Part II: Algorithms and Applications

Speaker: Jeffrey Flanigan

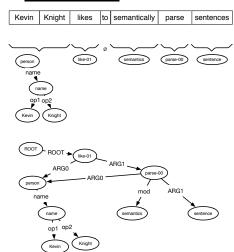
Intro

- You know how to annotate AMRs
- Now, we want to use them!
- To use AMRs, we need automatic parsers
- But first: alignment
- Evaluation (inter-annotator agreement, parser output)
- And also:
 - Graph grammars (like CFGs, but for graphs)
 - Applications

Alignment

IAEA accepted North Korea 's proposal in November.

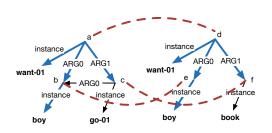
Parsing

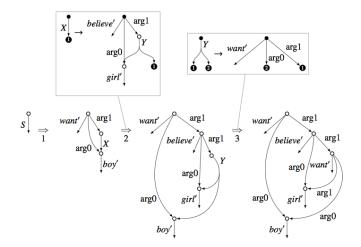


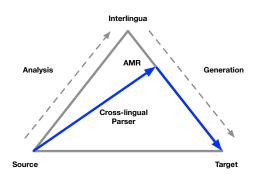
Evaluation

Graph grammars

Applications







Outline

- Alignment
- Parsing
- Evaluation
- Graph Grammars and Automata
- Applications

Alignment: Motivation

- AMR annotation has no explicit alignment to sentence
- Training data has whole sentence AMR graph pairs
- For generalization performance, need fine-grained correspondence between words and pieces of AMR
- Alignments provide this correspondence

Need alignments to train parsers, etc

Alignment

The tour was a surprise offer made by North Korea in November.

- Align concepts with words
- Can also align edges with function words

Alignment

- Alignment
 - Motivation
 - JAMR's rule-based aligner
 - ISI EM aligner
- Parsing
- Evaluation
- Graph Grammars and Automata
- Applications

JAMR Aligner (Flanigan et al, 2014)

- Aligns graph fragments to spans of words (edges not in fragments are unaligned)
- Uses a set of handcrafted rules
- Uses lemmatizer, string edit distance to match concepts with words
- Rules for: named entities, date entities, special concepts, negation, degrees, etc (15 total rules)

For each rule

- Greedily align concepts in a depth first traversal of the AMR graph
- Rules are applied in a specified order

Rule 1) Date entity

Rule 3) Named entity

Rule 5) Single concept (use lemma)

Rule 6) Fuzzy single concept (longest string prefix > 4)

Rule 10) person-of/thing-of

Evaluate on 200 hand-aligned sentences:

F₁: 90% Precision: 92% Recall: 89%

Extracted concept table

```
critical => (critical)
        critical => (criticize-01)
        critically => (critical)
        criticised => (criticize-01)
        criticism => (criticize-01)
30
        criticized => (criticize-01)
        critics => (critic)
        critics => (person :ARG0-of (criticize-01))
5
5
3
        crop => (crop)
        crops => (crop)
        cross => (cross)
        cross => (cross-02)
3
2
1
        cross => (cross-border)
        cross => (cross-strait)
        crossed => (cross-00)
        crossing => (cross-02)
```

ISI Aligner (Pourdamghani et al, 2014)

- Aligns each concept or edge to at most one word
- Learns from data using EM
- Inspired by MT alignment models
- Basic idea: convert graph to linear string, use word alignment model

IAEA accepted North Korea 's proposal in November.

```
accept-01 :ARG0 organization :name name :op1
"IAEA" :ARG1 thing :ARG1-of propose-01 :ARG0
country :name name :op1 "North" :op2 "Korea" :time
date-entity :month 11
```

Linearize the AMR using a depth-first traversal

IAEA accepted North Korea proposal in November

accept organization name IAEA thing propose-01 country name North Korea : time date-entity 11

English: remove stop words

AMR: remove special concepts, relations that don't usually align, quotes, and sense tags

iaea acce nort kore prop in nove

acce orga name iaea thin prop coun name nort kore : time date 11

Both: Lowercase and stem to the first four letters

iaea acce nort kore prop in nove

acce orga name iaea thin prop coun name nort kore :time date 11

Run IBM alignment models with a symmetrization constraint, and project to AMR graph

Alignments are 1-to-many

Alignment: Summary

	JAMR aligner	ISI aligner
Alignment type	Graph fragment to span of words	Each concept or edge to at most one word
Aligns edges	No	Yes
Learned from data	No	Yes
Gold standard available	https://github.com/ jflanigan/jamr	http://amr.isi.edu/ research.html
F ₁ score on concepts*	90% (spans)	89.8%
F ₁ score on relations*	NA	49.3%

^{*}JAMR and ISI not directly comparable, since different gold standard

In general, the desired type of alignment will depend on the application

Parsing

- Alignment
- Parsing
 - Graph-based parsing
 - Structured prediction
 - Concept identification
 - Relation identification
 - Maximum spanning connected graph algorithm (MSCG)
 - Graph determinism constraints using Lagrangian relaxation
 - Experiments
 - Transition-based parsing
 - Parsing using syntax-based MT
- Evaluation
- Graph Grammars and Automata
- Applications

Parsing

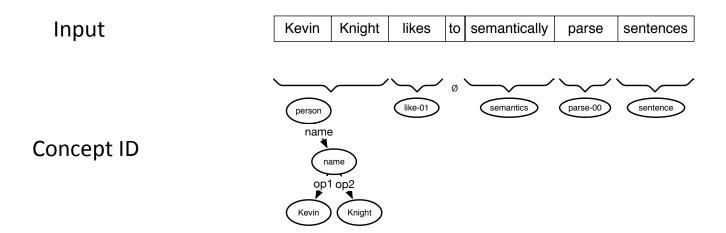
Kevin Knight likes to semantically parse sentences.

JAMR Overview (Flanigan et al, 2014)

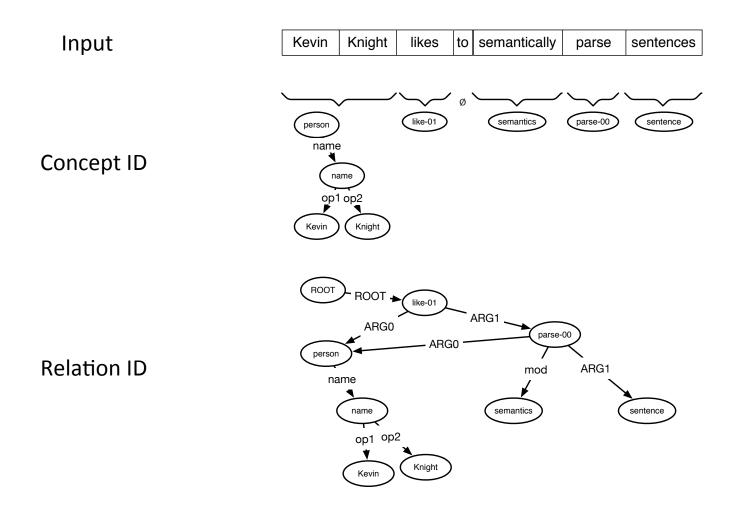
Input

Kevin Knight likes to	0	semantically	parse	sentences
-----------------------	---	--------------	-------	-----------

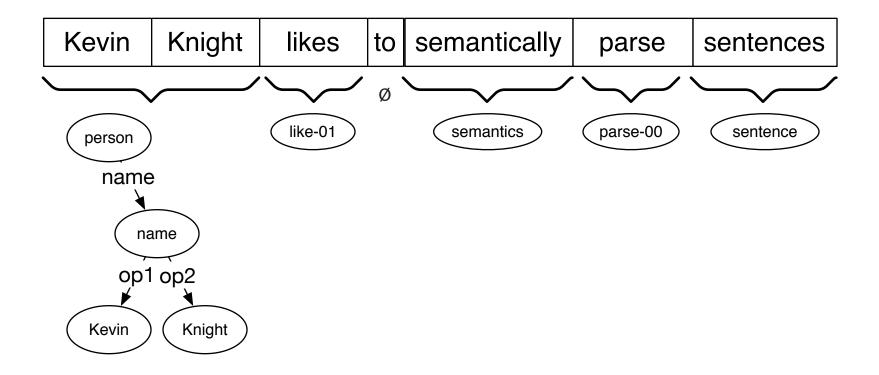
JAMR Overview

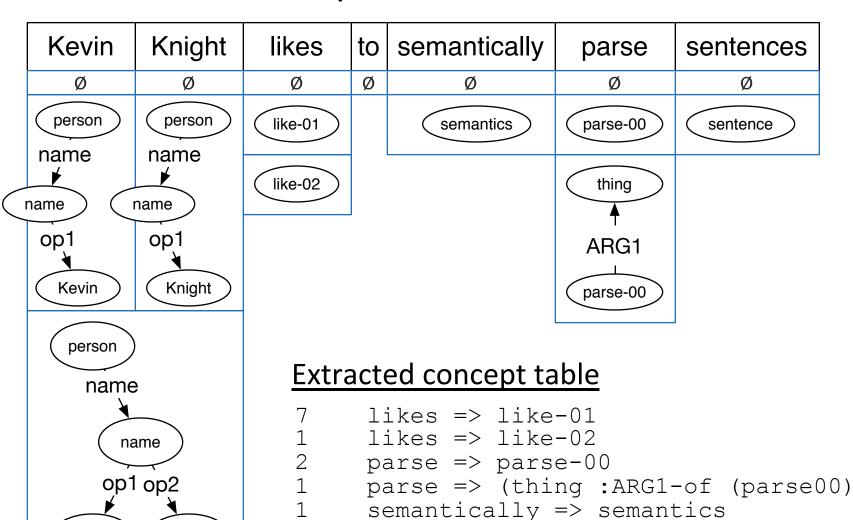


JAMR Overview



	Kevin	Knight	likes	to	semantically	parse	sentences
--	-------	--------	-------	----	--------------	-------	-----------

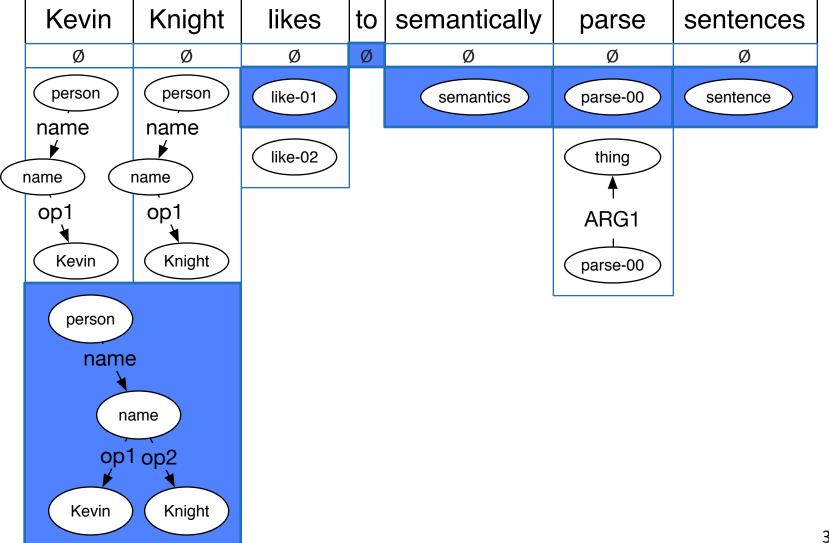


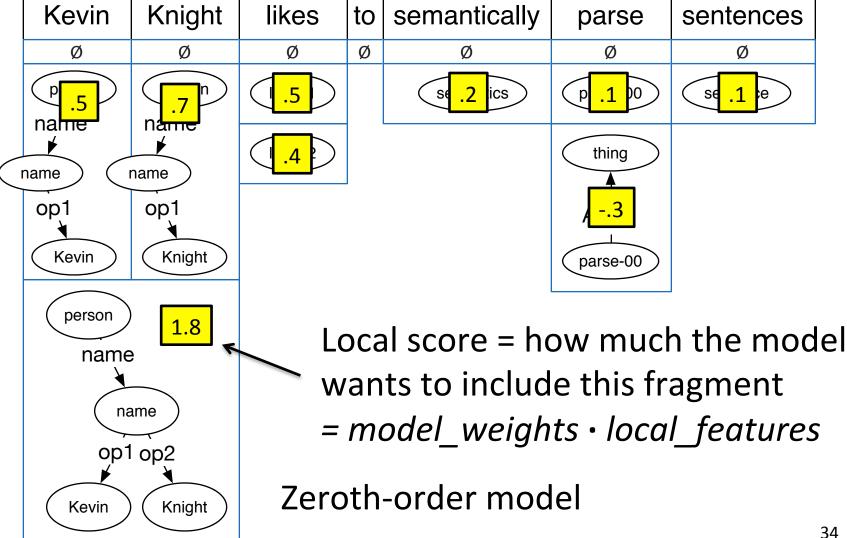


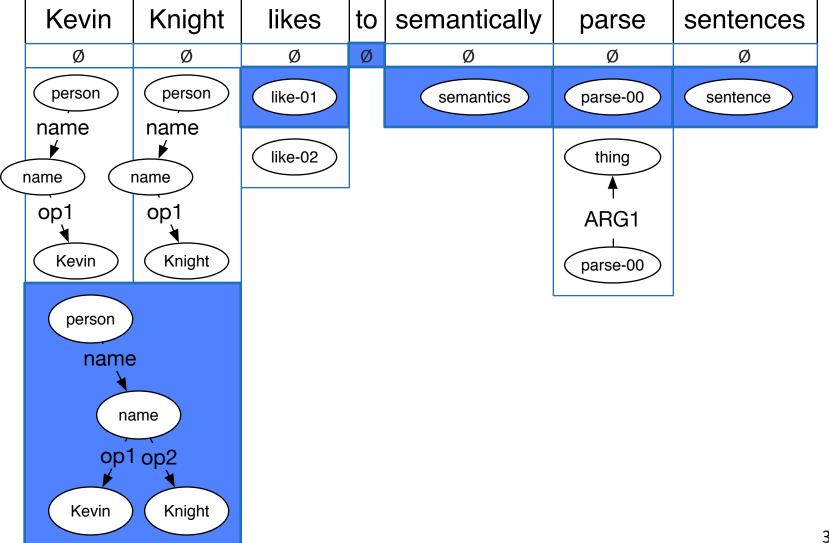
Kevin

Knight

sentences => sentence







Training

AdaGrad structured perceptron

Learning rate

$$\theta_i^{t+1} = \theta_i^t - \frac{\eta}{\sqrt{\sum_{t'=1}^t g_i^{t'}}} g_i^t$$

Model weight component i at step t+1

Gradient

Training

AdaGrad structured perceptron

Learning rate

$$\theta_i^{t+1} = \theta_i^t - \frac{\eta}{\sqrt{\sum_{t'=1}^t g_i^{t'}}} g_i^t$$

Model weight component i at step t+1

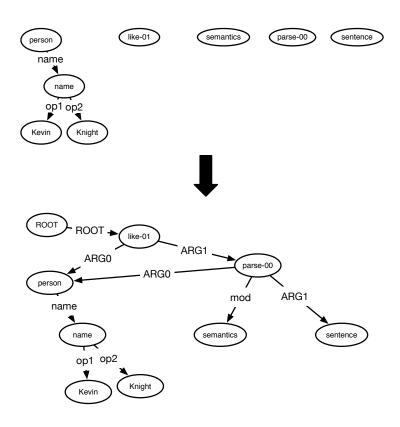
Gradient

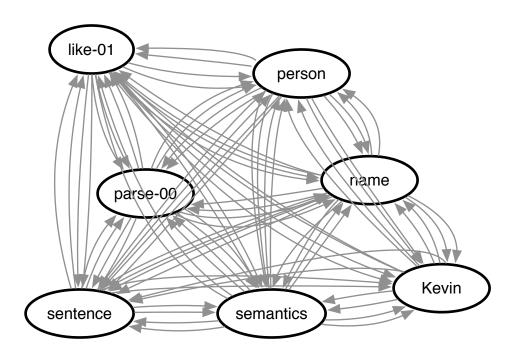
Relation Identification

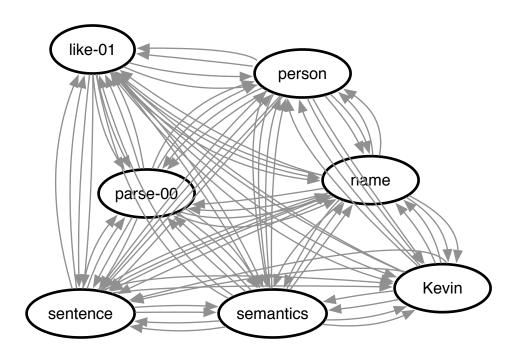
- Evaluation
- Alignment
- Parsing
 - Graph-based parsing
 - Concept identification
 - Relation identification
 - Maximum spanning connected graph algorithm (MSCG)
 - Graph determinism constraints using Lagrangian relaxation
 - Experiments
 - Transition-based parsing
 - Parsing using syntax-based MT
- Graph Grammars and Automata
- Applications

Relation Identification

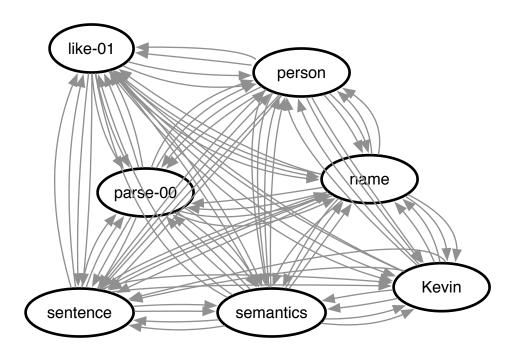
Relation Identification



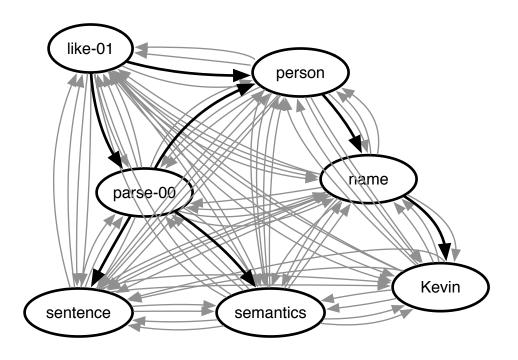




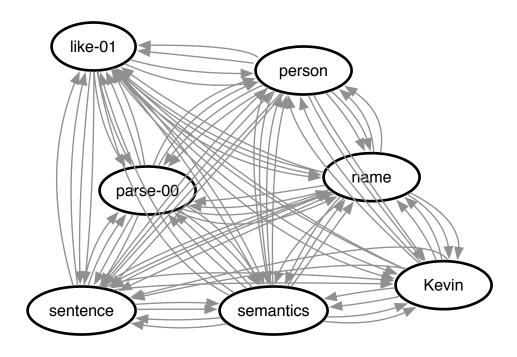
- All possible edges between all nodes
- Edges w/ weights



Edge weight = how much the model wants to include that edge in the output graph

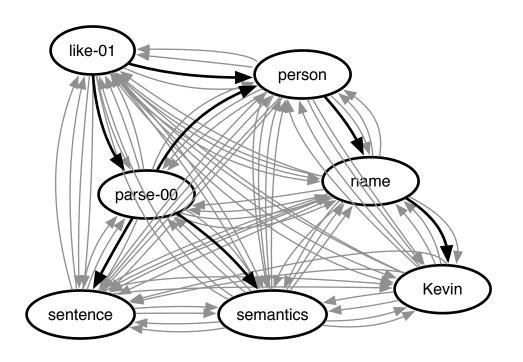


Output graph = max subgraph with constraints on well-formedness



- **Z** binary vector, indicates which edges are selected
- ϕ real vector, contains the edge weights

Max Subgraph



Relation ID optimization problem

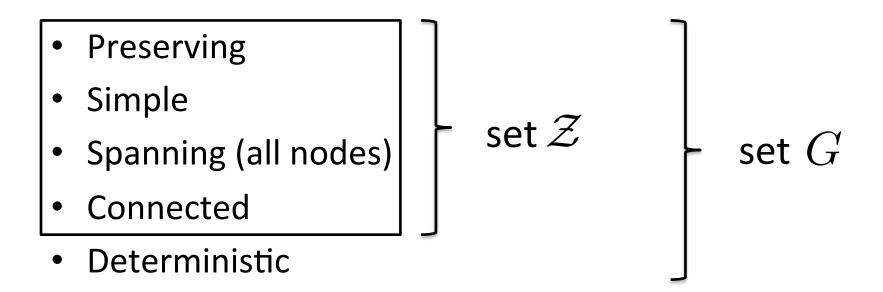
 $\max_{\mathbf{z} \in G} \phi^T \mathbf{z}$

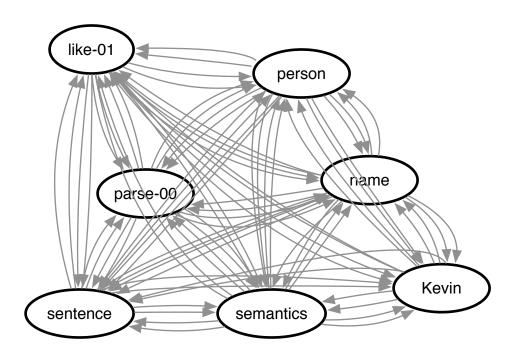
Set of graphs satisfying the constraints

Output Graph Properties (Constraints)

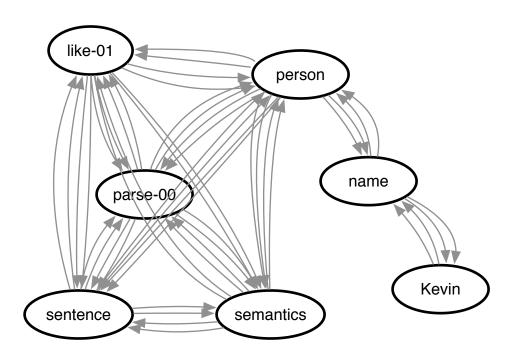
- Preserving
- Simple
- Spanning (all nodes)
- Connected
- Deterministic

Output Graph Properties (Constraints)

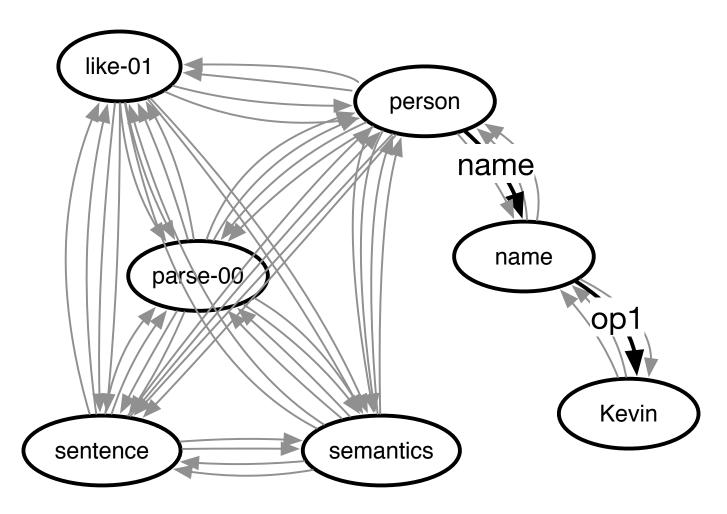




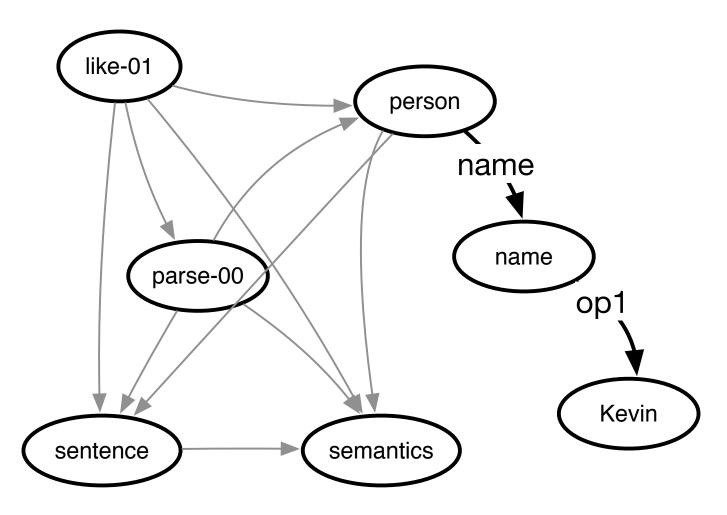
Reduced graph for clarity



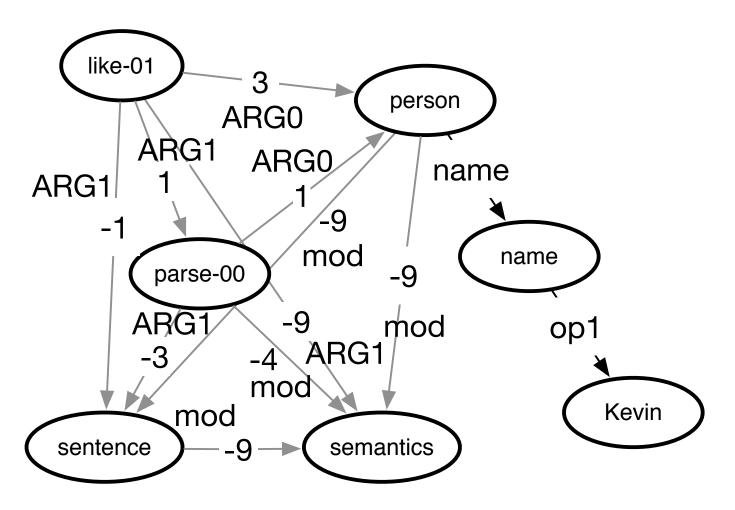
Constraint: Preserving



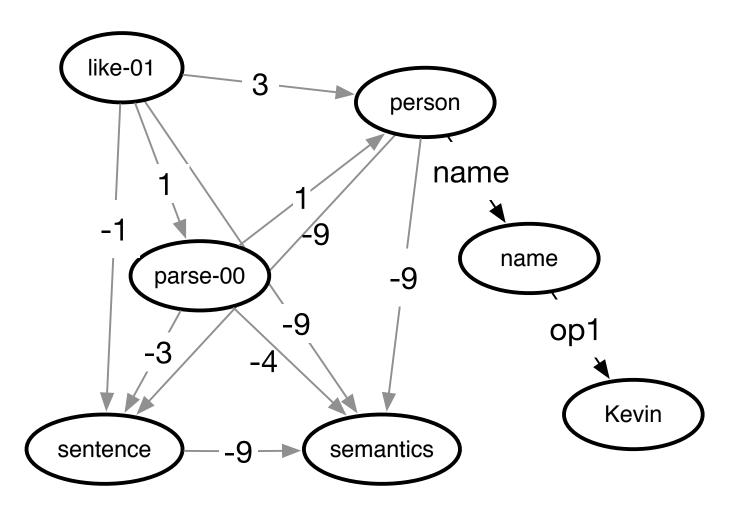
Constraint: Simple



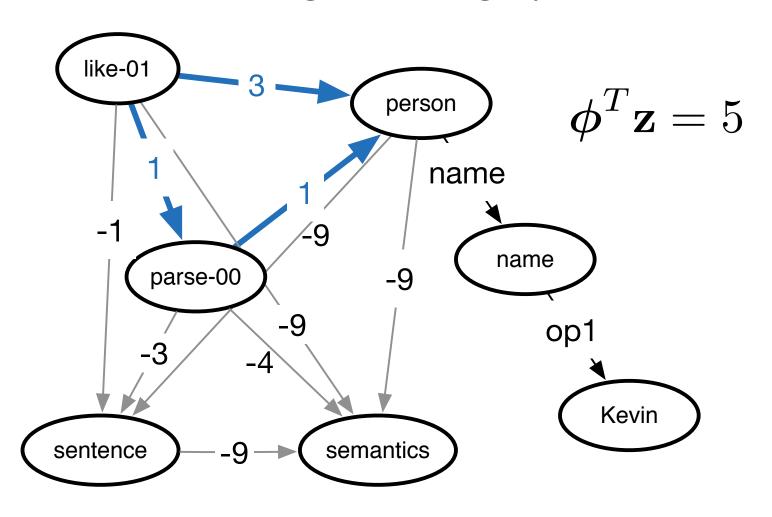
With Weights and Labels Shown



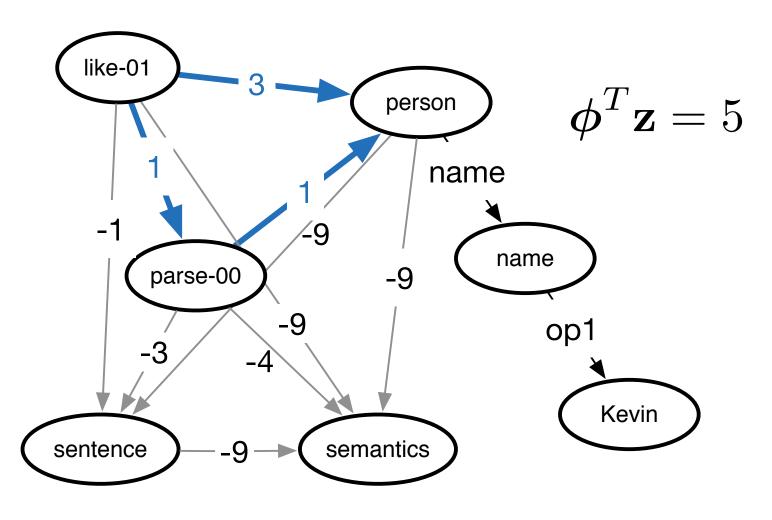
Maximum Weighted Subgraph



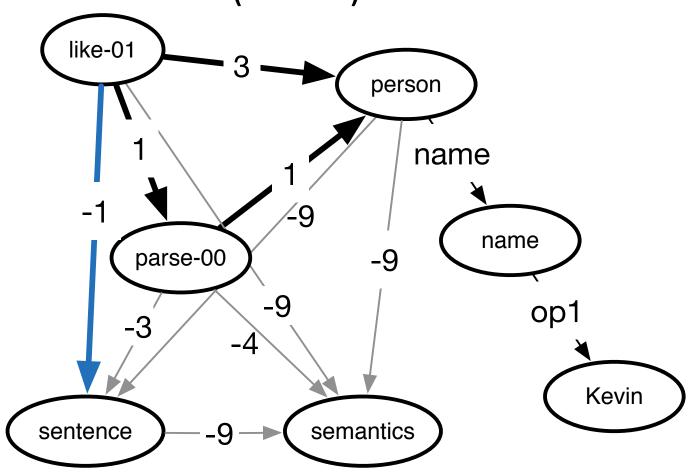
Maximum Weighted Subgraph

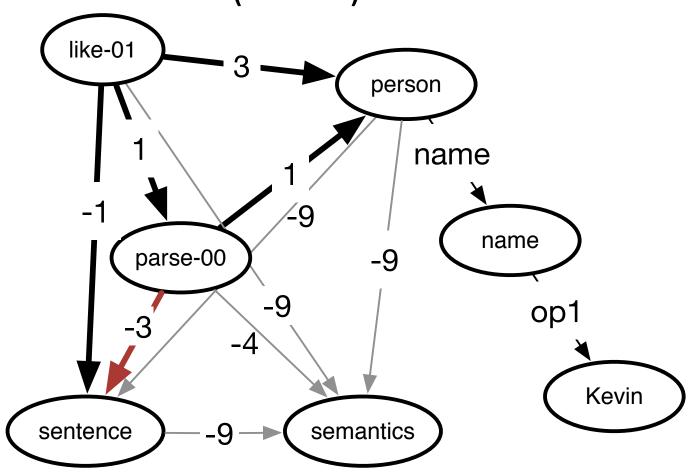


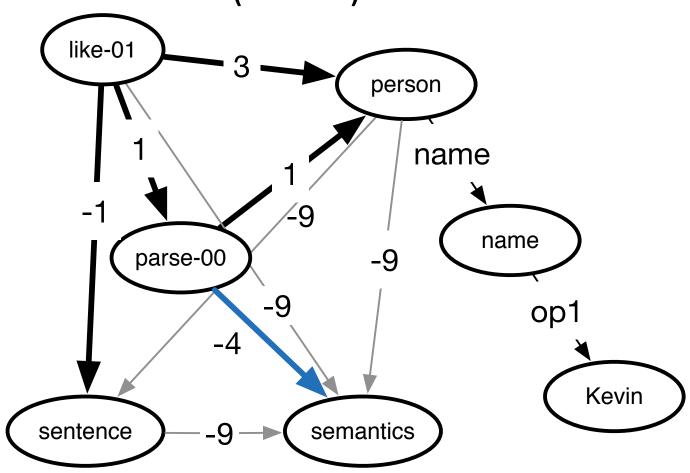
Maximum Weighted Subgraph

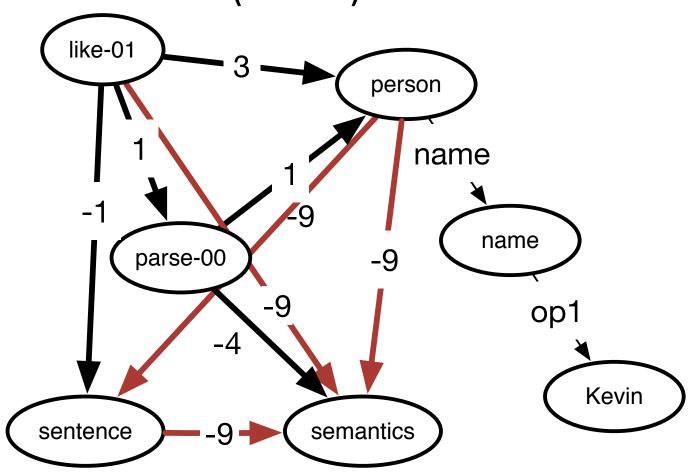


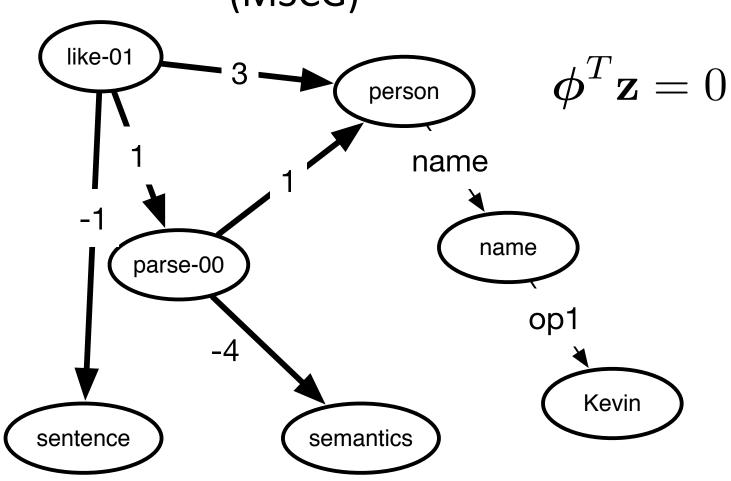
Constraint: Graph must be connected

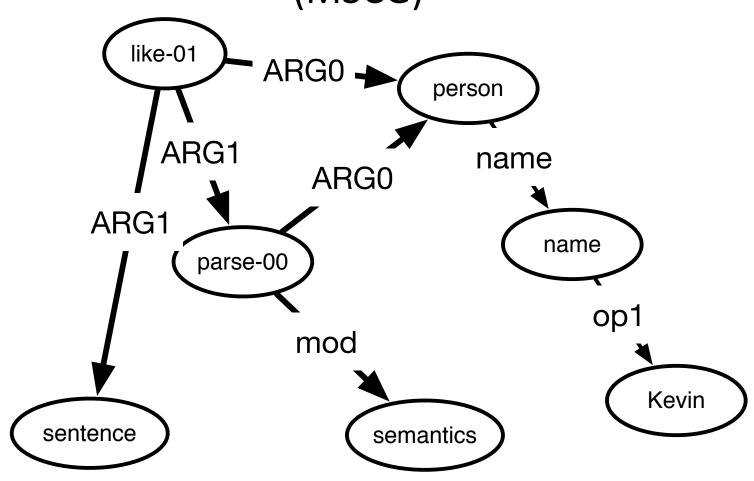




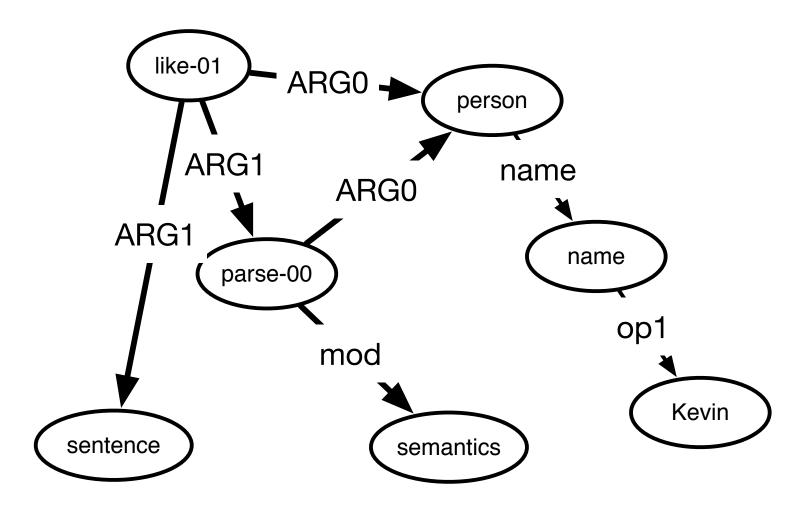








Constraint: Graph must be deterministic



$$\mathbf{z}_{1 \xrightarrow{\text{ARG1}} 2} + \mathbf{z}_{1 \xrightarrow{\text{ARG1}} 3} + \dots \leq 1$$

$$\mathbf{z}_{2 \xrightarrow{\text{ARG1}} 1} + \mathbf{z}_{2 \xrightarrow{\text{ARG1}} 3} + \dots \leq 1$$

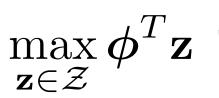
$$\vdots$$

$$\mathbf{z}_{1 \xrightarrow{ARG1} 2} + \mathbf{z}_{1 \xrightarrow{ARG1} 3} + \dots \leq 1$$
 $\mathbf{z}_{2 \xrightarrow{ARG1} 1} + \mathbf{z}_{2 \xrightarrow{ARG1} 3} + \dots \leq 1$
 \vdots
 $A\mathbf{z} < b$

$$\max_{\mathbf{z} \in \mathcal{Z}} \boldsymbol{\phi}^T \mathbf{z}$$
 Preserving, simple, connected, spanning s.t. \mathbf{z} satisfies $A\mathbf{z} \leq b$ Determinism constraints

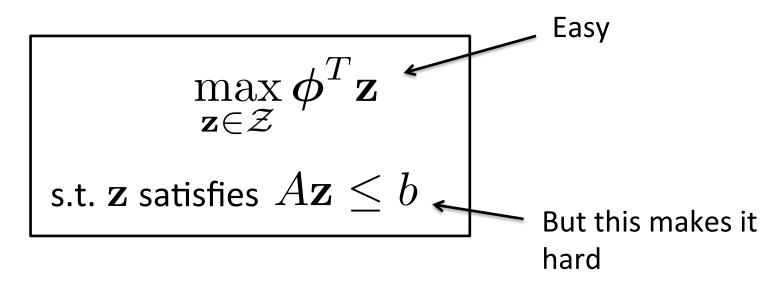
Solve using Lagrangian relaxation

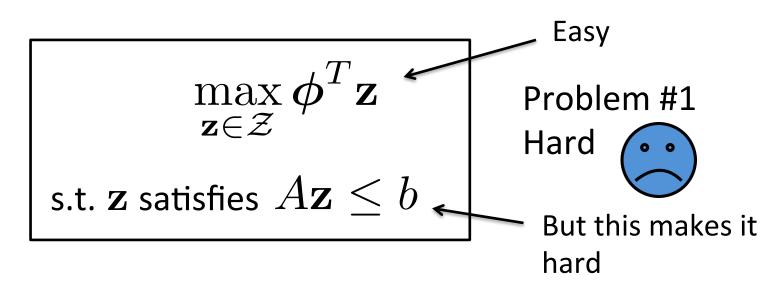
$$\max_{\mathbf{z} \in \mathcal{Z}} \boldsymbol{\phi}^T \mathbf{z}$$
 s.t. \mathbf{z} satisfies $A\mathbf{z} \leq b$

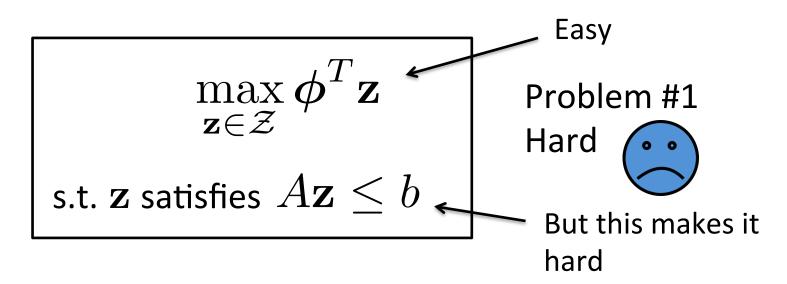


 $\mathbf{z} \in \mathbf{z}$ s.t. \mathbf{z} satisfies $A\mathbf{z} \leq b$

Easy (know how to solve)

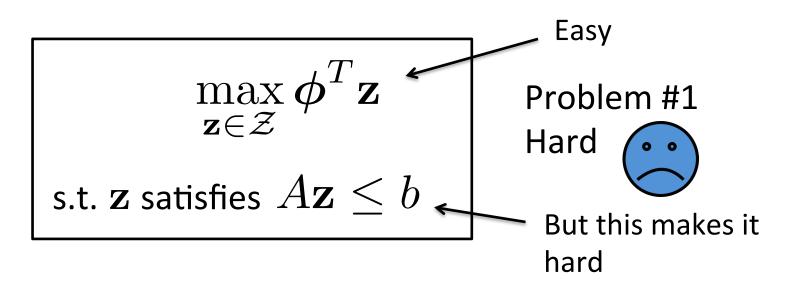






$$\lambda^T(\mathbf{b} - A\mathbf{z})$$

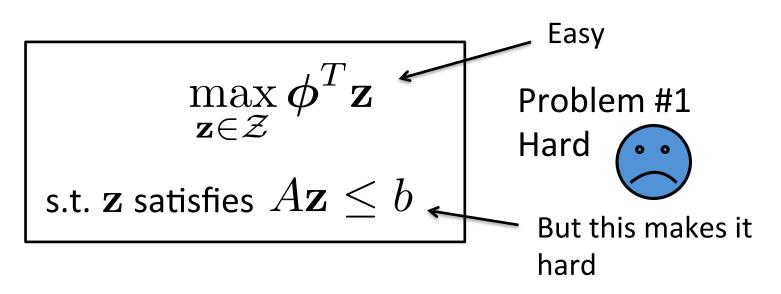
Lagrange multipliers ≥ 0



$$\max_{\mathbf{z} \in \mathcal{Z}} \phi^T \mathbf{z} + \lambda^T (\mathbf{b} - A\mathbf{z})$$

Add to original objective

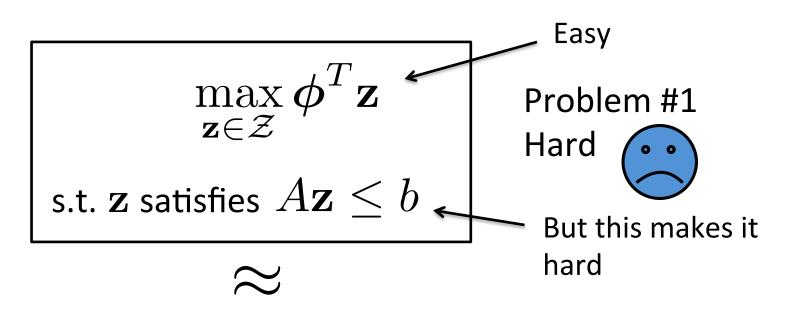
Lagrangian Relaxation Tutorial



$$\min_{\lambda \ge 0} \max_{\mathbf{z} \in \mathcal{Z}} \phi^T \mathbf{z} + \lambda^T (\mathbf{b} - A\mathbf{z})$$

Minimize over λ

Lagrangian Relaxation Tutorial



$$\min_{\lambda \ge 0} \max_{\mathbf{z} \in \mathcal{Z}} \phi^T \mathbf{z} + \lambda^T (\mathbf{b} - A\mathbf{z})$$

Problem #2
Easy

Not always equivalent, as we shall see

Solving Problem #2

• Problem #2 (aka "Lagrange Dual"):

$$\min_{\lambda \ge 0} \max_{\mathbf{z} \in \mathcal{Z}} \phi^T \mathbf{z} + \lambda^T (\mathbf{b} - A\mathbf{z})$$

- For a given λ , the max can be solved using algorithm given before (preprocessing + MSCG)
- To minimize over lambda
 - Use subgradient descent

Solving Problem #2

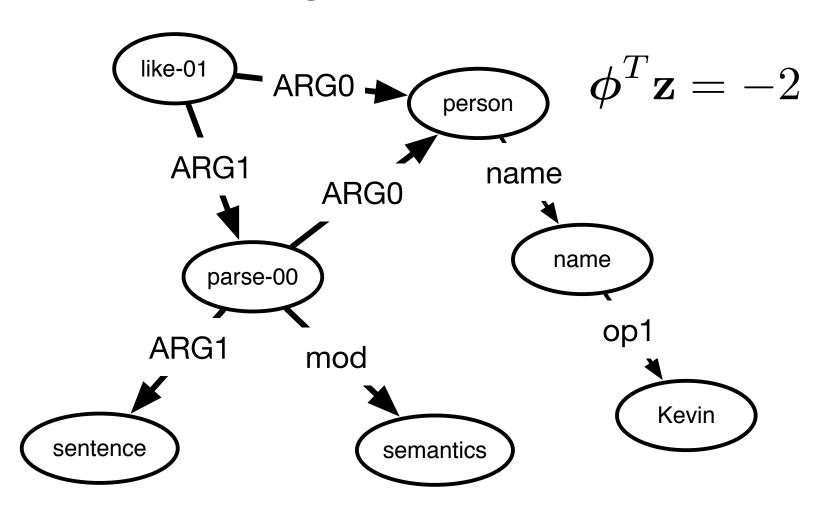
• Problem #2 (aka "Lagrange Dual"):

$$\min_{\lambda \ge 0} \max_{\mathbf{z} \in \mathcal{Z}} \phi^T \mathbf{z} + \lambda^T (\mathbf{b} - A\mathbf{z})$$

- For a given λ , the max can be solved using algorithm given before (preprocessing + MSCG)
- To minimize over lambda
 - Use subgradient descent

If constraints are not satisfied at minimum, then Problem #1 ≠ Problem #2

After subgradient descent



Summary: Output Graph Properties

- Maximum weight
- Preserving
- Simple
- Spanning (all nodes)
- Connected
- Deterministic

Features & Training

Features

- Edge bias
- Edge label
- Head concept, tail concept, head word, tail word
- Dependency path (dependency edge labels and POS on the shortest path between any two words in the span)
- Various distance features
- Within fragment edge indicator
- Various conjunctions of above features
- Weights trained using AdaGrad structured perceptron

Experiments

- Alignment
- Parsing
 - Graph-based parsing
 - Concept identification
 - Relation identification
 - Maximum spanning connected graph algorithm (MSCG)
 - Graph determinism constraints using Lagrangian relaxation
 - Experiments
 - Transition-based parsing
 - Parsing using syntax-based MT
- Evaluation
- Graph Grammars and Automata
- Applications

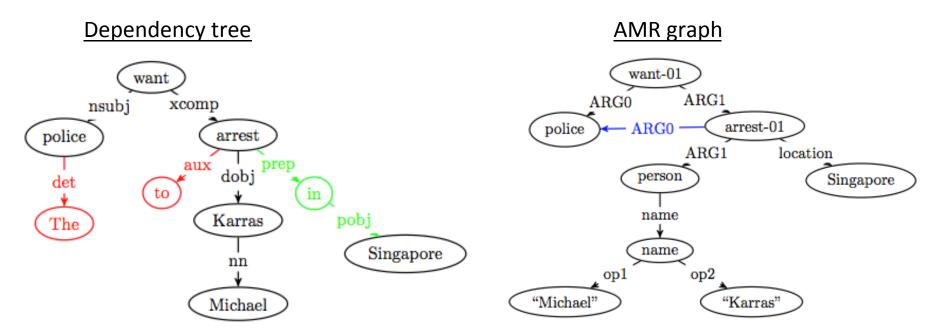
Experiments

	ACL 2014	Now
Full System (gold concepts)	80% Smatch	81% Smatch
Full System	58% Smatch	62% Smatch

- Data: LDC2013E117
 - 4,000 training instances
 - 2,000 test
 - 2,000 dev

Transition-based AMR Parsing (Wang et al, NAACL 2015)

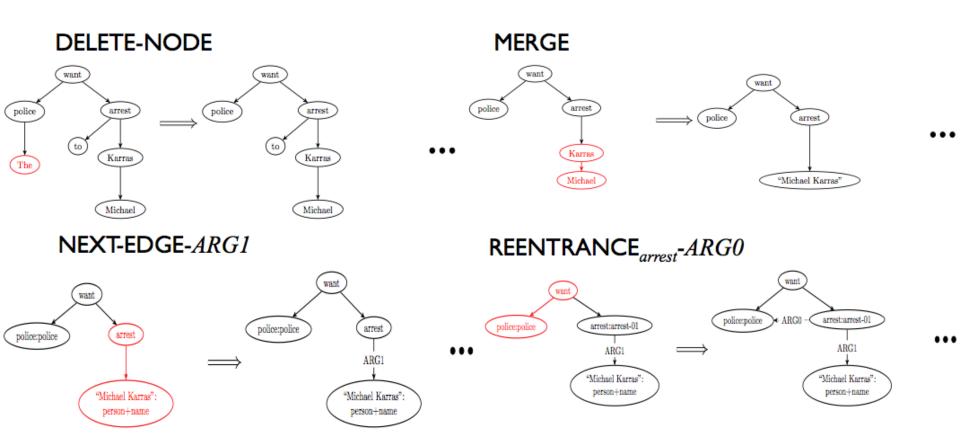
- Convert dependency tree into AMR graph
- Motivation: only a few difference between syntactic dependencies and AMR



Transition-based AMR Parsing

- Actions applied to graph in post-order traversal
- Parser actions
 - NEXT-EDGE-I_r (attach edge and move to next word)
 - SWAP-I_r (swap nodes and attach with edge)
 - $REATTACH_k-I_r$ (delete edge and reattach to already processed node)
 - REPLACE-HEAD (replace node with another node)
 - REENTRANCE_k- I_r (attach edge to already processed node)
 - MERGE (merge two nodes)
 - NEXT-NODE-I_c (label with concept and move to next word)
 - DELETE-NODE (deletes a word)

Transition-based AMR Parsing



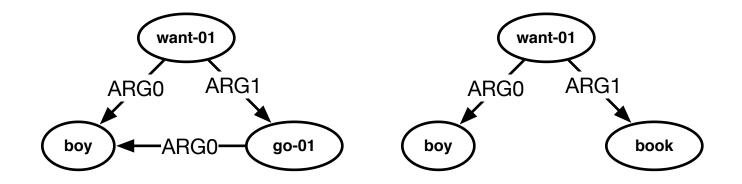
AMR Parsing using Syntax-based MT (Pust et al, 2015)

- Idea: already have sophisticated string-to-tree syntactic MT systems. Use them for AMR parsing
- Approach: convert AMR graphs into trees suitable for training string-to-tree MT systems
- Important features:
 - Language model on the linearized AMR
 - Semantic categories built using WordNet
- Large performance gains JAMR (7 smatch points)

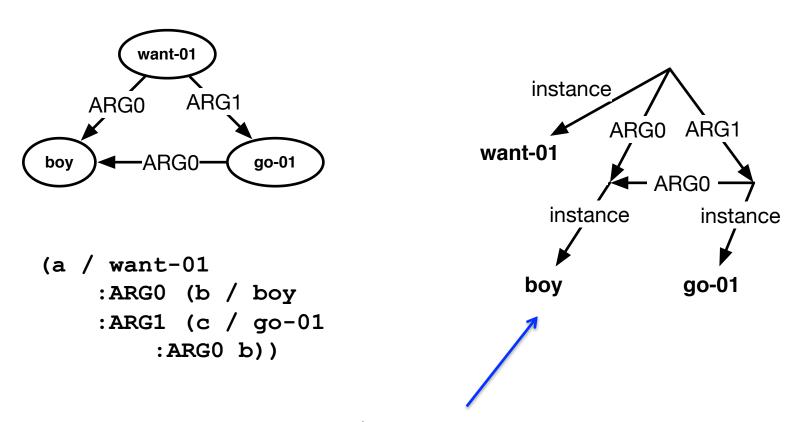
Evaluation

- Alignment
- Parsing
- Evaluation
- Graph Grammars and Automata
- Applications

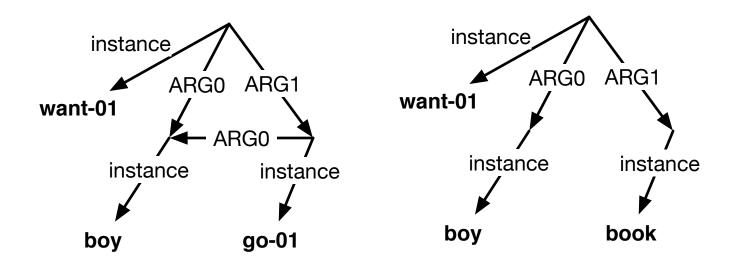
Evaluation: Smatch (Cai & Knight, 2013)

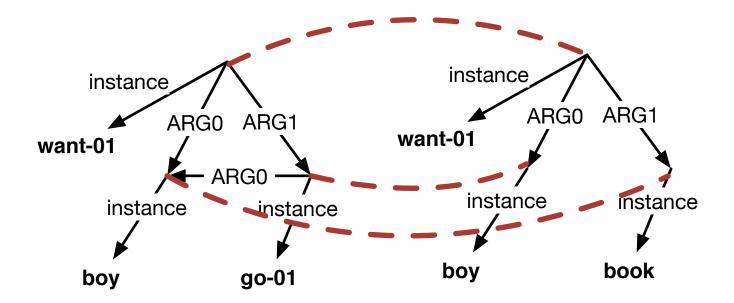


Want a number which indicates the similarity between two graphs

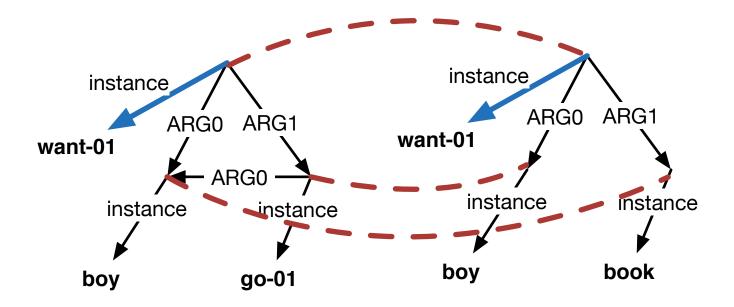


AMR graph w/ explicit instance edges

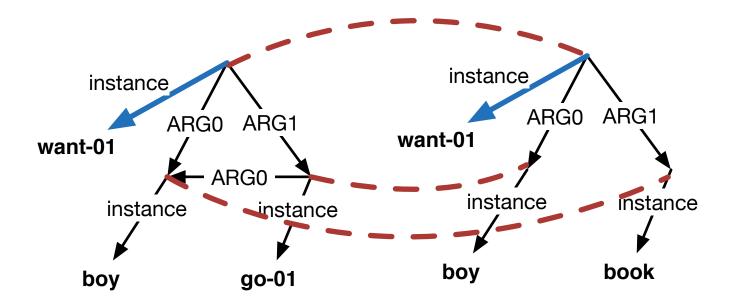




Consider an alignment between the nodes

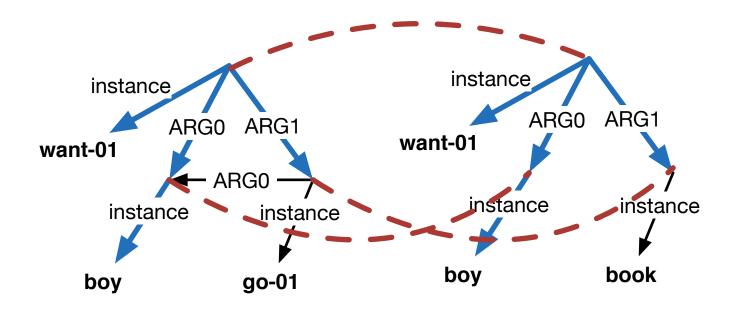


f-score =
$$F_1$$
 of identical matching edges
= 2 Match/(Total₁ + Total₂)
= 2 / (6 + 5) = .18



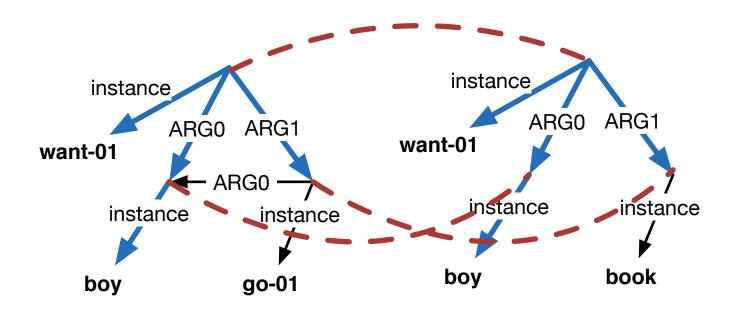
Smatch score = maximum f-score over all possible alignments

NP hard => approximate inference to find highest scoring alignment



Smatch score = 8/(6+5) = .73

Highest scoring alignment



Multi-lingual version of Smatch: AMRICA demo by Naomi Saphra at NAACL 2015

Roadmap

- Alignment
- Parsing
- Evaluation
- Graph Grammars and Automata
 - Background: CFGs and tree substitution grammars
 - Hyperedge Replacement Grammars (HRGs)
 - Directed Acyclic Graph (DAG) Automata
- Applications

Motivation for Graph Grammars

- String and tree grammars, automata, transducers, etc widely used in NLP applications
 - Phrase structure parsers, syntactic MT systems
- Semantics (like AMR) is represented as graphs

We would like grammars, automata, transducers, etc over graphs

Grammar

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

Example derivation S

<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

Example derivation

S

$$\Rightarrow_1 NP VP$$

<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

Example derivation

S

 $\Rightarrow_1 NP VP$

 $\Rightarrow_3 NP V NP$

<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

Example derivation

S

 $\Rightarrow_1 NP VP$

 $\Rightarrow_3 NP V NP$

 \Rightarrow_4 NP like NP

<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

Example derivation

S

 \Rightarrow_1 NP VP

 $\Rightarrow_3 NP V NP$

 $\Rightarrow_{\Delta} NP like NP$

 \Rightarrow_6 NP like ice cream

<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

Example derivation

S

 \Rightarrow_1 NP VP

 $\Rightarrow_3 NP V NP$

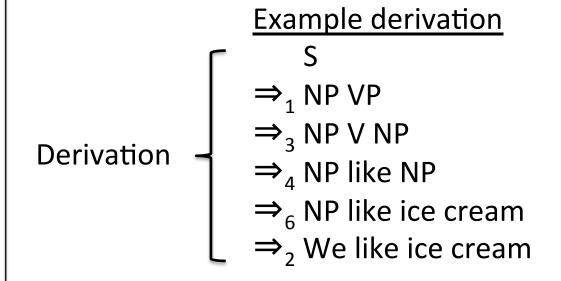
 \Rightarrow_{Δ} NP like NP

 \Rightarrow_6 NP like ice cream

 \Rightarrow_2 We like ice cream

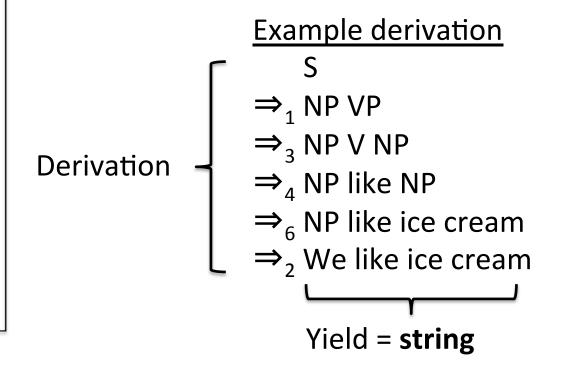
<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream



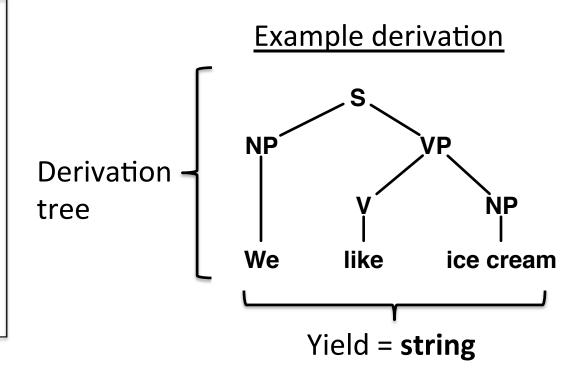
<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream



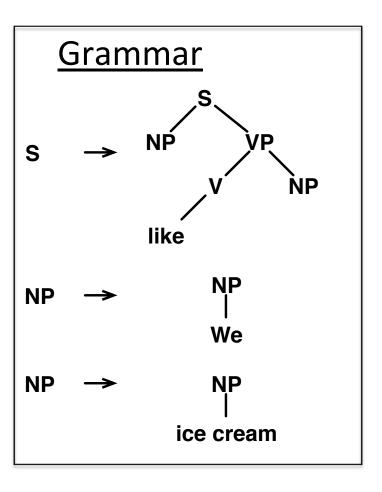
<u>Grammar</u>

- 1) S -> NP VP
- 2) NP -> We
- 3) VP -> V NP
- 4) V -> want
- 5) V -> like
- 6) NP -> ice cream

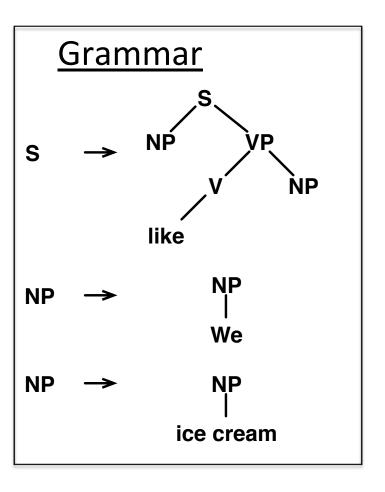


Language over strings (yield), and trees (derivations)

Tree Substitution Grammar (TSG)



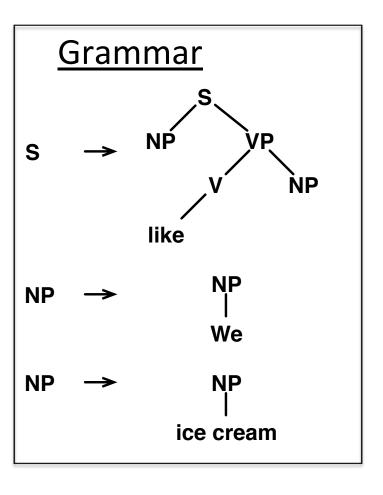
Tree Substitution Grammar (TSG)



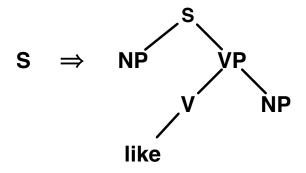
Example derivation

S

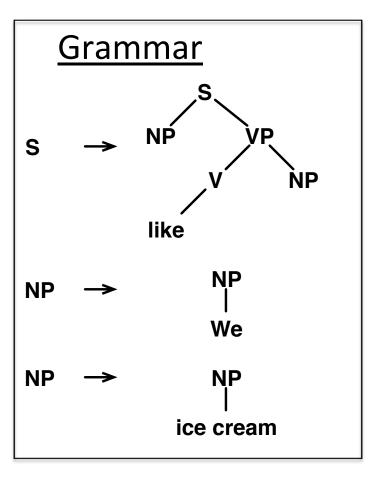
Tree Substitution Grammar (TSG)



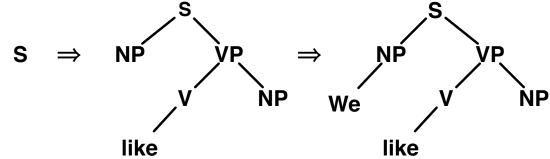
Example derivation



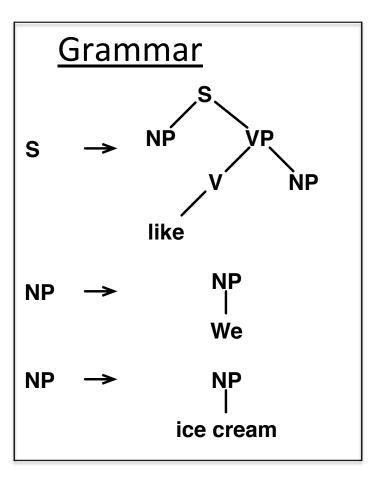
Tree Substitution Grammar (TSG)



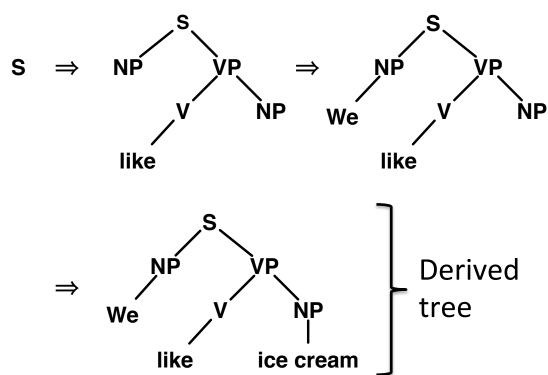
Example derivation

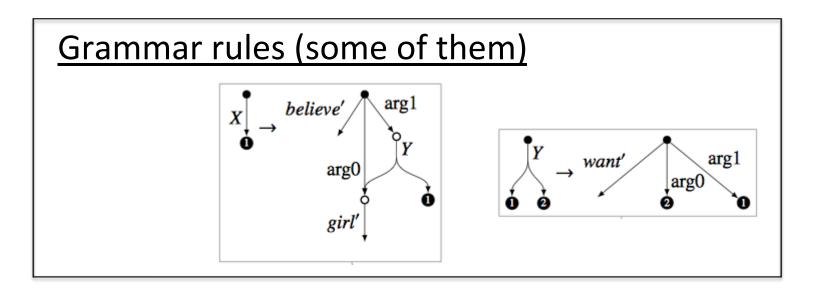


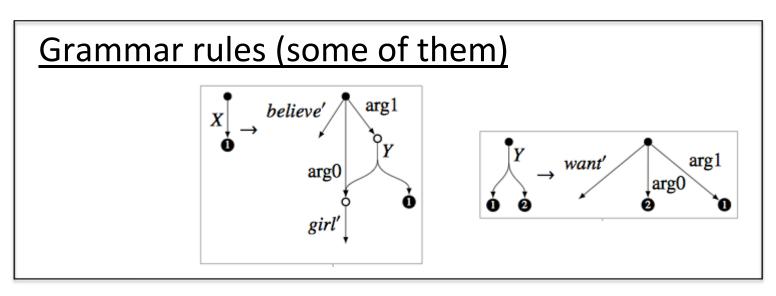
Tree Substitution Grammar (TSG)

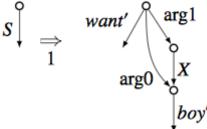


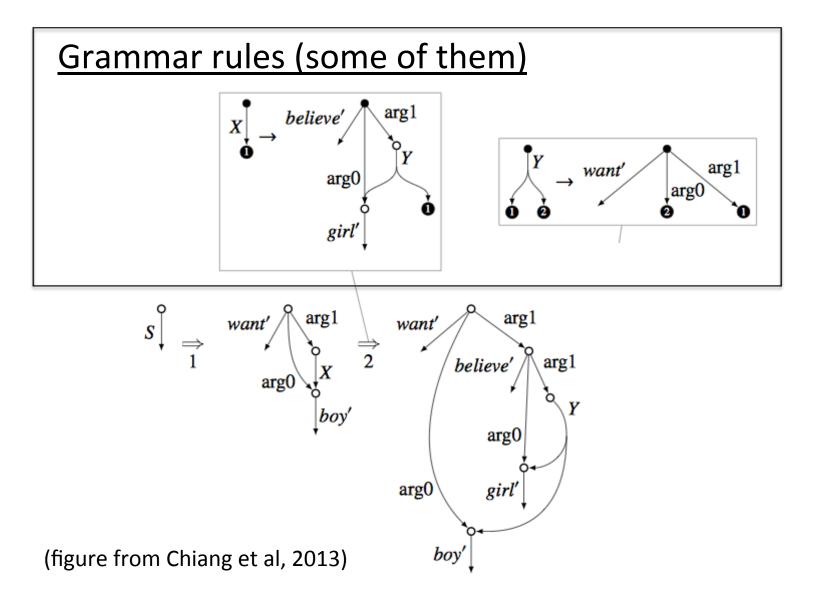
Example derivation

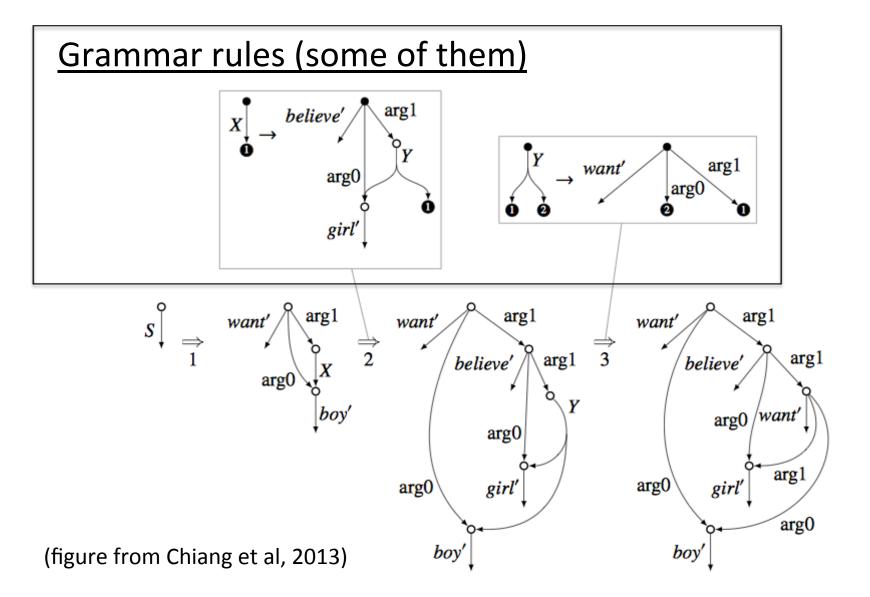




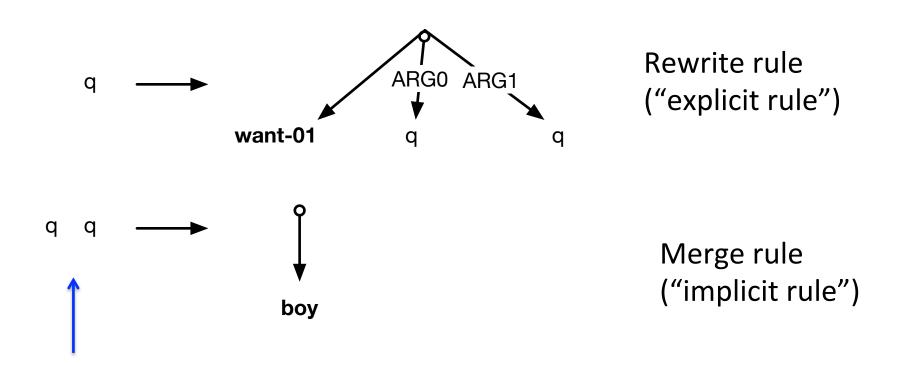




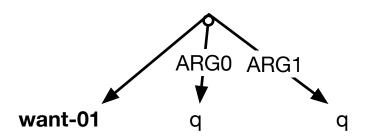


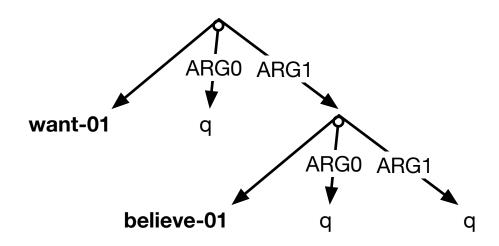


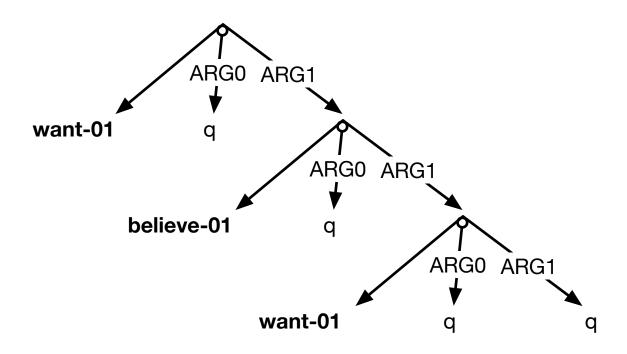
(Kamimura and Slutzki, 1981. Quernheim and Knight, 2012)

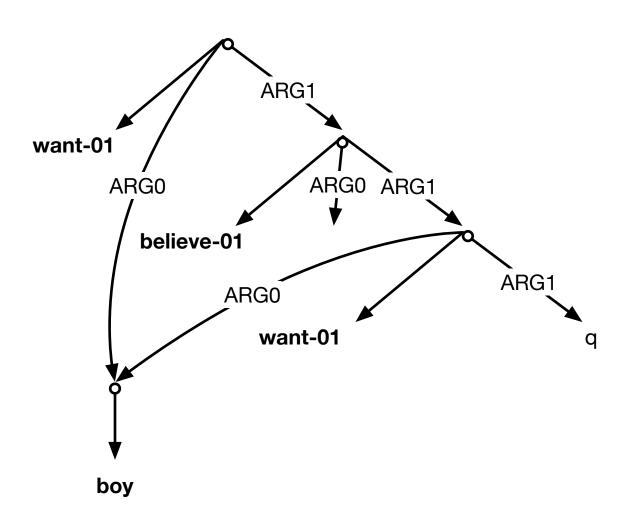


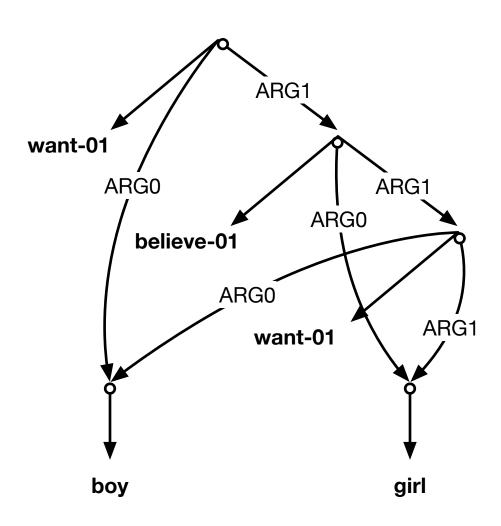
Two or more states can merge rule











Extensions

- Weighted and probabilistic grammars
- Synchronous grammars and transducers
 - Useful for building parsers, generators, and MT systems

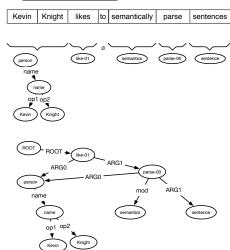
Recent/Ongoing work

- Improved parsing algorithms (Chiang et al, 2013)
- Applications to parsing and generation (Braune et al, 2014) and MT (Jones et al, 2012)
- Implementations
 - Hyperedge replacement grammars: Bolinas (Chiang et al, 2013; Jones et al, 2012)
 - DAG automata: DAGGER (Quernheim & Knight, 2012)

Alignment

IAEA accepted North Korea 's proposal in November.

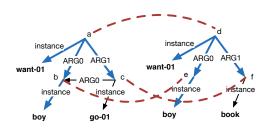
Parsing

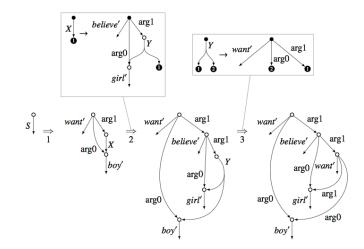


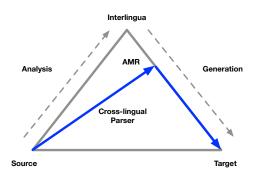
Evaluation

Graph grammars

Applications



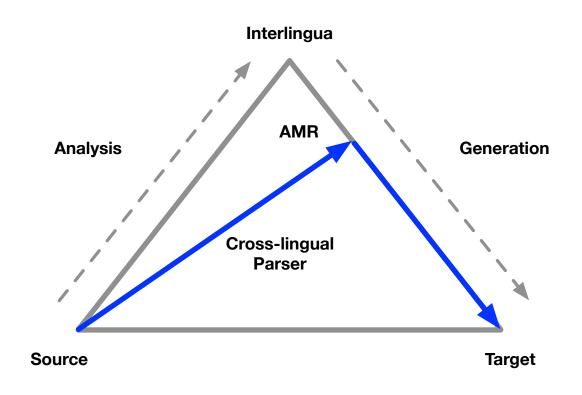




Applications

- Alignment
- Parsing
- Evaluation
- Graph Grammars and Automata
- Applications
 - MT, Summarization, Entity linking

Machine Translation



Summarization (Liu et al, NAACL 2015)

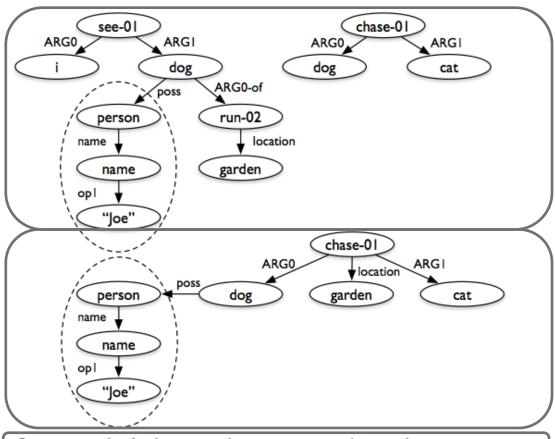
Document Sentences (input)

Document AMRs (run parser)

Summary AMR (select nodes and edges)

Summary (generate)

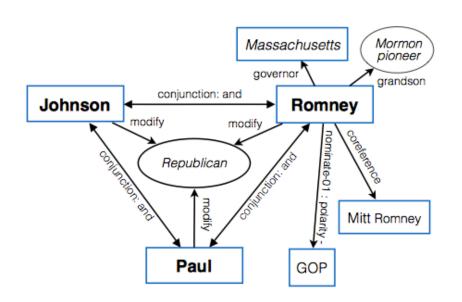
Sentence A: I saw Joe's dog, which was running in the garden. Sentence B: The dog was chasing a cat.



Summary: Joe's dog was chasing a cat in the garden.

Unsupervised Entity Linking with AMR (Pan et al, NAACL 2015)

- Link entity mentions in text to knowledge base
- Look at context to disambiguate mention
- Uses AMR graphs as context to build knowledge networks:



AMR context performs much better than SRL context for unsupervised entity linking

AMR at NAACL 2015

Talks

- Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, Noah A. Smith.
 "Toward Abstractive Summarization Using Semantic Representations"
- Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji, Kevin Knight.
 "Unsupervised Entity Linking with Abstract Meaning Representation

Posters

 Chuan Wang, Nianwen Xue, Sameer Pradhan. "A Transition-based Algorithm for AMR Parsing"

Demonstrations

- Lucy Vanderwende, Arul Menezes and Chris Quirk. "An AMR parser for English, French, German, Spanish and Japanese and a new AMRannotated corpus"
- Naomi Saphra and Adam Lopez. "AMRICA: an AMR Inspector for Crosslanguage Alignments"

Resources

- AMR website: http://amr.isi.edu
- JAMR: https://github.com/jflanigan/jamr
- Transition-based parser:

https://github.com/Juicechuan/AMRParsing/

Bolinas toolkit:

http://www.isi.edu/publications/licensed-sw/bolinas/

DAGGER tookit:

http://www.ims.uni-stuttgart.de/~daniel/dagger

```
(t / thank-01 :ARG1 (y / you))
```

Thanks to: Miguel Ballesteros, David Chaing, Shay Cohen, Chris Dyer, Kevin Knight, Lingpeng Kong, Fei Liu, Noah Smith, Sam Thomson, and Chuan Wang