapping nonlinear time series into a lin-

ear representation via eigenfunctions of the Koopman Operator. Recent advances have shown that

autoencoder networks can identify optimal coordinate transformations to approximate the Koop-

man Operator eigenfunctions [1]. Using this approach, we develop a robust equation free model to

find global coordinate transformations which will enhance DMD long-term predictions.

Dynamic Mode Decomposition

Let xt be the state vector of a nonlinear dynamical system. In order to create a linear model, our

goal is to fit the dynamical system states to a model of the form:

d

dt
x = Ax and xt+1 = Axt (1)

Dynamic Mode Decomposition was developed by Schmid [4]. DMD is a dimensionality reduction

algorithm [2]. Given a time series, the DMD computes the best fit operator A that advances the

system measurements in time [2]. This is achieved by arranging the time series into two matrices,

X and X ′:

X =

 | | |
x0 x1 ... xm−1
| | |

 and X ′ =

 | | |
x1 x2 ... xm

| | |

 (2)

Therefore, the best fit operator A is defined as A = argminA||X ′ − AX||F . By the singular value

decomposition, X ≈ Ũ Σ̃Ṽ ∗ where Ũ ∈ Cn×r, Σ̃ ∈ Cr×r, and Ṽ ∈ Cm×r. Therefore, the matrix A is

obtained by A = X ′Ṽ Σ̃−1Ũ∗.

There are many ways to measure the accuracy of the DMD fit. A simple way is to evaluate the

following expression: ∥∥X ′ − AX
∥∥

F =
∥∥∥X ′ − (X ′V Σ−1U∗)X

∥∥∥
F

=
∥∥∥X ′ − (X ′V Σ−1U∗)(UΣV T )

∥∥∥
F

=
∥∥∥X ′(I − V V T )

∥∥∥
F

(3)

Model Architecture

Figure 1: Simple DMD autoencoder architecture.

Figure 1 is an illustration of the simple DMD autoencoder architecture. The input time sequential

dataset X is passed to the encoder which is a nonlinear mapping g. The latent space Y is predicted

by the DMD, ˜yk+1 = Aky0. Both the latent space Y and predicted latent space Ỹ are passed to the

decoder g−1. Lastly, the decoder outputs g−1(Y ) and g−1(Ỹ ).

Loss Function

The simple DMD autoencoder loss function is a combination of four evaluations:

1. Autoencoder reconstruction loss - ensure that the original dataset coordinates can be recovered.

L1 = MSE
∥∥X − X̃

∥∥ (4)

2. DMD loss - evaluate the linearity of the latent space dynamics, based on equation (3).

L2 =
∥∥∥Y ′(I − V V T )

∥∥∥
F

(5)

3. DMD reconstruction loss- evaluate the DMD least squares fit.

L3 = MSE
∥∥Y − Ỹ

∥∥ (6)

4. Linearity loss- evaluate the linearity of the latent space to enhance long-term predictions.

L4 = MSE
∥∥∥X − g−1(Ỹ )

∥∥∥ (7)

The final loss function is a weighted sum of the functions above: L = α1L1 + α2L2 + α3L3 + α4L4.

Results

Fluid Flow Past a Cylinder- the nonlinear mean-field model of fluid flow past a circular cylinder at

Reynolds number 100, described by empirical Galerkin model [3].

(a) (b) (c)

Figure 2: (a) An example validation trajectory. (b) The latent space R3 → R2. Input trajectory encoded and predicted

out 700 steps (∆ t = 0.05). (c) The Latent space decoded. The model accurately predicted the trajectory as it

approaches its limit cycle.

Pendulum- nonlinear continuous spectra systems, described by ẋ1 = x2 and ẋ2 = − sin(x1). x1 = θ
is the angle displacement and x2 = θ̇ is the angular velocity.

(a) (b) (c)

Figure 3: (a) Subset of the pendulum validation dataset. (b) The autoencoder reconstruction to ensure that g is

invertible. (c) The latent space (encoded trajectories). In the latent space coordinates, the trajectories exhibit

approximately linear dynamics. The model reduced the linearity loss L2 by a factor of 1E2.

Figure 4: The simple DMD autoencoder model attempts to predict the next 1500 steps (∆ t = 0.02). When the initial

angular displacement of the pendulum is small enough such that the small angle approximation holds, the model

accurately predicts long-term future states. Otherwise, the predicted trajectories remain closed yet accumulated error

is introduced.

Summary and Discussion

In this report, we have developed the simple DMD autoencodermodel and analyzed its performance

on time series generated by nonlinear dynamical systems. The model successfully learns a nonlin-

ear mapping g where the embedded dynamics are approximately linear. The proposed model can

globally enhance long-term predictions of time series. Next research steps are to test this model on

a dataest coming from a strongly nonlinear, high dimensional dynamical system or from experiment.

Code Availability

The code is available at https://github.com/opaliss/dmd_autoencoder
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