
Introduction to the
Abstract Meaning

Representation (AMR)

1

If you are here early, go to the AMR Editor and try to log in:

http://tiny.cc/amreditor

http://tiny.cc/amrtutorial

http://tiny.cc/amreditor
http://tiny.cc/amrtutorial

Why does AMR matter now?

• AMR is a semantic representation aimed at large-
scale human annotation in order to build a giant
semantics bank.

• We do a practical, replicable amount of abstraction
(limited canonicalization).

• Capture many aspects of meaning in a single
simple data structure.

2

Hasn’t this been done
before?

• Linguistics/CL have formalized semantics for a long
time.

• A form of AMR has been around for a long time too
(Langkilde and Knight 1998).

• It changed a lot since 1998 (add PropBank, etc.)
and we actually built a corpus of AMRs.

3

Contemporary AMR

• Banarescu et al.
(2013) laid out the
fundamentals of the
annotation scheme
we’ll describe today.

4

Roadmap for Part I
• Fundamentals of the AMR representation

• Hands-on practice I: Representing basic examples

• Advanced topics and linguistic phenomena

• Comparison to other representations

• Hands-on practice II: Doing real, complex text

5

6

• We use PENMAN notation (Bateman 1990).

• A way of representing a directed  
graph in a simple, tree-like form.

 “The dog is eating a bone”

(e / eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone))

PENMAN notation

e/eat-01

d/dog

b/bone

A

R

G

0

A

R

G

1

7

• The edges (ARG0 and ARG1) are relations

• Each node in the graph has a variable

• They are labeled with concepts

• d / dog means “d is an  
instance of dog”

“The dog is eating a bone”
(e / eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone))

PENMAN notation

e/eat-01

d/dog

b/bone

A

R

G

0

A

R

G

1

8

• Concepts are technically  
edges (this matters in Part 2) 

“The dog is eating a bone”
(e / eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone))

PENMAN notation

e

d

b

eat-01

dog

bone

A

R

G

0

A

R

G

1

9

• What if something is referenced multiple
times?

• Notice how dog has two incoming roles
now.

• To do this in PENMAN format,  
repeat the variable. We call this a
reentrancy. 

(want-01
 :ARG0 (d / dog)
 :ARG1 (e / eat-01
 :ARG0 d
 :ARG1 (b / bone)))

Reentrancy

e/eat-01

w/want-01

d/dog

b/bone

A

R

G

0

A

R

G

1

A

R

G

0

A

R

G

1

“The dog wants to eat the bone”

10

• It does not matter where the concept label goes.  

 “The dog wants to eat the bone”

(want-01
 :ARG0 (d / dog)
 :ARG1 (e /eat-01
 :ARG0 d
 :ARG1 (b / bone)))

Reentrancy

(want-01
 :ARG0 d
 :ARG1 (e /eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone)))

11

• What about “The dog ate the bone that he found”?

• How do we know what goes on top?

• How do we get these into the AMR format?

Inverse Relations and Focus

e/eat-01

d/dog

f/find-01

b/bone

A

R

G

0

A

R

G

1

A

R

G

0

A

R

G

1

Inverse Relations and Focus
• We call “what goes on top” the focus.

• Conceptually, the main assertion.

• Linguistically, often the head.

‣ For a sentence, usually the main verb.

12

Inverse Relations and Focus

13

The man at the hotel The hotel the man is at

The dog ran The dog that ran

F
O
C
U
S

F
O
C
U
S

F
O
C
U
S

F
O
C
U
S

Inverse Relations and Focus

14

The man at the hotel

The dog ran

F
O
C
U
S

F
O
C
U
S

(m / man
 :location (h / hotel))

(r / ran-01
 :ARG0 (d / dog))

Inverse Relations and Focus

15

The hotel the man is at

The dog that ran

F
O
C
U
S

F
O
C
U
S

(h / hotel
 :??? (m / man))

(d / dog
 :???? (r / ran-01))

Inverse Relations and Focus

16

The hotel the man is at

The dog that ran

F
O
C
U
S

F
O
C
U
S

(h / hotel
 :location-of (m / man))

(d / dog
 :ARG0-of (r / ran-01))

Inverse Relations and Focus
• This is a notational trick: X ARG0-of Y = Y ARG0 X

• Often used for relative clauses.

• These are equivalent for SMATCH scoring purposes
too.

17

Reviewing the Format
• Imagine a graph for “The dog ate the bone that he found”

18

eat-01
dog

bone
find-01

ARG0

ARG1

ARG1

• “The dog ate the bone that he found”

ARG0

Reviewing the Format
• Find the focus

19

eat-01
dog

bone
find-01

ARG0

ARG1

ARG1

• “The dog ate the bone that he found”

Focus

(e / eat-01 …)

ARG0

Reviewing the Format
• Add entities

20

eat-01
dog

bone
find-01

ARG0

ARG1

ARG1

• “The dog ate the bone that he found”

Focus

(e / eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone))

ARG0

Reviewing the Format
• Invert a relation if needed

21

eat-01
dog

bone
find-01

ARG0

ARG1

ARG1-of

• “The dog ate the bone that he found”

Focus

(e / eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone
 :ARG1-of (f / find-01)))

ARG0

Reviewing the Format
• Add reentrancies

22

eat-01
dog

bone
find-01

ARG0

ARG1

ARG1-of

• “The dog ate the bone that he found”

Focus

(e / eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone)
 :ARG1-of (f / find-01
 :ARG0 d)))

ARG0

23

• Some relations, called
constants, get no variable.

• The editor does this
automatically for certain
contexts.

• This happens for negation.

Constant

“The dog did not eat the bone”
(e /eat-01 :polarity -
 :ARG0 (d / dog)
 :ARG1 (b / bone))

24

• Some relations, called
constants, get no variable.

• The editor does this
automatically for certain
contexts.

• This happens for numbers.

Constant

“The dog ate four bones”
(e /eat-01
 :ARG0 (d / dog)
 :ARG1 (b / bone :quant 4))

(to create a concept starting with a nonalphabetic
character, type “!” before the concept)

25

• Some relations, called
constants, get no variable.

• The editor does this
automatically for certain
contexts.

• This happens for names

Constant

“Fido the dog”
(d / dog
 :name (n / name :op1 "Fido"))

26

• A concept is a type. For every concept node there will
be ≥1 instance variable/node.

• An instance can be mentioned multiple times.

• Multiple instances of the same concept can be
mentioned.

• Constants are singleton nodes: no variable, just a
value. Specific non-core roles allow constant values.

Concepts vs. Constants

• That’s AMR notation! Let’s review before
discussing how we annotate AMRs. 
 
 
 
 
(e / eat-01

 :ARG0 (d / dog)
 :ARG1 (b / bone :quant 4
 :ARG1-of (f / find-01
 :ARG0 d))) 

27

variable concept constant

inverse relation reentrancy

PropBank Lexicon
• Predicates use the  

PropBank inventory.

• Each frame presents
annotators with a list of
senses.

• Each sense has  
its own definitions for its
numbered (core)
arguments

28

PropBank Lexicon
• We generalize across parts of speech and

etymologically related words: 
 
 
 

• But we don’t generalize over synonyms:

29

My fear of snakes fear-01
I’m terrified of snakes terrify-01
Snakes creep me out creep_out-03

My fear of snakes fear-01
I am fearful of snakes fear-01
I fear snakes fear-01
I’m afraid of snakes fear-01

Stemming Concepts
• Non-predicates don’t have PropBank frames.

They are simply stemmed.

• All concepts drop plurality, articles, and tense.  
 
 

30

A cat
The cat

cats
the cats

(c / cat)

eating
eats
ate

will eat

(e / eat-01)

Why drop articles?
• All mentions of a term go to the same variable,

including pronouns and later nominal mentions.

• We do capture demonstratives:

31

(d / dog
 :mod nice)

I saw a nice dog and noticed he was eating a bone

(h / house
 :mod (t / this))This house

Is “d” indefinite  
or definite?

Stemming Concepts
• Pronouns that do not have a coreferent nominal

mention are made nominative and used as
normal concepts.

32

The man saved himself He saved himself

(s / save-01
 :ARG0 (m / man)
 :ARG1 m)

(s / save-01
 :ARG0 (h / he)
 :ARG1 h)

He saved me

(s / save-01
 :ARG0 (h / he)
 :ARG1 (i / i))

Why drop tense?
• English verbal tense doesn’t generalize well

cross-linguistically; not available for nominal
predicates.

• Richer time representation might have required
looking beyond a sentence.

• Keep a simple representation.

33

34

The man described the mission as a disaster.
The man’s description of the mission: disaster.
As the man described it, the mission was a disaster.
The man described the mission as disastrous.

(d / describe-01
 :ARG0 (m / man)
 :ARG1 (m2 / mission)
 :ARG2 (d / disaster))

Non-core Role Inventory
• If a semantic role is not in

the core roles for a roleset,
AMR provides an inventory
of non-core roles

• These express things
like :time, :manner, :part,  
:location, :frequency

• Inventory on handout, or in
editor (the [roles] button)

35

Non-core Role Inventory

36

The yummy food
There is yummy food

(f / food
 :mod (y / yummy))

• We use :mod for attribution, and :domain is the inverse  
of mod (:domain = :mod-of)

The yumminess of the food
The food is yummy

(y / yummy
 :domain (f / food))

seeing the yummy food
seeing the food that is yummy

(s / see-01
 :ARG1 (f / food
 :mod (y / yummy)))

seeing that the food is yummy

(s / see-01
 :ARG1 (y / yummy
 :domain (f / food)))

Non-core Role Inventory

37

This house

(h / house
 :mod (t / this))

• This is also used for attribute/predicative demonstratives  
and nominals

A monster truck

(t / truck
 :mod (m / monster))

the truck is a monster

(m / monster
 :domain (t / truck))

Non-core Roles: :op#
• Some relations need to have an ordered list of

arguments, but don’t have specific meanings for
each entry.

• We use :op1, :op2, :op3, … for these

38

:op# for coordination
• We use this for coordination:

• Apples and bananas

39

(a / and  
 :op1 (a2 / apple) 
 :op2 (b / banana))

:op# for names
• Barack Obama

• Obama

40

(p / person  
 :name (n / name  
 :op1 "Barack"  
 :op2 "Obama"))

(p / person  
 :name (n / name  
 :op1 "Obama"))

Named Entities
• Barack Obama  

• Entities with names get  
special treatment!

• We assign a named entity type from our ontology.

• 70+ categories like person, criminal-organization,
newspaper, city, food-dish, conference

• See your handout, or the [NE types] button in the
editor

41

(p / person  
 :name (n / name  
 :op1 "Barack"  
 :op2 "Obama"))

Named Entities
• Barack Obama  

• Entities with names get  
special treatment!

• Each gets a :name relation to a name node

• That node gets :op# relations to the strings of
their name as used in the sentence.

42

(p / person  
 :name (n / name  
 :op1 "Barack"  
 :op2 "Obama"))

Named Entities
• If there is a more specific descriptor present in

the sentence, we use that instead of the NE
inventory.

• a Kleenex

• a Kleenex tissue

43

(p / product  
 :name (n / name  
 :op1 "Kleenex"))

(t / tissue  
 :name (n / name  
 :op1 "Kleenex"))

Wikification
• In a second pass of annotation, we add :wiki

relations.

• Barack Obama

• http://en.wikipedia.org/wiki/Barack_Obama

44

(p / person  
 :name (n / name  
 :op1 "Barack"  
 :op2 "Obama")  
 :wiki Barack_Obama)

http://en.wikipedia.org/wiki/

Measurable Entities
• We also have special entity types we use for

normalizable entities.

45

(d / date-entity
 :weekday (t / tuesday)
 :day 19)

(m / monetary-quantity
 :unit dollar
 :quant 5)

“Tuesday the 19th” “five bucks”

Measurable Entities
• We also have special entity types we use for

normalizable entities.

46

(r / rate-entity-91
 :ARG1 (m / monetary-quantity
 :unit dollar
 :quant 3)
 :ARG2 (v / volume-quantity
 :unit gallon
 :quant 1))

“$3 / gallon”

Hands-on Annotation!

Go to the AMR Editor:

http://tiny.cc/amreditor

47

http://tiny.cc/amreditor

Load the Tutorial Sentences

48

Select “NAACL Tutorial”

49

It should look like this

50

Commands

51

Use “top <concept>” to make a top node

Commands

52

Click on “like” to select the right sense

Commands

53

New relation: <variable> :<role> <concept>

Commands

54

Anything after the third element is made into a name

Commands

55

Make reentrancies with <variable> :<role> <variable>

Commands

56

When you are done, use “Save and Load Next”

Try the next sentence!

57

We will walk through it momentarily

