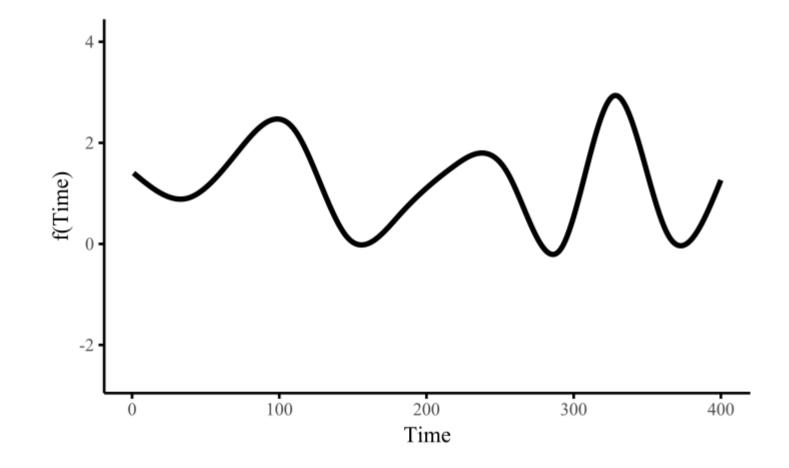
Ecological forecasting in R Lecture 2: dynamic GLMs and GAMs

Nicholas Clark

School of Veterinary Science, University of Queensland 0900–1200 CET Monday 27th May, 2024



Workflow

Press the "o" key on your keyboard to navigate among slides

Access the <u>tutorial html here</u>

Download the data objects and exercise \mathbf{Q} script from the html file Complete exercises and use Slack to ask questions

Relevant open-source materials include:

An introduction to Bayesian multilevel modeling with brms Introduction to Generalized Additive Models with @ and mgcv Forecasting with Dynamic Generalized Additive Models Statistical Rethinking 2023 - 12 - Multilevel Models

This lecture's topics

Useful probability distributions for ecologists

Generalized Linear and Additive Models

Temporal random effects

Temporal residual correlation structures

When applying statistical modelling to a time series, we aim to estimate parameters for a collection of probability distributions

These distributions are indexed by *time* (i.e. the observations are random draws from a set of time-varying distributions)

Usually we allow the mean of these distributions to vary over time. But what kinds of distributions are available to us?

Useful probability

distributions

Normal (Gaussian)

 $oldsymbol{Y_t} \sim \mathrm{Normal}(\mu_t, \sigma)$

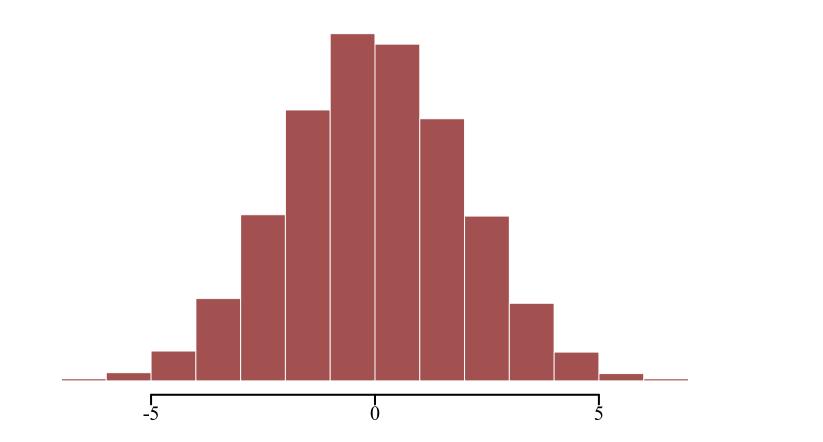
Properties

Real-valued continuous observations (including any decimal) Unbounded (supports $-\infty$ to ∞) Symmetric spread, controlled by σ , about the mean (μ_t)

Nearly all common time series models assume this data distribution RW, AR, and ARIMA ETS and TBATS Meta's <u>Prophet</u>

Normal (Gaussian)

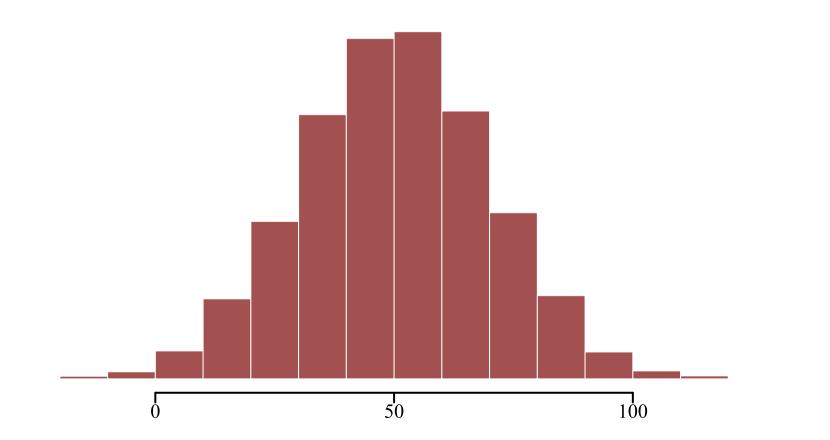
$m{Y_t} \sim \mathrm{Normal}(0,2)$



 \mathbf{T}

Normal (Gaussian)

$\boldsymbol{Y_t} \sim \operatorname{Normal}(50, 20)$



 \mathbf{v}

Linear regression

It is common to estimate linear predictors of μ with *regression*

$$oldsymbol{Y_t} \sim \operatorname{Normal}(lpha + eta * oldsymbol{X_t}, \sigma)$$

Where:

 $oldsymbol{X}_t$ represents a design matrix of covariates that contribute linearly to variation in μ_t lpha is an intercept coefficient eta is a vector of regression coefficients σ controls the spread of the errors about μ_t

Exponential smoothing with additive components for trend, seasonality and error assumes a Normal (Gaussian) distribution

$$oldsymbol{Y}_t \sim \mathrm{Normal}(l_{t-1}+b_{t-1}+s_{t-m},\sigma)$$

Where:

l gives the value of the level *b* gives the value of the trend *s* gives the value of the seasonality *m* represents the seasonal period

ARMA(p, q) skip

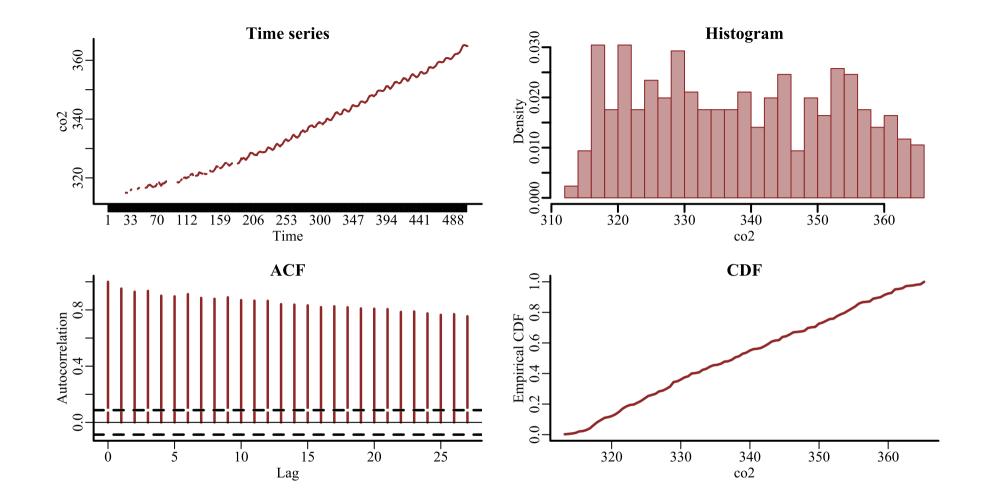
ARMA processes also assume Normality

$$oldsymbol{Y}_t \sim \mathrm{Normal}(c + \sum_{k=1}^p \phi_k(oldsymbol{Y}_{t-k} - c) + \sum_{i=1}^q heta_i \epsilon_{t-i}, \sigma)$$

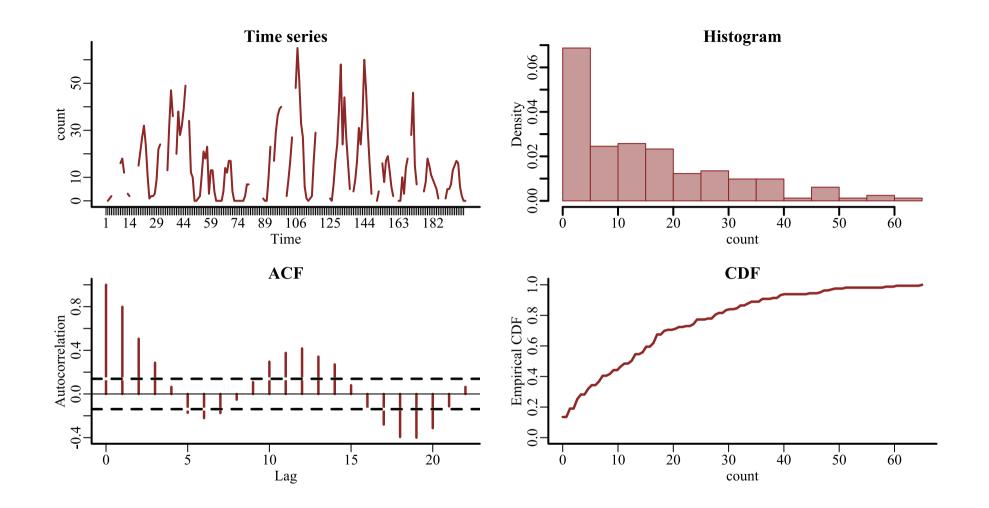
Where:

c is a constant (drift parameter) p and q gives orders of AR and MA processes ϕ and θ are AR and MA coefficients ϵ are historical errors (which are Normal $(0, \sigma)$)

But most real-world ecological observations, including time series, *are not Gaussian*

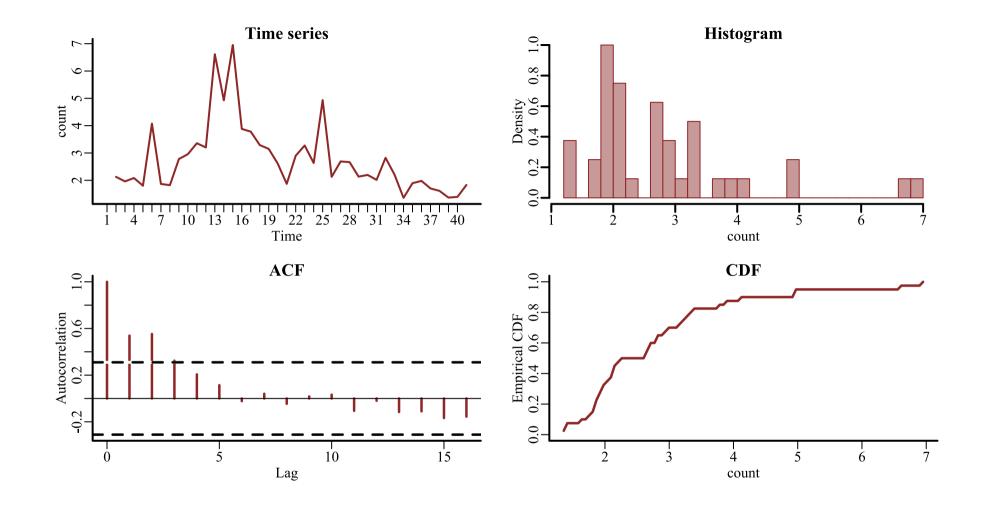


Properties of monthly CO2 measurement time series at the South Pole



Properties of lunar monthly Desert Pocket Mouse capture time series from a long-term monitoring study in Portal, Arizona, USA

 \mathbf{v}



Properties of annual American kestrel abundance time series in British Columbia, Canada

"If our data contains small counts (0,1,2,...), then we need to use forecasting methods that are more appropriate for a sample space of non-negative integers.

Such models are beyond the scope of this book"

Hyndman and Athanasopoulos, Forecasting Principles and Practice

Ok. So now what?


```
oldsymbol{Y_t} \sim 	ext{Poisson}(\lambda_t)
```

Properties

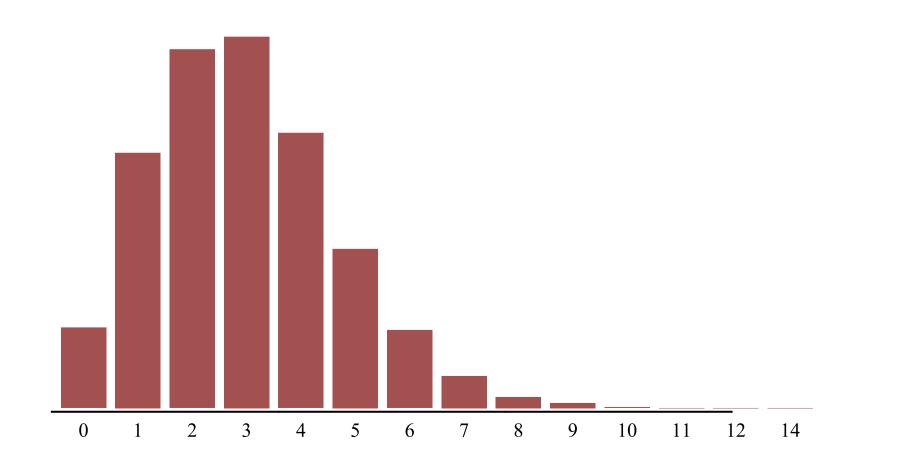
Discrete, integer-valued observations (including 0) Lower bound (supports 0 to ∞) mean = variance = λ_t

Virtually no time series models support this distribution

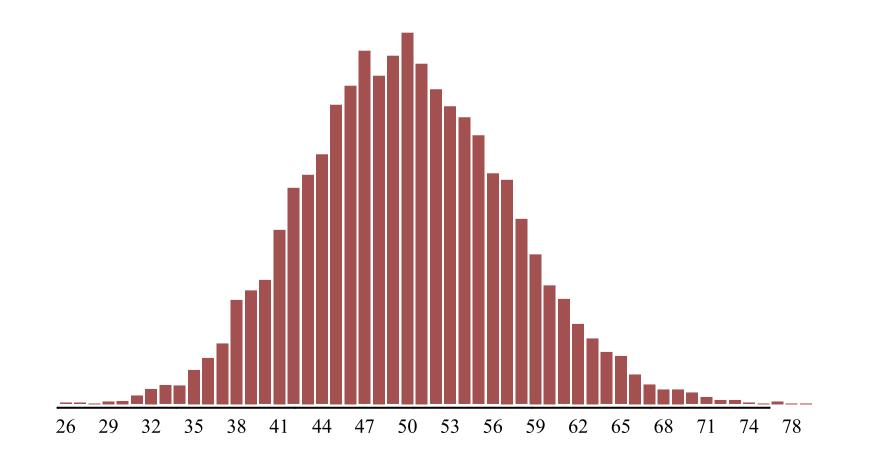
Most analysts use log or <u>Box-Cox</u> transformation

But see the <u>tscount</u> 🌾

$m{Y_t} \sim ext{Poisson}(3)$



$\boldsymbol{Y_t} \sim ext{Poisson}(50)$



How can we model non-Normal data using regression?

Generalized linear models

Linear regression can't be trusted to give sensible predictions for non-negative count data (or other types of bounded / discrete / non-Normal data)

We can do better by choosing distributions that obey the constraints on our outcome variables

The idea is to *generalize* the linear regression by replacing parameters from other probability distributions with linear models

This requires a *link function* that transforms from the unbounded scale of the linear predictor to a scale that is appropriate for the parameters being modeled

Modelling the mean

Most GLMs are used to model the conditional mean (μ_t)

$$\mathbb{E}(\boldsymbol{Y_t}|\boldsymbol{X_t}) = \mu_t = g^{-1}(\alpha + \boldsymbol{X_t}eta)$$

Where:

 \mathbb{E}_t is the *expected value* of Y_t conditional on X_t g^{-1} is the *inverse* of the link function α is an intercept coefficient β is a vector of regression coefficients

Poisson GLM

A Poisson GLM models the conditional mean with a *log* link

$$egin{aligned} m{Y}_t &\sim ext{Poisson}(\lambda_t) \ log(\lambda_t) &= m{X}_teta \ &= lpha + eta_1m{x}_{1t} + eta_2m{x}_{2t} + \dots + eta_jm{x}_{jt} \end{aligned}$$

Where:

 $oldsymbol{X}_t$ is the matrix of predictor values at time tlpha is an intercept coefficient eta is a vector of regression coefficients $\mathbb{E}(oldsymbol{Y}_t|oldsymbol{X}_t) = exp(lpha + oldsymbol{X}_teta)$

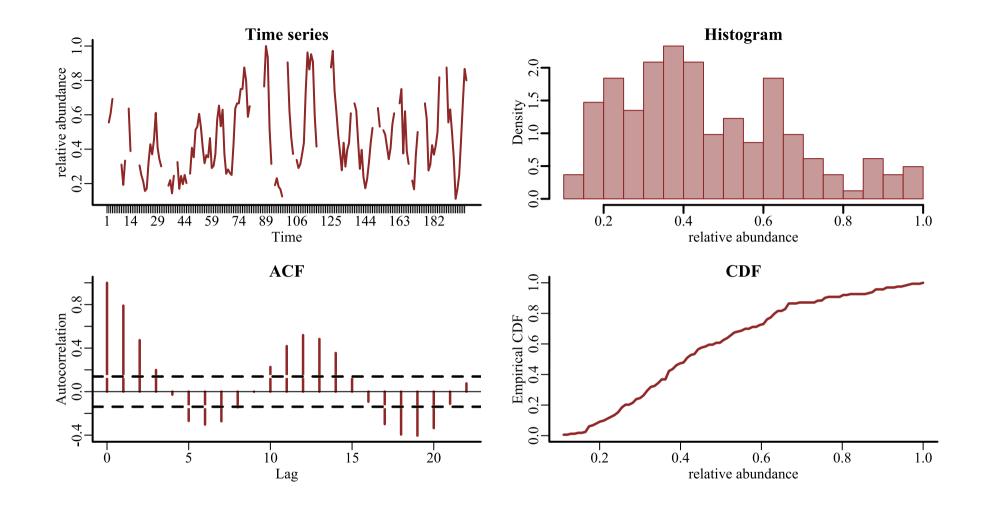
Poisson GLM

A Poisson GLM models the conditional mean with a log link

$$egin{aligned} m{Y}_t &\sim ext{Poisson}(\lambda_t) \ log(\lambda_t) &= m{X}_teta \ &= lpha + eta_1m{x}_{1t} + eta_2m{x}_{2t} + \dots + eta_jm{x}_{jt} \end{aligned}$$

The *linear predictor component can be hugely flexible*, as we will see in later slides

What if our data are proportional instead?



 \mathbf{v}

Properties of Merriam's kangaroo rat relative abundance time series from a long-term monitoring study in Portal, Arizona, USA

Beta GLM

A Beta GLM models the conditional mean with a logit link

$$egin{aligned} m{Y}_t &\sim ext{Beta}(\mu_t,\phi)\ logit(\mu_t) &= m{X}_teta\ &= lpha + eta_1m{x}_{1t} + eta_2m{x}_{2t} + \dots + eta_jm{x}_{jt} \end{aligned}$$

Where:

 $oldsymbol{X}_t$ is the matrix of predictor values at time tlpha is an intercept coefficient eta is a vector of regression coefficients $\mathbb{E}(oldsymbol{Y}_t|oldsymbol{X}_t) = logit^{-1}(lpha + oldsymbol{X}_teta)$

Some other relevant distributions

<u>Many other useful GLM probability distributions exist</u>. Some of these include:

Negative Binomial – overdispersed integers in (0, 1, 2, ...)**Bernoulli** – presence-absence data in $\{0, 1\}$ *Student's T* – heavy-tailed (skewed) real values in $(-\infty, \infty)$ **Lognormal** – heavy-tailed (right skewed) real values in $(0, \infty)$ **Gamma** – lighter-tailed (less skewed) real values in $(0, \infty)$ **Multinomial** – integers representing K unordered categories in $(0,1,\ldots,K)$ **Ordinal** – integers representing K ordered categories in

 $(0,1,\ldots,K)$

GLMs allow us to build models that respect the bounds and distributions of our observed data

They traditionally assume the appropriately transformed mean response depends *linearly* on the predictors

But there are many other properties we'd like to model

Remember these?

Temporal autocorrelation

Lagged effects

Non-Gaussian data and missing observations

Measurement error

Time-varying effects

Nonlinearities

Multi-series clustering

Remember these?

Temporal autocorrelation

Lagged effects

Non-Gaussian data and missing observations

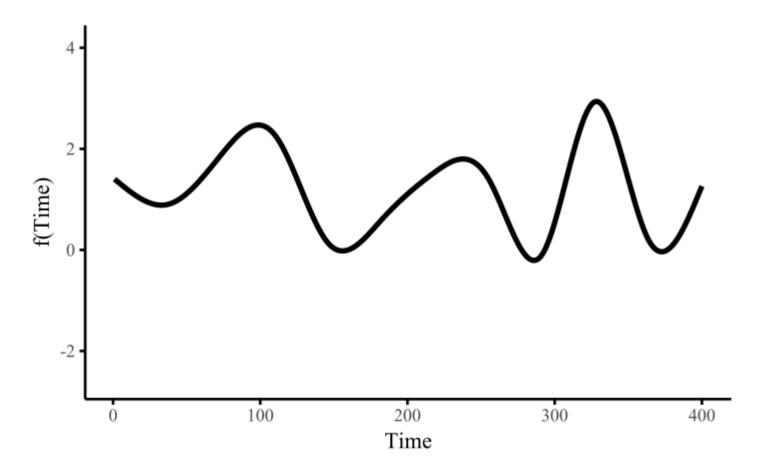
Measurement error

Time-varying effects

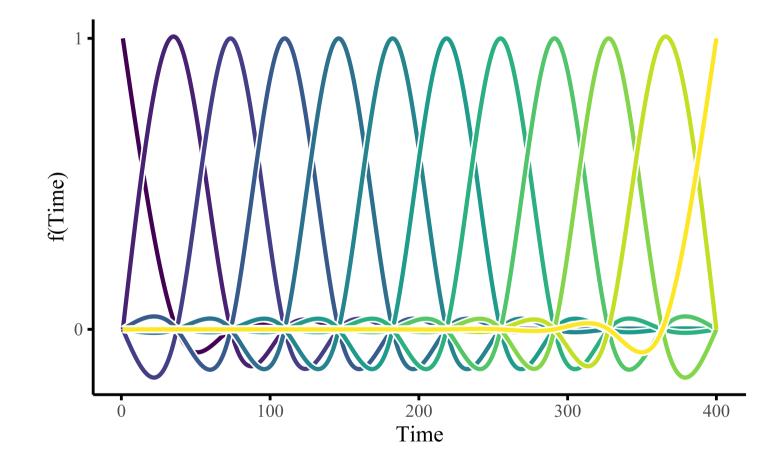
Nonlinearities

Multi-series clustering

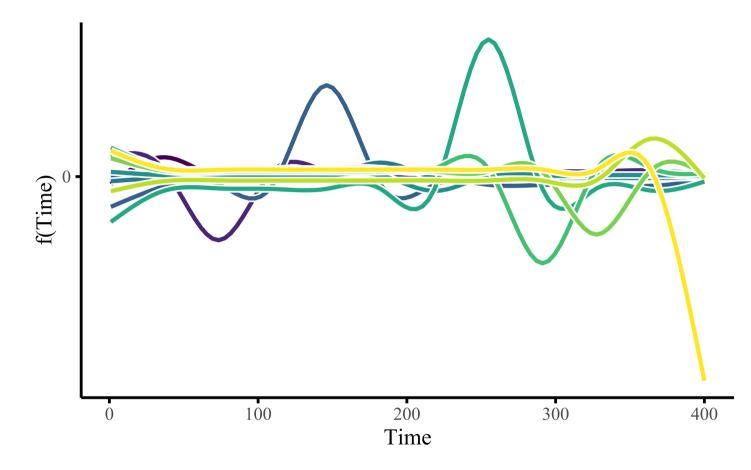
GAMs use splines ...

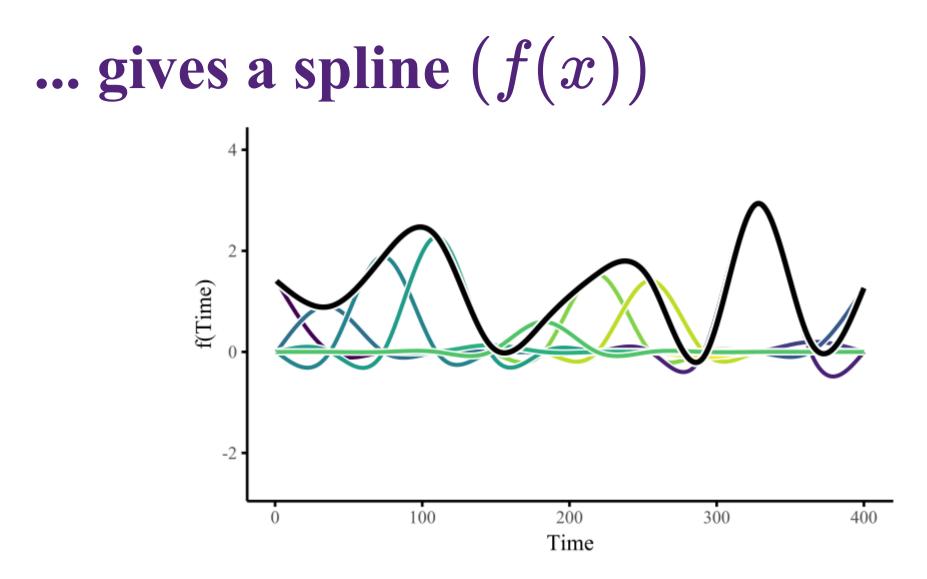


... made of basis functions

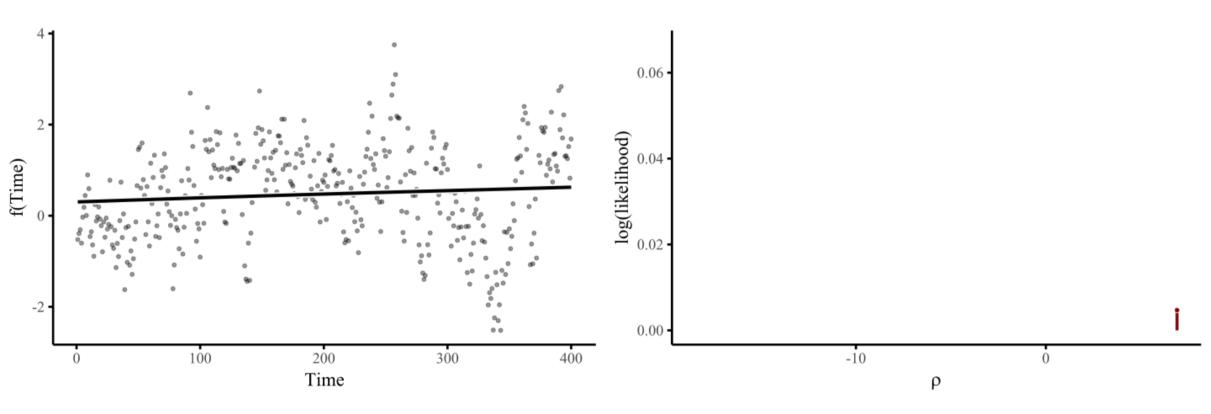


Weighting basis functions ...

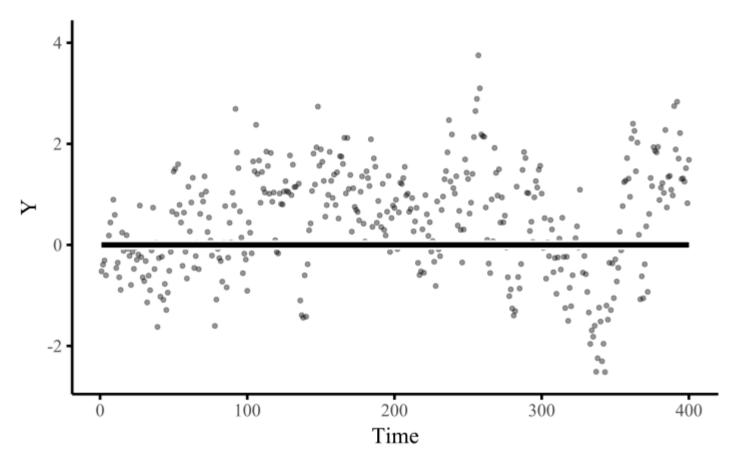




Penalize f " (x) to learn weights

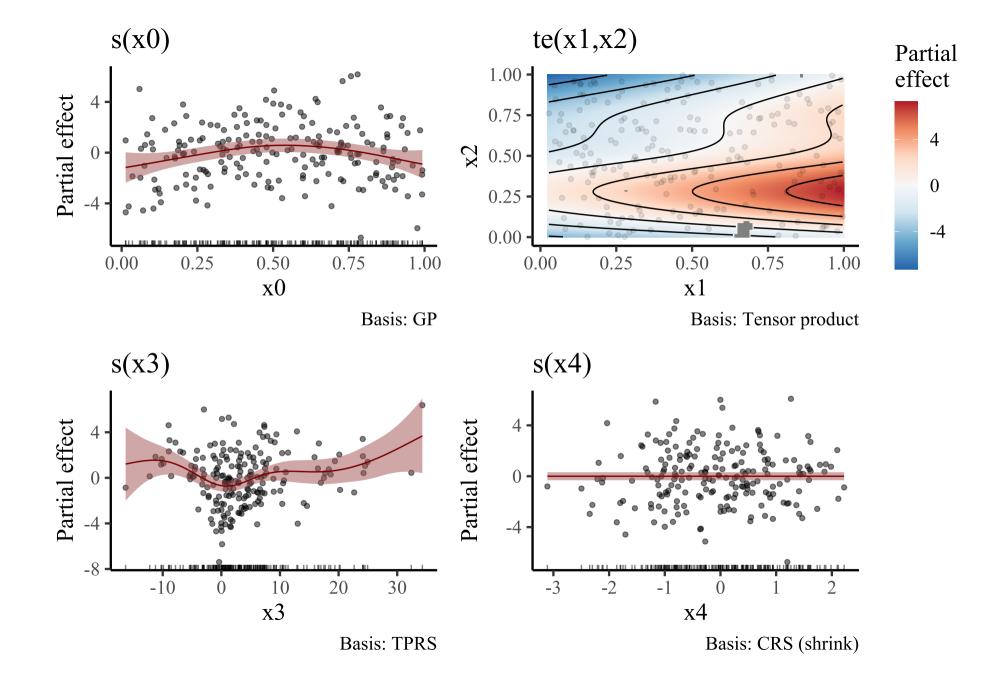


Penalize f " (x) to learn weights



GAMs are just fancy GLMs, where some (or all) of the predictor effects are estimated as (possibly nonlinear) smooth functions

But the complexity they can handle is enormous

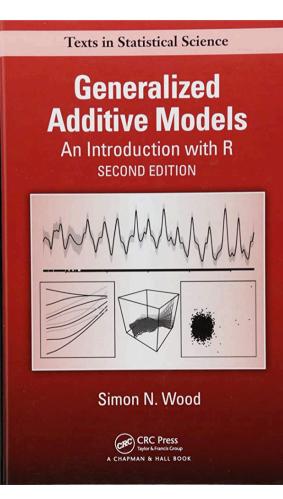


GAMs easy to fit in **R**

$$\mathbb{E}(oldsymbol{Y_t}|oldsymbol{X_t}) = g^{-1}(lpha + \sum_{j=1}^J f(x_{jt})) \, ,$$

Where:

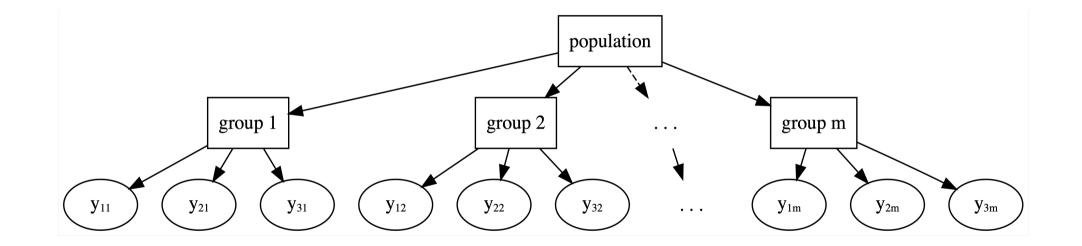
 g^{-1} is the *inverse* of the link function α is the intercept f(x) are potentially nonlinear functions of the Jpredictors



But how can GAMs and GLMs be useful for modelling ecological time series?

Temporal random effects

Random effects are hierarchical



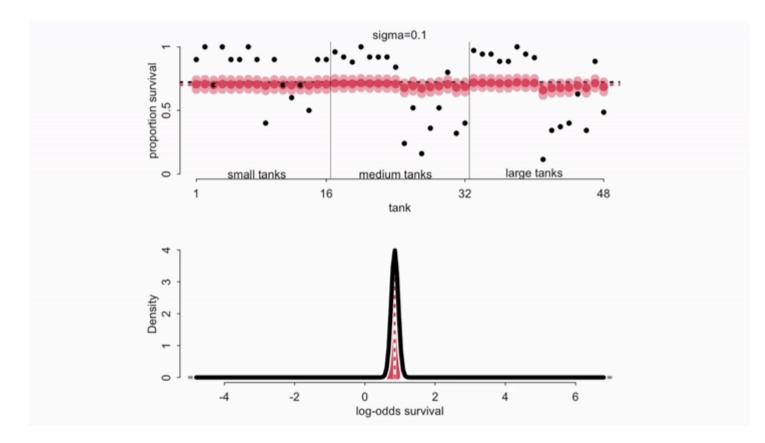
Johnson *et al* 2021

Hierarchical models *learn from all groups at once* to inform group-level estimates

Induce *regularization*, where noisy estimates are pulled towards the overall mean

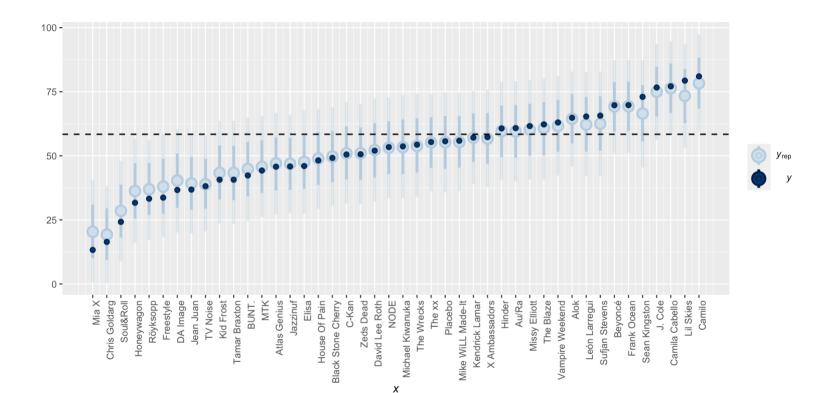
The regularization is known as partial pooling

Partial pooling in action



McElreath 2023

Noisy estimates *pulled* to the mean



How can they be modelled?

 $egin{aligned} & Y_t \sim ext{Poisson}(\lambda_t) \ & log(\lambda_t) = eta_{year[year_t]} \ & eta_{year} \sim ext{Normal}(\mu_{year}, \sigma_{year}) \ & \mu_{year} \sim ext{Normal}(0, 1) \ & \sigma_{year} \sim ext{Exponential}(2) \end{aligned}$

Where we have multiple time points per year, and:

 β_{year} are yearly intercepts (one effect per year) μ_{year} estimates mean effect among all years σ_{year} estimates how much effects vary across years

Live code example

Modelling with the mvgam (

Bayesian framework to fit Dynamic GLMs and Dynamic GAMs

- Hierarchical intercepts, slopes *and smooths*
- Latent dynamic processes
- State Space models with measurement error

Built off the <u>mgcv</u> to construct penalized smoothing splines

Convenient and familiar 😱 formula interface

Uni- or multivariate series from a range of response distributions

Uses <u>Stan</u> for efficient Hamiltonian Monte Carlo sampling

Example of the interface

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

Where y = response, x's = covariates, and series = a grouping term

Typical formula syntax

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
   s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

A random intercept effect

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

A random slope effect

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

A linear parametric effect

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

A one-dimensional smooth

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

A two-dimensional smooth

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

Data and response distribution

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
    te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```



```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

Sampler parameters

```
model \leftarrow mvgam(
  formula = y ~
    s(series, bs = 're') +
    s(x0, series, bs = 're') +
   x1 +
    s(x2, bs = 'tp', k = 5) +
   te(x3, x4, bs = c('cr', 'tp')),
  data = data,
  family = poisson(),
  trend_model = AR(p = 1),
  burnin = 500,
  samples = 500,
  chains = 4)
```

Example data (long format)

У	series	time
2	species_1	1
0	species_2	1
NA	species_3	1
NA	species_4	1
1	species_1	2
0	species_2	2
3	species_3	2
5	species_4	2

Response (NAs allowed)

У	series	time		
2	species_1	1		
0	species_2	1		
NA	species_3	1		
NA	species_4	1		
1	species_1	2		
0	species_2	2		
3	species_3	2		
5	species_4	2		

Series indicator (as factor)

У	series	time		
2	species_1	1		
0	species_2	1		
NA	species_3	1		
NA	species_4	1		
1	species_1	2		
0	species_2	2		
3	species_3	2		
5	species_4	2		

Time indicator

У	series	time		
2	species_1	1		
0	species_2	1		
NA	species_3	1		
NA	species_4	1		
1	species_1	2		
0	species_2	2		
3	species_3	2		
5	species_4	2		

Any other predictors

У	series	time	x0	x1	x2	x3	x4
2	species_1	1	-0.38	A	0.20	1.18	-0.72
0	species_2	1	-0.71	Α	-2.67	1.02	0.67
NA	species_3	1	0.05	В	-0.33	0.12	1.50
NA	species_4	1	0.77	В	0.65	0.86	-0.49
1	species_1	2	0.29	Α	-0.25	1.18	-0.82
0	species_2	2	0.34	Α	-0.15	2.12	0.20
3	species_3	2	-0.38	В	-0.81	1.33	-1.15
5	species_4	2	1.32	В	0.22	-0.72	1.36

The data structure

dplyr::glimpse(model_data)

Rows: 199 ## Columns: 6 **PP...** ## \$ year <fct> 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 20... ## \$ time <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... ## \$ count <int> 0, 1, 2, NA, 10, NA, NA, 16, 18, 12, NA, 3, 2, NA, NA, 13, NA,... ## \$ mintemp <dbl> -9.710, -5.924, -0.220, 1.931, 6.568, 11.590, 14.370, 16.520, ... ## \$ ndvi <dbl> 1.4658889, 1.5585069, 1.3378172, 1.6589129, 1.8536561,

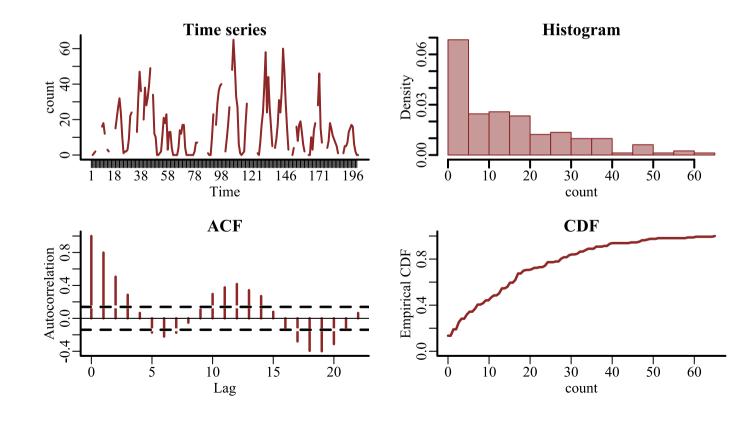
The observations

Code Plot

use mvgam's plot utility to view properties of the observations
plot_mvgam_series(data = model_data, y = 'count')

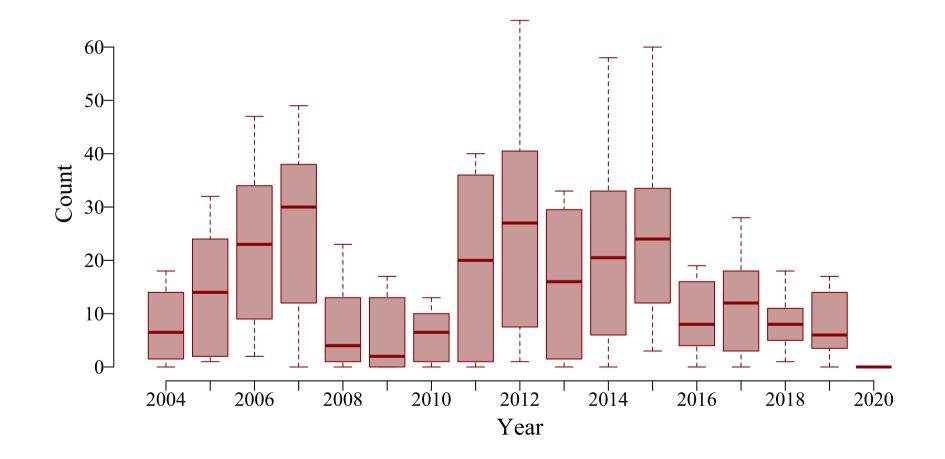
The observations

Code Plot



 \mathbf{v}

Yearly heterogeneity



Yearly random intercepts

Random effect basis in mgcv language

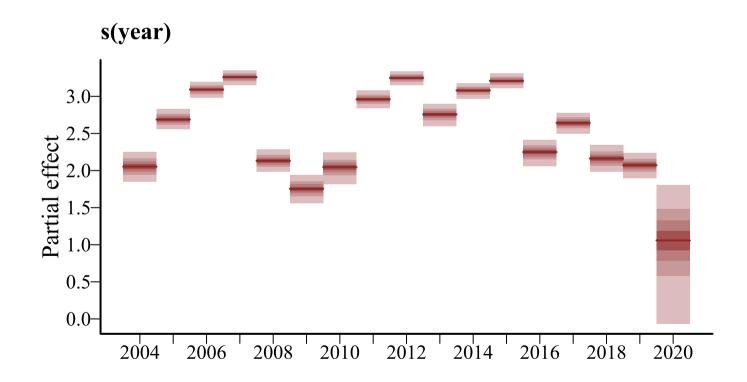
Global intercept suppressed

Estimated yearly intercepts

Code Plot

plot the random effect posterior estimates
plot(year_random, type = 're')

Estimated yearly intercepts

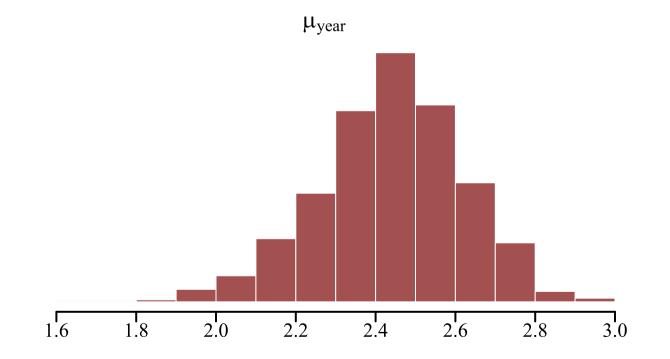


Population parameters

Code Means SDs

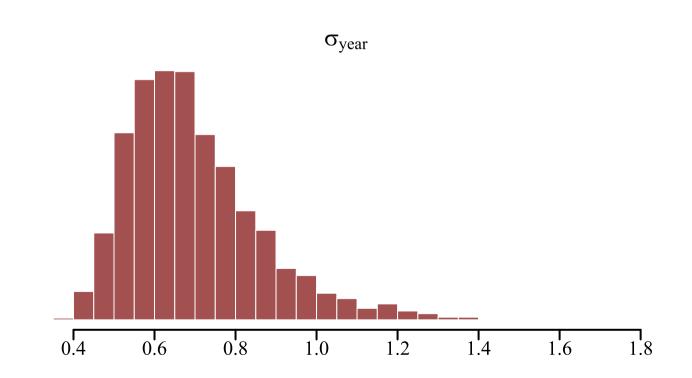
Population parameters

Code Means SDs



Population parameters

Code Means SDs

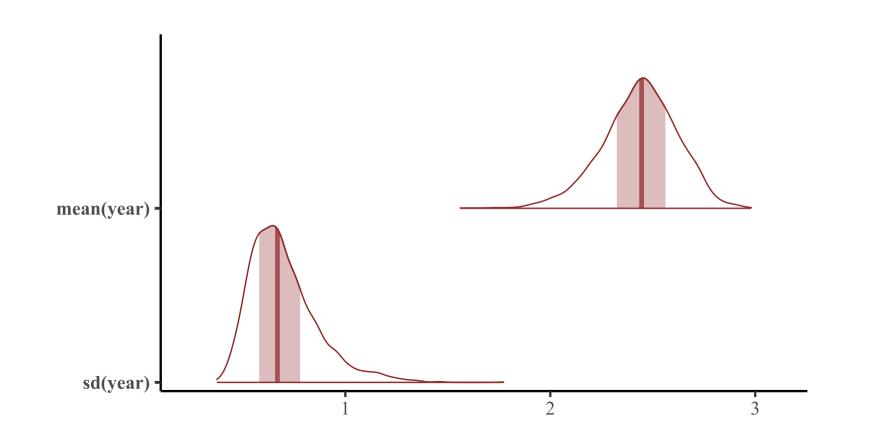


Or using bayesplot

Code Plot

Or using bayesplot

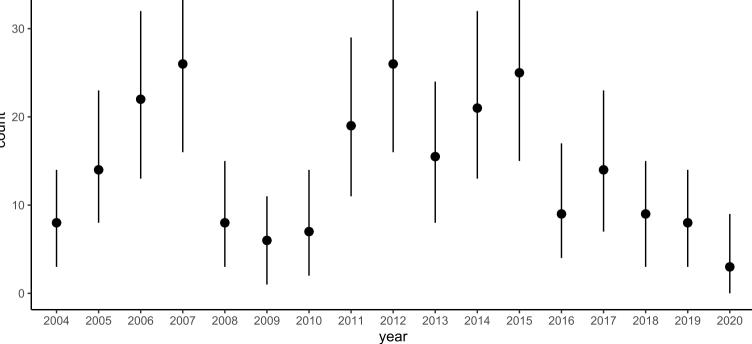
Code Plot



 \mathbf{v}

Conditional predictions

Conditional predictions



Hindcast predictions

Code Plot

use mvgam's plot to view hindcast predictions
plot(year_random, type = 'forecast')

Hindcast predictions



mvgam with yearly smooth

A thin plate regression spline of the numeric year variable

Retain intercept because smooths are zero-centered

Coefficients uninterpretable

##	[1]	"(Intercept)"	"s(year).1"	"s(year).2"	"s(year).3"	"s(year).4"
##	[6]	"s(year).5"	"s(year).6"	"s(year).7"	"s(year).8"	"s(year).9"
##	[11]	"s(year).10"	"s(year).11"	"s(year).12"	"s(year).13"	"s(year).14"

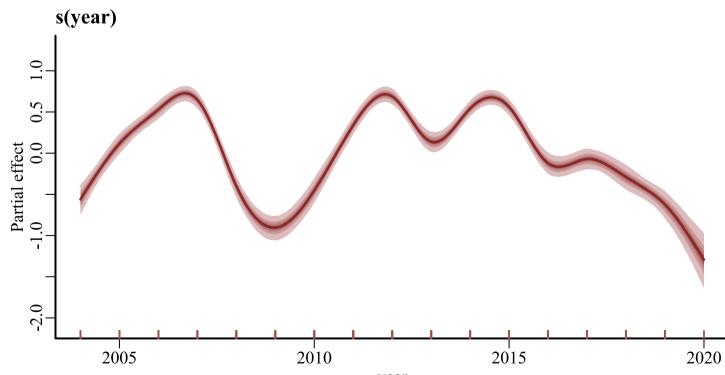
We *must* use predictions and plots to understand the model

Estimated yearly smooth

plot the smooth effect posterior estimates
plot(year_smooth, type = 'smooth')

Estimated yearly smooth

Code Plot



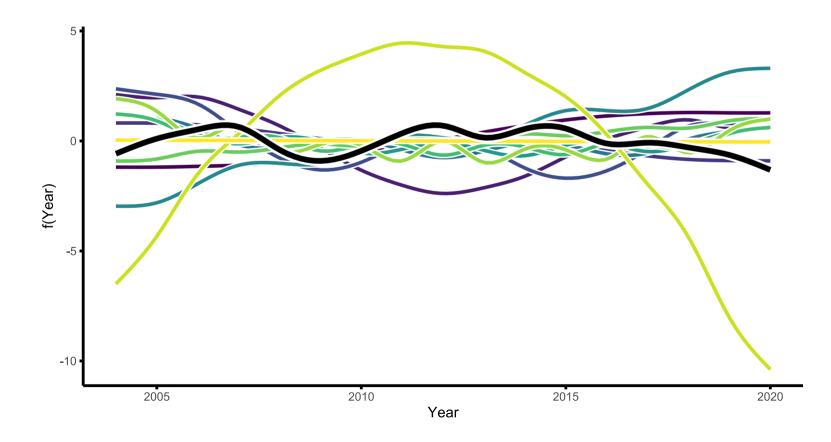
year

 \mathbf{v}

Plotting basis functions

```
# plot the basis functions with gratia
library(ggplot2); library(viridis); library(gratia)
theme set(theme classic())
ggplot(basis(year_smooth$mgcv_model),
      aes(x = year, y = .value, color = .bf)) +
 geom_borderline(linewidth = 1.25, bordercolour = "white") +
 geom_borderline(data = smooth_estimates(year_smooth$mgcv_model),
                  inherit.aes = FALSE,
                  mapping = aes(x = year, y = .estimate), linewidth = 2) +
  scale_color_viridis(discrete = TRUE) +
 theme(legend.position = 'none', axis.line = element_line(size = 1),
        axis.ticks = element_line(colour = "black", size = 1)) +
 ylab('f(Year)') + xlab('Year')
```

Plotting basis functions



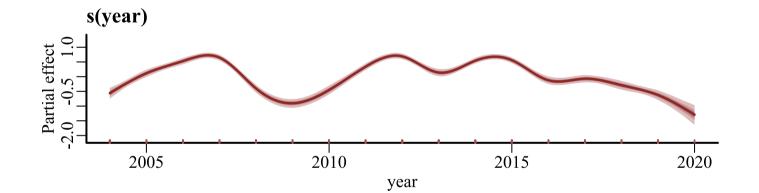
Rates of change

Code Plot

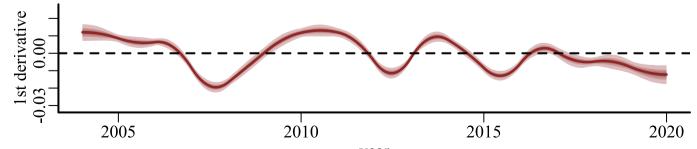
plot the smooth effect posterior estimates
plot(year_smooth, type = 'smooth', derivatives = TRUE)

Rates of change

Code Plot



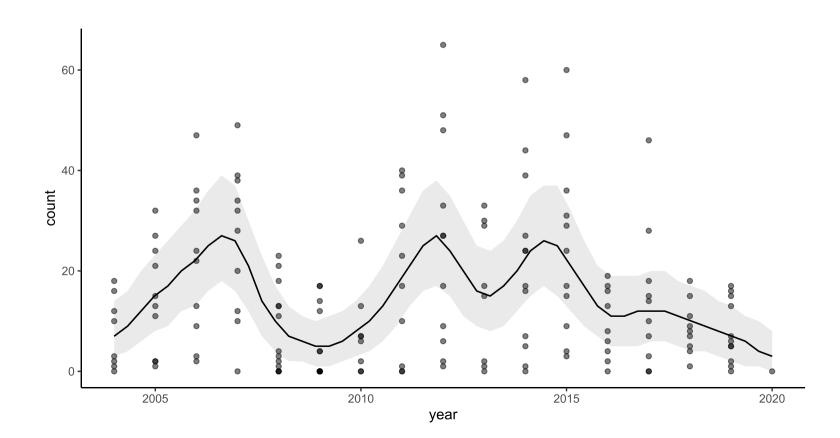
 \mathbf{v}



year

Conditional predictions

Conditional predictions

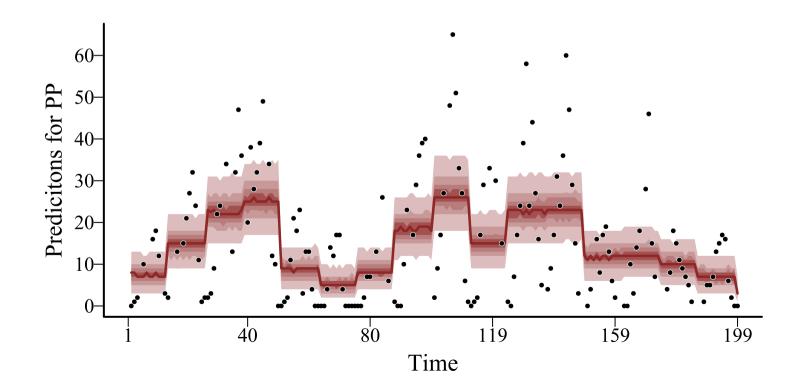


Hindcast predictions

Code Plot

use mvgam's plot to view hindcast predictions
plot(year_smooth, type = 'forecast')

Hindcast predictions

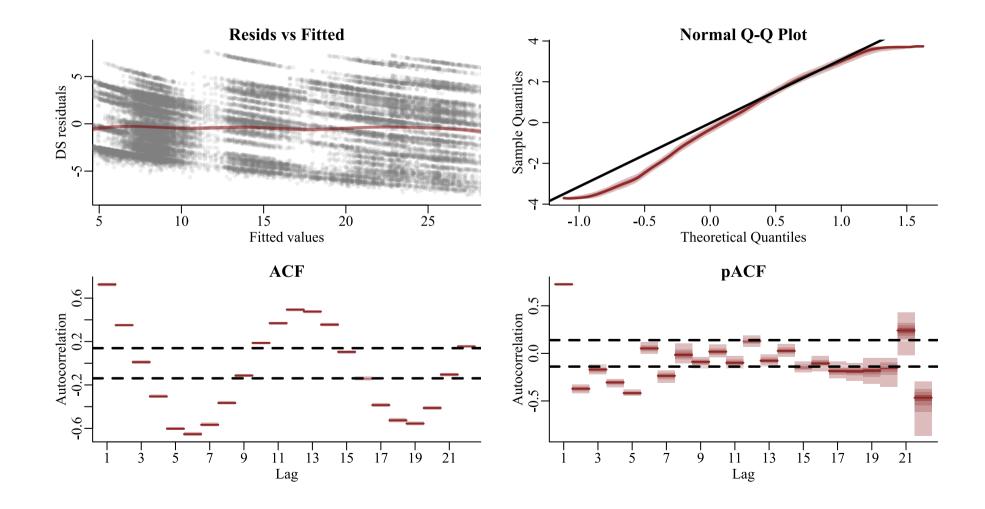


Forecasts will differ. Why?

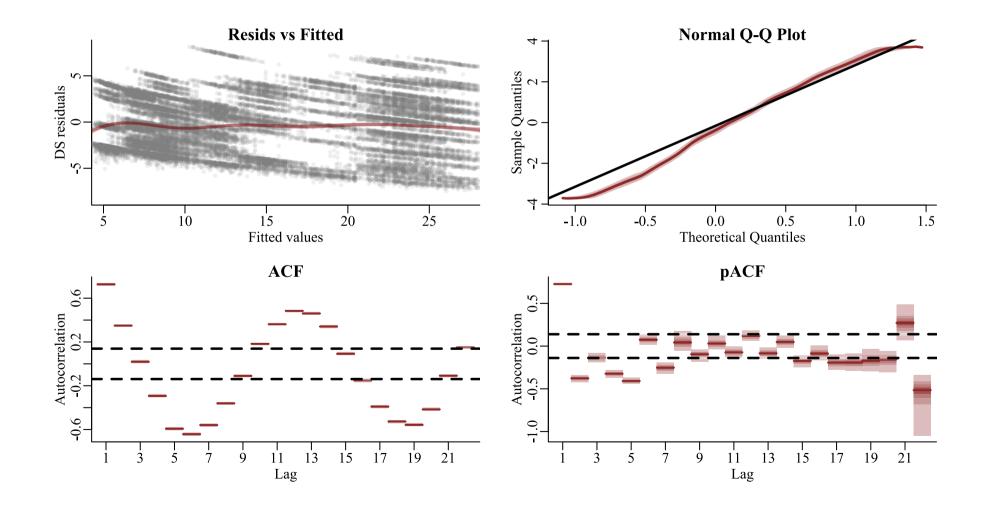
We will explore this further in the tutorial and in the next lecture

But how do model diagnostics look?

Random year diagnostics



Smooth year diagnostics



Randomized quantile residuals show evidence of unmodelled autocorrelation and seasonality

How can we deal with the seasonality?

Adding a smooth of mintemp

A thin plate regression spline of mintemp

Estimated smooths

Code Plot

use mvgam's plot to view both smooth functions
plot(year_temp_smooth, type = 'smooth')

Estimated smooths

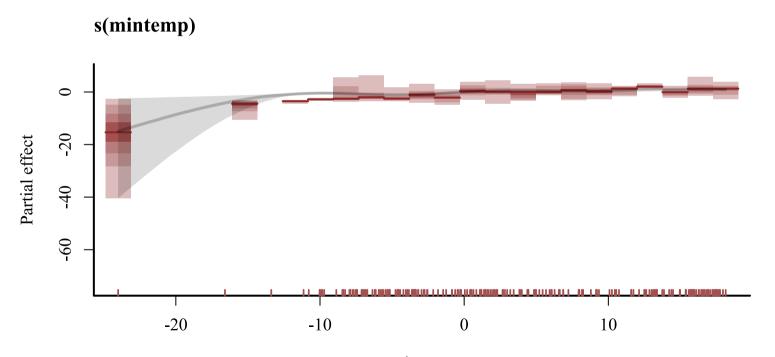
Code Plot s(year) s(mintemp) 1.51.00 0.5 -10 Partial effect -0.5 0.0 0 Partial effect -20 -30 -1.0 -1.5 -40 2010 2015 2020 -20 -10 10 2005 0 mintemp year

Partial residuals

Code Plot

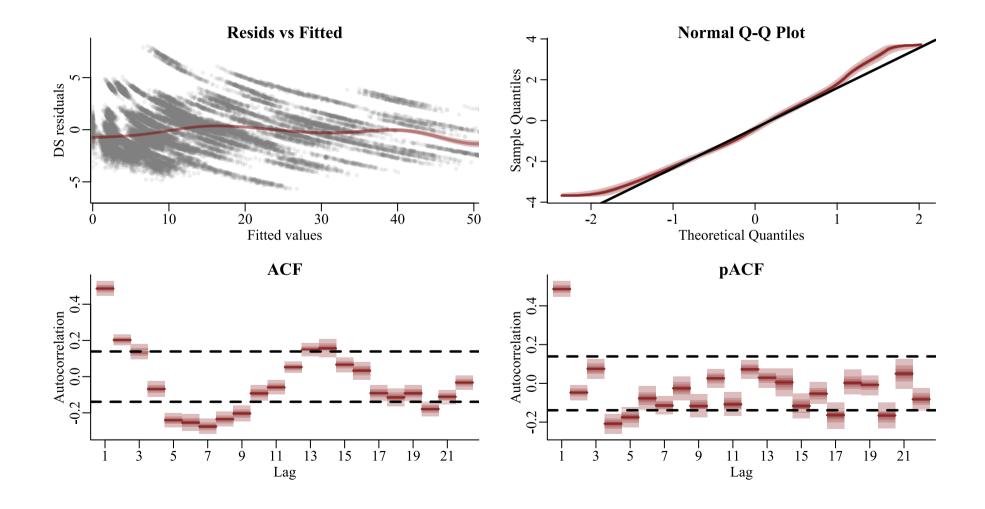
use mvgam's plot_mgvam_smooth to view partial residuals
plot_mvgam_smooth(year_temp_smooth, smooth = 2, residuals = TRUE)

Partial residuals



mintemp

Diagnostics



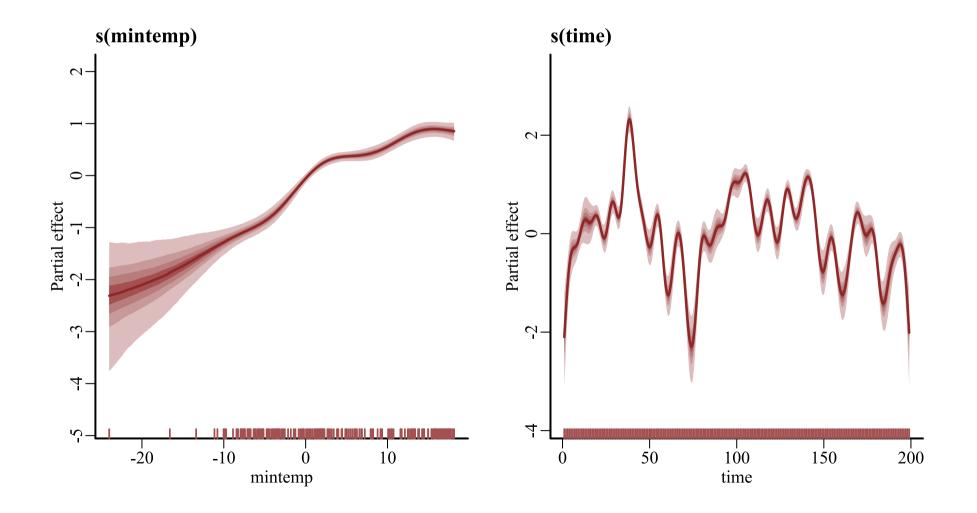
Randomized quantile residuals still show evidence of unmodelled autocorrelation

How can we deal with this?

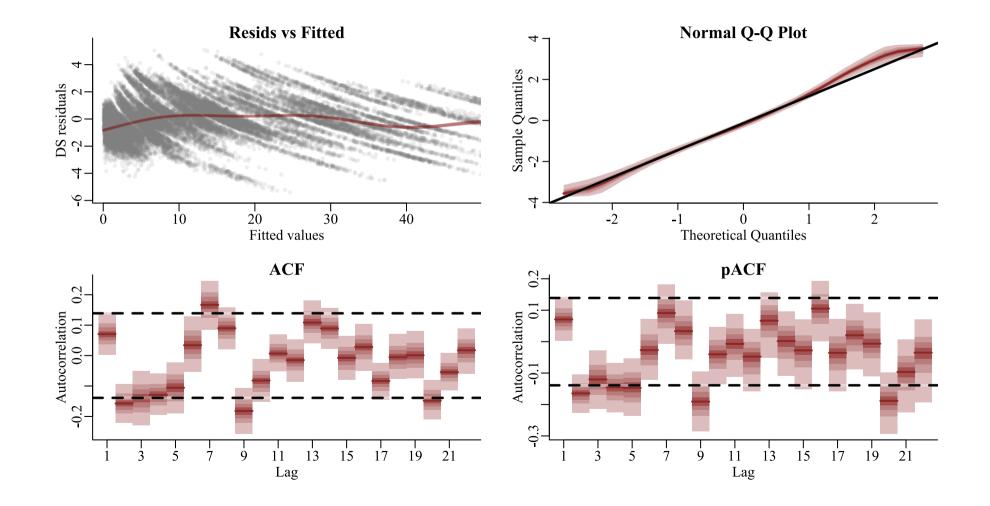
A smooth of time

Replace the spline of year with a complex spline of time to capture autocorrelation

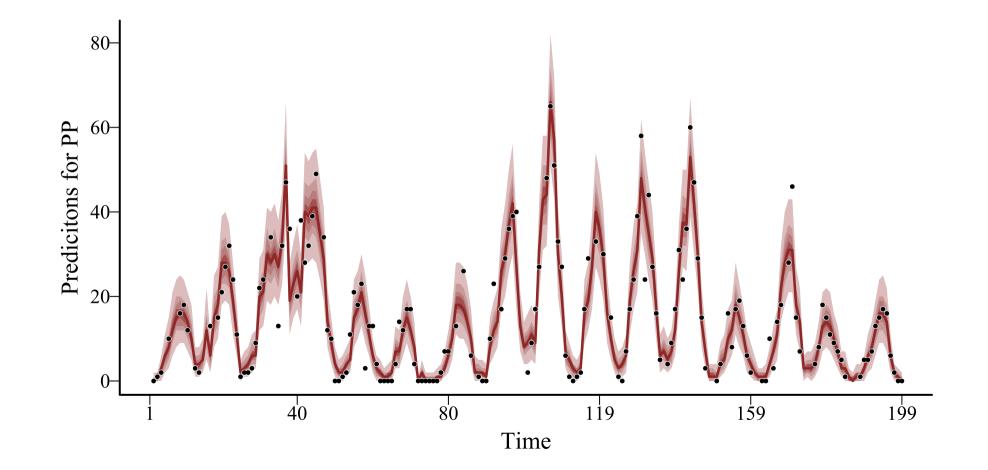
Updated smooths



Diagnostics



Hindcast predictions ③



Using an *additive* combination of smooth functions, we have captured a lot of the variation in the observed data

But we are dealing with a time series, so we'd like our model to generate sensible forecast predictions

As we'll see in the next lecture, this one has some problems

In the next lecture, we will cover

Extrapolating splines

Latent autoregressive processes

Latent Gaussian Processes

Dynamic coefficient models