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Workflow
Press the "o" key on your keyboard to navigate among slides

Access the tutorial html here

• Download the data objects and exercise  script from the html file

• Complete exercises and use Slack to ask questions

Relevant open-source materials include:

• Evaluating distributional forecasts

• Approximate leave-future-out cross-validation for Bayesian time

series models

• The Marginal Effects Zoo (0.14.0)

https://nicholasjclark.github.io/physalia-forecasting-course/day3/tutorial_3_physalia
https://www.youtube.com/watch?v=prZH2TyrRYs&t=1s
https://cran.r-project.org/web/packages/loo/vignettes/loo2-lfo.html
https://cran.r-project.org/web/packages/loo/vignettes/loo2-lfo.html
https://marginaleffects.com/


This lecture's topics
Forecasting from dynamic models

Bayesian posterior predictive checks

Point-based forecast evaluation

Probabilistic forecast evaluation



Forecasting
from dynamic

models



Forecasting in mvgam
Two options

• Feed newdata into the mvgam() function for automatic probabilistic

forecasts through Stan

• Produce forecasts outside of Stan by feeding newdata and the fitted

model into the forecast() function

Both require any out-of-sample covariates to be supplied

Both should give equivalent results



Simulated data



The model

A cyclic smooth of season to capture repeated periodic variation

library(mvgam)

model <- mvgam(y ~ 

s(season, bs = 'cc', k = 8),

data = data_train,

newdata = data_test, 

trend_model = GP(), 

family = poisson())



The model

A Gaussian Process trend (approximated with Hilbert basis
functions)

library(mvgam)

model <- mvgam(y ~ 

s(season, bs = 'cc', k = 8), 

data = data_train,

newdata = data_test, 

trend_model = GP(),

family = poisson())

https://link.springer.com/article/10.1007/s11222-022-10167-2
https://link.springer.com/article/10.1007/s11222-022-10167-2


The model

Forecasts will be computed automatically using the generated

quantities block in Stan

library(mvgam)

model <- mvgam(y ~ 

s(season, bs = 'cc', k = 8), 

data = data_train,

newdata = data_test,

trend_model = GP(),

family = poisson())

https://mc-stan.org/docs/reference-manual/program-block-generated-quantities.html
https://mc-stan.org/docs/reference-manual/program-block-generated-quantities.html


Dropping newdata

Predictions will only be calculated for the training data if no testing
data (i.e. newdata) are supplied

model2 <- mvgam(y ~ 

s(season, bs = 'cc', k = 8), 

data = data_train,

trend_model = GP(),

family = poisson())



plot(model, type = 'forecast')

Automatic forecasts because newdata were supplied



plot(model, type = 'trend', newdata = data_test)

Trend extends into the future



plot(model, type = 'forecast', newdata = data_test)

Forecasts can be compared to truths quickly



plot(model2, type = 'forecast')

No forecasts in this case. Now what?



Posterior draws
dynamic mvgam models contain draws for many quantities

•  coefficients for linear predictor terms (called b)

• Any family-specific shape / scale parameters (i.e.  for Negative

Binomial;  for Normal / LogNormal etc...)

• Any trend-specific parameters (i.e.  and  for GP trends;  and

 for AR trends etc...)

• In-sample posterior predictions (called ypred)

• In-sample posterior trend estimates (called trend)

All stored as MCMC draws in an object of class stanfit in the
model_output slot

β

ϕ

σobs

α ρ σ

ar1



The stanfit object
summary(model2$model_output)

##  Length   Class    Mode 

##       1 stanfit      S4

model2$model_output@model_pars

##  [1] "rho"      "b"        "ypred"    "mus"      "lambda"   "trend"   

##  [7] "alpha_gp" "rho_gp"   "b_gp"     "lp__"

model2$model_output@sim$chains

## [1] 4

model2$model_output@sim$iter

## [1] 1000



Draws of trend

# view posterior draws of the trend

plot(model2, type = 'trend', realisations = TRUE, 

n_realisations = 10)

• Code • Plot
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Draws of trend
• Code • Plot
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But how can we extrapolate these to the future?

Ready for some multivariate statistical ?



Ready



sim_gp = function(trend_draw, h, rho, alpha){

# extract training and testing times

t <- 1:length(trend_draw); t_new <- 1:(length(trend_draw) + h)

# calculate training covariance

Sigma <- alpha^2 * exp(-0.5 * ((outer(t, t, "-") / rho) ^ 2)) +

diag(1e-9, length(t))

# calculate training vs testing cross-covariance

Sigma_new <- alpha^2 * exp(-0.5 * ((outer(t, t_new, "-") / rho) ^ 2))

# calculate testing covariance

Sigma_star <- alpha^2 * exp(-0.5 * ((outer(t_new, t_new, "-") / rho) ^ 2))

+

diag(1e-9, length(t_new))

# draw one function realization of the stochastic Gaussian Process

t(Sigma_new) %*% solve(Sigma, trend_draw) +

MASS::mvrnorm(1, mu = rep(0, length(t_new)),

Sigma = Sigma_star - t(Sigma_new) %*% solve(Sigma,

Sigma_new))

}



 one trend draw

# extract trend parameter draws and plot one draw

trend_draws <- as.matrix(model2, variable = 'trend', regex = TRUE)

alpha_draws <- as.matrix(model2, variable = 'alpha_gp', regex = TRUE)

rho_draws <- as.matrix(model2, variable = 'rho_gp', regex = TRUE)

plot(1, type = 'n', bty = 'l',

xlim = c(1, 130), ylim = range(trend_draws[1,]),

ylab = 'One trend draw', xlab = 'Time')

lines(trend_draws[1,], col = 'gray70', lwd = 3.5)

# wizardize to extend draw forward 30 timesteps and plot

forecast_draw = sim_gp(trend_draw = trend_draws[1,], h = 30

alpha = alpha_draws[1,], rho = rho_draws[1,])

lines(x = 101:130, y = forecast_draw[101:130], lwd = 3.5, col = 'darkred')

abline(v = 100.5, lty = 'dashed', lwd = 2.5)

• Wizardry • Plot
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 one trend draw
• Wizardry • Plot
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Piece of cake?



There is no wizardry . Rather, each kind of trend (AR, GP
etc...) has an underlying stochastic equation that can be used to

extrapolate draws to the future

But doing this manually is slow and error-prone. mvgam does this
automatically using newdata



plot(model2, type = 'trend', newdata = data_test,

realisations = TRUE, n_realisations = 4)



plot(model2, type = 'trend', newdata = data_test,

realisations = TRUE, n_realisations = 8)



plot(model2, type = 'trend', newdata = data_test,

realisations = TRUE, n_realisations = 30)



plot(model2, type = 'trend', newdata = data_test,

realisations = TRUE, n_realisations = 60)



plot(model2, type = 'trend', newdata = data_test,

realisations = FALSE)



Or: plot(forecast(model2, type = 'trend', newdata =

data_test), realisations = FALSE)



Once dynamic trend is extrapolated, computing forecasts is easy

We only need to supply any remaining "future" predictor values
from covariates



GAM covariate predictions

# extract beta regression coefficient draws

beta_draws <- as.matrix(model2, variable = 'betas')

# calculate the linear predictor matrix for the GAM component

lpmatrix <- mvgam:::obs_Xp_matrix(newdata = poisdat$data_test,

mgcv_model = model$mgcv_model)

# calculate linear predictor (link-scale) predictions for one draw

linkpreds <- lpmatrix %*% beta_draws[1,] + attr(lpmatrix, 'model.offset')

# plot the linear predictor values

plot(1, type = 'n', bty = 'l',

xlim = c(1, length(linkpreds)), 

ylim = range(linkpreds),

ylab = expression(One~beta~draw), xlab = 'Forecast horizon')

lines(linkpreds, col = 'darkred', lwd = 3.5)

• Code • Plot

file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset2=code2#panelset2_code2
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset2=plot3#panelset2_plot3


GAM covariate predictions
• Code • Plot
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Covariate predictions are added to the trend predictions to give
the full predictions on the link scale

mvgam does this automatically using the forecast function



plot(forecast(model2, type = 'link', newdata = data_test),

realisations = TRUE)



Live code
example



Forecasting is easier if newdata are fed to mvgam(), but this
results in a larger model object and requires test data be

available now

When testing data not available, you can generate forecasts for
new data later using forecast.mvgam (note, time values in

newdata must follow immediately from time values in original
training data)

But there are multiple types of predictions available. What are
they?



type = ‘response’
gives draws from a
random Poisson
distribu�on using λt

𝔼(Y
t
)

type = ‘expected’
gives draws from the
expected value of the
posterior predic�ve
distribu�on (i.e. the
average of type =
‘response’)

In Poisson regression,
this is the inverse of λt
(i.e. exp(λt))

type = ‘link’
gives posterior draws
from the linear predictor
on the log scale

Types of mvgam predictions

modified from Heiss 2022

https://www.andrewheiss.com/blog/2022/09/26/guide-visualizing-types-posteriors/


predict(object, type = 'link')

Gives the real-valued, unconstrained linear predictor

• Takes into account uncertainty in GAM regression coefficients

• Can include uncertainty in any dynamic trend components

• Can be extracted from the fitted model as parameter mus

range(predict(model, type = 'link', process_error = FALSE))

## [1] -0.02145857  2.22647337

range(predict(model, type = 'link', process_error = TRUE))

## [1] -3.801796  5.165899

range(as.matrix(model, variable = 'mus', regex = TRUE))

## [1] -1.90681  4.60981



Hang on. Why do these differ?

predict() assumes the dynamic process has reached stationarity
to tell us what we might expect if we see these same covariate
values sometime in the future

mus includes estimates for where the trend was at each point in the
training data (hindcasts), so it is has less uncertainty

range(predict(model, type = 'link', process_error = TRUE))

## [1] -3.801796  5.165899

range(as.matrix(model, variable = 'mus', regex = TRUE))

## [1] -1.90681  4.60981



link predictions

# extract link-scale forecasts from the model

fc <- forecast(model, type = 'link')

# plot using the available S3 plotting function

plot(fc)

• Code • Plot
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link predictions
• Code • Plot
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predict(object, type = 'expected')

Gives the average prediction on the observation (response) scale

• Useful as we often want to get a sense of long-term averages for

guiding scenario analyses

• Usually it is just the inverse link function applied to a prediction

from type = link

• But not always!

This is probably the most confusing type of prediction



Normal distribution (skip)
Yt ∼ Normal(μt, σ)

μt = α + Xtβ + zt ← type = 'link'

E(Yt|μt, σ) = μt ← type = 'expected'



Normal distribution (skip)



Poisson distribution (skip)
Yt ∼ Poisson(λt)

log(λt) = α + Xtβ + zt ← type = 'link'

E(Yt|λt) = λt ← type = 'expected'



Poisson distribution (skip)



LogNormal distribution (skip)
Yt ∼ LogNormal(μt, σ)

μt = α + Xtβ + zt ← type = 'link'

E(Yt|μt, σ) = exp(μt + ) ← type = 'expected'
σ2

2



LogNormal distribution (skip)



expected predictions

# extract expectation-scale forecasts from the model

fc <- forecast(model, type = 'expected')

# plot using the available S3 plotting function

plot(fc)

• Code • Plot
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expected predictions
• Code • Plot
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predict(object, type = 'response')

Gives the predictions on the observation (response) scale

• Includes uncertainty in the linear predictor and any uncertainty

arising from the observation process

• Some distributions only depend on the inverse link of the linear

predictor (i.e.  or ))

• Others depend on additional shape / scale parameters (i.e.

 or )

These are the most often used type of predictions for evaluating
forecasts

Poisson(λ) Bernoulli(π)

Normal(μ,σ) StudentT (ν,μ,σ)



response predictions

# extract response-scale forecasts from the model

fc <- forecast(model, type = 'response')

# plot using the available S3 plotting function

plot(fc)

• Code • Plot
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response predictions
• Code • Plot
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mvgam and brms 📦's

Type mvgam brms

link predict(type = 'link') posterior_linpred()

expected predict(type = 'expected') posterior_epred()

response predict(type = 'response') posterior_predict()

For all mvgam predictions, whether to include error in the dynamic

process can be controlled using process_error = TRUE or

process_error = FALSE



Posterior
predictive
checks



Fitted models yield coefficients
coef(model)

##                   2.5%        50%       97.5% Rhat n_eff

## (Intercept)  0.3774783  0.9876980  1.76805950    1   510

## s(season).1 -0.6334312 -0.3413885 -0.04340306    1  1586

## s(season).2 -0.7103705 -0.3934130 -0.09796405    1  2081

## s(season).3 -0.4893098 -0.1710475  0.12470842    1  2116

## s(season).4 -0.1712199  0.1409405  0.41121075    1  2022

## s(season).5  0.2836828  0.5544740  0.81570900    1  2011

## s(season).6  0.1086623  0.3892950  0.66113575    1  1973



Interpret coefficients?
These coefficients are acting on the link scale

• Often result in nonlinear relationships on response scale

• Very often, the coefficients are correlated somehow

• This is especially the case in GAMs!

• Don't worry about p-values or intervals, use posterior predictions

instead

Start with partial effects on link scale

• These are conditional on all other effects being zero

• negative values ⇨ covariate reduces the response

• positive values ⇨ covariate increases the response



plot(model, type = 'smooths')



Look at partial residuals
Partial effect residuals can be thought of as residuals that would be

obtained by dropping a specific term from the model

Where:

•  is estimated smooth function for the effect of covariate 

•  is a draw of randomized quantile (Dunn-Smyth) residuals

We would expect these to be scattered evenly around the smooth for
a well fitting model

ϵ̂
partial = f̂ (x) + ϵ̂

DS

f̂ (x) x

ϵ̂DS



plot(model, type = 'smooths', residuals = TRUE)



Ok. but what do these things actually, really mean?



Credit @stephenjwild

https://twitter.com/stephenjwild/status/1687499914794643456?s=20


Interpreting on the response scale
Some key questions you should ask of a fitted model

• Can the model simulate realistic data?

• Does the model capture salient features of the data that you'd like

to predict?

• What criteria would you use to determine whether one model is

more suitable than another?

Very often, these questions can only be answered by looking at what
kinds of predictions a model makes on the response scale



Posterior predictive checks
Statistical models can be used to generate (i.e. simulate) new
outcome data

• Can either use the same covariates used to train the model

• Or can use newdata for scenario modelling (including forecasting)

To generate new outcome data we can simulate from the model's
posterior predictive distribution

"The idea is simple: if a model is a good fit then we should be able to
use it to generate data that looks a lot like the data we observed"
Gabry & Mahr

https://mc-stan.org/bayesplot/reference/PPC-overview.html


A PPC barplot

# view barplots of true data vs simulated predictions

pp_check(model, type = 'bars', ndraws = 25)

• Code • Plot
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A PPC barplot
• Code • Plot
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A PPC cumulative distribution

# view the simulated vs true cumulative distribution functions

pp_check(model, type = 'ecdf_overlay', ndraws = 25)

• Code • Plot
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A PPC cumulative distribution
• Code • Plot
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A PIT CDF

# view the simulated vs true count frequencies

pp_check(model, type = 'pit_ecdf')

• Code • Plot
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A PIT CDF
• Code • Plot
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Comparing fits with loo()

A GP of time, together with the cyclic seasonality, is a good model

here

model_good <- mvgam(y ~ s(season, bs = 'cc', k = 8) +

gp(time, k = 20, c = 5/4, scale = FALSE),

data = poisdat$data_train,

trend_model = 'None',

family = poisson())



Comparing fits with loo()

A RW with no seasonality will fit the data very well, but gives bad
predictions

model_bad <- mvgam(y ~ 1, 

data = poisdat$data_train,

trend_model = RW(),

family = poisson())



plot(hindcast(model_good))



plot(hindcast(model_bad))



loo_compare(model_good, model_bad)

##            elpd_diff se_diff

## model_good    0.0       0.0 

## model_bad  -753.7      43.3



PPCs and loo() using training covariates are a great first step to
check model validity and begin comparing models

But they only assess how well the model predicts against the
training data

How else can we verify models? Using newdata for response
predictions ⇨ counterfactual scenarios



Marginal & conditional predictions
"Applied researchers are keen to report simple quantities that carry
clear scientific meaning" (Arel-Bundock 2023)

This is often challenging because:

• Intuitive estimands and uncertainties are tedious to compute

• Nonlinear terms, nonlinear link functions, interaction effects and

observation parameters all make these effects nearly impossible

to gain from looking at coefficients alone

• Most software emphasizes coefficients and p-values over

meaningful interpretations

https://marginaleffects.com/


predict.mvgam()

Feed newdata consisting of particular covariate values that represent

scenarios you'd like to explore

• Can be simple: predict a smooth function along a fine-spaced grid

to explore the smooth's shape and / or derivatives

• Or can be complex: integrate over a high-dimensional grid of

predictors to understand the average impact of a predictor on the

response

Users can implement the wonderful datagrid() function from

marginaleffects 📦 to effortlessly generate a data.frame of

covariate values for scenario predictions



Conditional smooths

# use plot_predictions to visualise conditional effects 

# on the scale of the response

library(ggplot2)

plot_predictions(model, condition = 'season',

points = 0.5, process_error = FALSE) +

theme_classic()

• Code • Plot

file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset9=code9#panelset9_code9
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset9=plot10#panelset9_plot10


Conditional smooths
• Code • Plot

file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset9=code9#panelset9_code9
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset9=plot10#panelset9_plot10


Posterior contrasts

# take draws of average comparison between season = 9 vs season = 3

post_contrasts <- avg_comparisons(model, 

variables = list(season = c(9, 3)),

proces_error = FALSE) %>%

posteriordraws() 

# use the resulting posterior draw object to plot a density of the 

# posterior contrasts

library(tidybayes)

post_contrasts %>% ggplot(aes(x = draw)) +

# use the stat_halfeye function from tidybayes for a nice visual

stat_halfeye(fill = "#C79999") +

labs(x = "(season = 9) − (season = 3)", y = "Density", 

title = "Average posterior contrast") + theme_classic()

• Code • Plot

file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset10=code10#panelset10_code10
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset10=plot11#panelset10_plot11


Posterior contrasts
• Code • Plot

file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset10=code10#panelset10_code10
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day3/lecture_4_slidedeck.html?panelset10=plot11#panelset10_plot11


The ability to readily interpret models from mvgam and brms 📦's
is a huge advantage over traditional time series models. See my

blogpost on interpeting GAMs for more examples

But this is a forecasting course. So how can we evaluate forecast
distributions?

https://ecogambler.netlify.app/blog/interpreting-gams/
https://ecogambler.netlify.app/blog/interpreting-gams/


The forecasting workflow
"The accuracy of forecasts can only be determined by considering
how well a model performs on new data that were not used when
fitting the model." Hyndman and Athanasopoulos

We must evaluate on data that was not used to train the model (i.e.
leave-future-out cross-validation) because:

• Models that fit training data well do not always provide good

forecasts

• We can easily engineer a model that perfectly fits the training

data, leading to overfitting

• See the mvgam forecasting vignette for more guidance

https://otexts.com/fpp3/accuracy.html
https://nicholasjclark.github.io/mvgam/articles/forecast_evaluation.html


Leave-future-out CV
Important to train the model on some portion of data and use a
hold-out portion (test data) to evaluate forecasts:

Some points to consider:

• The test set should ideally be at least as large as the maximum

forecast horizon required for decision-making

• Ideally, this process would be repeated many times to incorporate

variation in forecast performance

• Usually good to compare models against simpler benchmark

models to ensure added complexity improves forecasts

p(yT+H |y1:T )



We must obtain leave-future-out forecasts (ideally for many
different training / testing splits) to compare ecological

forecasting models

But how do we evaluate forecasts?

The most common evaluation practice in forecasting tasks is to
evaluate point predictions



Point-based
forecast

evaluation



Forecast errors
A forecast error (or forecast residual) is the difference between the
true value in an out-of-sample set and the predicted response value:

Where:

•  is the total length of the training set

•  is the forecast horizon

•  is the prediction at time 

Point-based measures use these errors in different ways

ϵT+H = yT+H − ŷT+H

T

H

ŷT+H T + H



Common point-based measures
Scale-dependent measures

• Mean Absolute Error: 

• Root Mean Squared Error: 

Scale-independent measures

• Mean Absolute Percentage Error: , where 

• Mean Absolute Scaled Error: , where  is the error

scaled against errors from an appropriate benchmark forecast

Lower values are better for all these measures

mean(|ϵt|)

√mean(ϵ2
t )

mean(|pt|) pt = 100ϵt/yt

mean(|qt|) qt



We won't dwell much on point-based measures because ecological
predictions and their associated management decisions are

inherently uncertain (but see this video for more details)

Point-based measures ignore far too much information in the
forecast distribution

It is better to evaluate the entire forecast distribution

https://www.youtube.com/watch?v=ek5xLEoQN3E&t=5s


Live code
example



Probabilistic
forecast

evaluation



Scaled Interval Score
A common step to evaluate a forecast distribution is to compute how
well it's prediction intervals perform:

Where:

•  is the true observed value at horizon 

•  is 

• The  interval for horizon  is 

•  is a binary indicator function

SIS = (Ut − Lt) + (Lt − yt)1(yt < Lt) + (yt − Ut)1(yt > Ut)
2

α

2

α

yt H

α 1 − interval width

100(1 − α)% H [Lt, Ut|

1

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618


Penalize overly precise forecasts



Evaluating the full distribution
Interval scores are very useful when we want to target a particular
interval or if we don't have the full distribution

• Allows different teams to submit a few intervals rather than

thousands of posterior samples

• Can compare forecasts from many different algorithms / models

But if we do have a full distribution, we have other options

"Scoring rules provide summary measures for the evaluation of
probabilistic forecasts, by assigning a numerical score based on the
predictive distribution and on the event or value that materializes"
(Gneiting and Raftery 2007)

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


What is a good forecast?
Reliable: good probabilistic calibration

Sharp: informative, with tight enough intervals to guide decisions

Skilled: performs better overall than simpler benchmark forecasts

Proper scoring rules attempt to address each of these goals using the
full forecast distribution
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Log predictive density
Compute log(probability) of a given truth given distributional
assumptions:

Use density functions in , such as dnorm or dnbinom; higher values

are better

 captures all unknown parameters:

• Regression coefficients 

• Dynamic parameters;  or  for GP;  for RW

• Observation parameters;  for StudentT or  for Normal

log p(yT+H |yt:T , θ)

θ

β

α ρ σerror

ν σobs



logging is stabile and makes joint calculations easier

But the log score can severly penalize over-confidence and is
sensitive to outliers

Other proper scoring rules can provide more robust comparisons,
without needing to rely on distributional assumptions



CRPS
Continuous Ranked Probability Score compares true Cumulative
Distribution Function (CDF) to forecast CDF

Where:

•  is the forecast CDF evaluated at many points

•  gives the true observed CDF

SIS converges to CRPS when evaluating an increasing number of
equally spaced intervals

CRPS(F , y) = ∫
∞

−∞

(F(ŷ) − 1(ŷ ≥ y))2dy

F(ŷ)

1(ŷ ≥ y)



CRPS



CRPS useful for both parametric and non-parametric predictions
because we just need to calculate the CDF of the forecast

distribution

Penalises over- and under-confidence similarly, and gives more
stable handling of outliers

Score is on the scale of the outcome variable being forecasted, so
is somewhat intuitive (a lower score is better)



DRPS
Similar to CRPS, the discrete version (DRPS) can be used to evaluate
a forecast that is composed only of integers

Uses an approximation of the forecast and true CDFs at a range of
possible count values

Interpretation is similar



score.mvgam_forecast()

Once forecasts are computed and stored in an object of class
mvgam_forecast, scores can be directly applied

User chooses among the Scaled Interval Score (sis), log score (elpd),
CRPS (crps), DRPS (drps) and two multivariate scores (energy or
variogram; more on this in the next lecture)

User also specifies an interval for calculating coverage and/or which
interval to use for the Scaled Interval Score

return is a list() with scores for each series in the data and an
overall score (usually just the sum of series-level scores)



Calculating the CRPS using the previously generated forecasts

sc <- score(forecast(model), 

score = 'crps',

interval = 0.90)

sc$series_1[1:10,]

##        score in_interval interval_width eval_horizon score_type

## 1  0.9483460           1            0.9            1       crps

## 2  4.2652035           0            0.9            2       crps

## 3  2.0320750           1            0.9            3       crps

## 4  4.1233913           0            0.9            4       crps

## 5  1.6279930           1            0.9            5       crps

## 6  6.4760912           0            0.9            6       crps

## 7  0.6714025           1            0.9            7       crps

## 8  3.8893157           1            0.9            8       crps

## 9  1.4326503           1            0.9            9       crps

## 10 0.8742835           1            0.9           10       crps



Calculating the SIS using the previously generated forecasts; values
outside interval are more heavily penalized

sc <- score(forecast(model), 

score = 'sis',

interval = 0.90)

sc$series_1[1:10,]

##    score in_interval interval_width eval_horizon score_type

## 1      4           1            0.9            1        sis

## 2     45           0            0.9            2        sis

## 3      6           1            0.9            3        sis

## 4     27           0            0.9            4        sis

## 5      9           1            0.9            5        sis

## 6     50           0            0.9            6        sis

## 7     10           1            0.9            7        sis

## 8      9           1            0.9            8        sis

## 9      8           1            0.9            9        sis

## 10     8           1            0.9           10        sis



We have seen how to produce out-of-sample forecasts from mvgam
models and evaluate them against new observations

We have also investigated other ways that models can be
critiqued, particularly making use of conditional predictions

using newdata

But so far we have only considered univariate investigations.
What happens if we want to forecast multiple time series?



In the next lecture, we will cover
Multivariate ecological time series

Vector autoregressive processes

Dynamic factor models

Multivariate forecast evaluation


