
Developing a scientific software library
(... and spreading the word)

Tobias Megies, Lion Krischer (...)
June 2014

Software in Science

● Going from research code to distributable and reusable
code easily is 5-10 times as expensive

● Gain in hard research currency (e.g. publications) is
questionable

WHY DO IT?

● Science needs it and the need will only increase
● Helps the whole community - no need to do it 100 times

(quickly? badly?) if done once but properly
● In the long run, if embraced by all, greatly reduces the

time to research for all
● Helps with reproducibility - a still unsolved issue

Software in Science - Issues

● Software development skills
Not a thoroughly taught skill but many of us spend a lot of time doing it.

● Sustainability
How to keep it going after the project finishes?

● Community building
Good software without users has little value. How to spread the word?

● Limited resources in money and time
Most scientific software is a by-product of actual research; very little
funding for software developments.

● Recognition and rewards
Not the same value as publications and hard to build an academic career
from it.

Outline

1. Introduction to Python and ObsPy
a. Why Python?
b. Functionality of ObsPy
c. Basic Usage Examples

2. Some Technical Details
a. Testing
b. Code Management and Communication

3. “spreading the word”

Why Python?

● Widely used in all areas, picking up lots of
momentum in many sciences

● Simple, concise, and easy-to-read syntax
● Free and Open Source, large scientific

community
⇒ potentially high impact / user base

● general purpose programming language
● Cross-platform: from RaspberryPi to large

supercomputers

https://www.python.org/
https://wiki.python.org/moin/NumericAndScientific
https://wiki.python.org/moin/NumericAndScientific
https://wiki.python.org/moin/NumericAndScientific

Why Python?

● No need to compile, interactive shell available
● Easy to interact with existing C and Fortran

code
● Vast scientific ecosystem; taking advantage of

developments in other sciences

Picture by Fernando Pérezhttp://luispedro.org/files/talks/2013/EuBIAS/mahotas.html#/

http://ipython.org/
https://docs.python.org/2/library/ctypes.html
https://docs.python.org/2/library/ctypes.html
https://docs.python.org/2/library/ctypes.html

What is ObsPy?

Python library to work with seismological data
● waveform data
● station metadata
● event metadata

Facilitates development
● from short code snippets
● to complex processing workflows

Develop once, use everywhere

=> a bridge for seismologists into the scientific Python ecosystem

http://www.obspy.org

Processing needs

What I need is..

.. I/O of local data

.. fetch data/metadata from data centers

.. convenient handling of the parsed data/metadata

.. basic signal processing / data analysis / math

.. visualization capabilities

Functionality?

File Formats

Situation before ObsPy

http://www.demotivation.us/search/all/wtf-1266995.html

Functionality?

read/write support for lots of formats:

● waveforms (MiniSEED, GSE2, SAC, ...)
○ many different ways to store

binary/encoded timeseries

● station metadata (SEED, StationXML)
○ complex, esp. instrument response

● event metadata (QuakeML, NDK, PDE)
○ complex associations, owed to how data is

assembled in realtime systems

http://www.fdsn.org/xml/station/
https://quake.ethz.ch/quakeml/

Functionality?

data center access (archived data):
● FDSN web service client

○ IRIS, Orfeus, USGS, RESIF, NCEDC, ...
● ArcLink client: EIDA / Orfeus
● SeisHub: FFB, local database systems
● ...

server access (near-realtime / ringbuffer data):
○ SeedLink, Earthworm

⇒ different types of servers,
but usage of clients very similar

http://www.fdsn.org/webservices/
http://www.fdsn.org/webservices/
http://www.iris.edu/hq/
http://www.orfeus-eu.org/
http://www.iris.edu/hq/
http://www.orfeus-eu.org/eida/eida.html
https://github.com/barsch/seishub.core
https://github.com/barsch/seishub.core

Functionality?

basic signal processing:
● trim, merge, rotate, ...
● filter, resample, instrument correction
● array analysis, cross correlations
● (coincidence) triggering (incl. master event detection)
● probabilistic power spectral densities

basic plotting:
● waveform preview plots
● stations/events location plots
● channel instrument response plots (bode plots)

http://docs.obspy.org/packages/obspy.signal.html?highlight=signal#obspy.signal
http://docs.obspy.org/gallery.html
http://docs.obspy.org/gallery.html

Functionality?

3rd party code:
● don’t reinvent the wheel
● reuse well established and maintained code

we use..
● numpy: fast array operations
● scipy: signal processing routines
● libmseed: MiniSEED I/O (IRIS)
● evalresp: instrument correction (ISTI/IRIS)
● iaspei-tau: theoretical traveltimes (Snoke etal.)
● GSE_UTI: GSE2 I/O (Stange etal.)

http://www.numpy.org/
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.iris.edu/dms/nodes/dmc/software/downloads/libmseed/
http://www.iris.edu/dms/nodes/dmc/software/downloads/evalresp/
https://seiscode.iris.washington.edu/projects/iaspei-tau

Functionality?

core object classes:

● waveforms
⇒ Trace / Stream

● station metadata
⇒ Inventory / Network / Station / ...

● event metadata
⇒ Catalog / Event / ...

Functionality?

core object classes: waveforms

Functionality?

core object classes: station metadata

Functionality?

core object classes: event metadata

Functionality?

http://nbviewer.ipython.org/github/obspy/docs/blob/master/workshops/2014_mess/obspy_introduction_with_solutions.ipynb
http://nbviewer.ipython.org/github/obspy/docs/blob/master/workshops/2014_mess/obspy_introduction_with_solutions.ipynb

Functionality?

Functionality?

Technical Aspects

● Testing Framework
○ Testing code
○ Test reporting / Continuous Integration

● Version Control + Code Hosting
○ git: distributed version control
○ github: central platform for hosting, “social coding”

Technical Aspects: Testing? Why?

● correctness of code
● stability of code
● when you fix a bug you want to make sure it

stays fixed
● everybody can work on the code even if he/she

does not know all details of the implementation
● documentation

Technical Aspects: Doctests

DOCUMENTATION

SOURCE CODE

https://docs.python.org/2/library/doctest.html
http://sphinx-doc.org/
http://sphinx-doc.org/

Technical Aspects: Unit tests

Unit Tests

https://docs.python.org/2/library/unittest.html

Technical Aspects: Test Reporting

Technical Aspects: Test Reporting

Technical Aspects: Test Reporting

Technical Aspects: Test Reporting

http://tests.obspy.org/

Technical Aspects: Testing

Continuous Integration
○ automate the build (incl. dependencies)
○ automate running all tests
○ trigger building/testing automatically

on changes in the repository
○ online overview of build/test results
○ keep building/testing fast
○ each pull request is automatically tested

Technical Aspects: Testing

Travis: free CI service for open source projects

https://travis-ci.org/obspy/obspy
https://travis-ci.org/obspy/obspy

Technical Aspects: GitHub

GitHub: Free hosting of code repositories

● De facto standard for code hosting
● Worldwide community of developers
● Issue / bug tracker

(add comments, commits, integration with Travis CI)

● Social coding and communication
● Forking, pull requests
● Avoids overhead of self-hosting
● Visibility
● New: DOIs for Code => citable

https://github.com/obspy/obspy
https://guides.github.com/activities/citable-code/

Technical Aspects: git

git: distributed version control software
● Initialized 2005 by Linus Torvalds for managing

the Linux kernel
● Every local copy of the repository is self-

contained with full history
● Possible to work offline
● Strong support for branching / merging

“Subversion used to say ‘CVS done right’ [...] There is no way to do CVS right.”
Linus Torvalds

http://git-scm.com/

Technical Aspects: ObsPy Dev Model

https://github.com/obspy/obspy/wiki#developer-corner

Spreading the word: why?

start of the project ..
.. group of a few dedicated (under)grad students

but ..
.. people go different ways
.. and unmaintained projects die fast

ultimate goal: self-sustaining project
.. get more contributors/developers/maintainers
.. raise impact
.. reach critical mass of users / institutions
 relying (depending?) on the project

Spreading the word: homework..

make it ..
.. useful
.. easy to use

○ good documentation
○ tutorial, gallery, workshop documents online

.. easy to install (on any platform)
○ available at pypi
○ binaries, installers, packages

.. reliable (tests!)

.. interactive and responsive
○ github, wiki, mailing list

http://docs.obspy.org
http://docs.obspy.org/tutorial/index.html
http://docs.obspy.org/gallery.html
https://github.com/obspy/docs
http://docs.obspy.org/tutorial/index.html
https://pypi.python.org/pypi/obspy
https://pypi.python.org/pypi/obspy
https://pypi.python.org/pypi/obspy
https://github.com/obspy/obspy/wiki/Installation-on-Linux-via-Apt-Repository
https://pypi.python.org/pypi/obspy
https://github.com/obspy/obspy
https://github.com/obspy/obspy/wiki
http://lists.swapbytes.de/mailman/listinfo/obspy-users
https://github.com/obspy/obspy

Spreading the word: how?

..wherever we go, we tell people about it

Spreading the word: success so far?

Spreading the word: success so far?

some stats..

● 30 people have actively committed changesets
on github

● ~ 10 people sent contributions as Python files
via email

● 59 citations of our publications

https://github.com/obspy/obspy/graphs/contributors
https://github.com/obspy/obspy/graphs/contributors
https://github.com/obspy/obspy/graphs/contributors
https://github.com/obspy/obspy/graphs/contributors
https://github.com/obspy/obspy/wiki#references
https://github.com/obspy/obspy/wiki#references
https://github.com/obspy/obspy/wiki#references

Spreading the word: success so far?

some stats..

● lot of active discussions about improvements

https://github.com/obspy/obspy/issues?state=open

Spreading the word: success so far?

growing number of contributions from “outside”

● clients (3/9): seedlink, earthworm, neic
● file format plugins: css, datamark, pde, y
● packaging efforts:

○ Fedora / RHEL / CentOS
○ ArchLinux
○ FreeBSD
○ NetBSD
○ MacPorts

https://github.com/obspy/obspy/issues/824
https://github.com/obspy/obspy/issues/824

Spreading the word: success so far?

Summary

ObsPy
..addresses most needs for successful and fast
development of custom processing

..being reproducible

..and easing up exchange of processing workflows
..it is widely known, used and acknowledged
..and has grown from a 2-4 man show to being
developed by people from all around the world

Thanks for your attention!

www.obspy.org

http://www.obspy.org
http://www.obspy.org

