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Workflow

Press the "o" key on your keyboard to navigate among slides

Access the tutorial html here

Download the data objects and exercise @ script from the html file
Complete exercises and use Slack to ask questions

Relevant open-source materials include:

An introduction to Bayesian multilevel modeling with brms
Introduction to Generalized Additive Models with @ and mgcv
Forecasting with Dynamic Generalized Additive Models
Statistical Rethinking 2023 - 12 - Multilevel Models



https://nicholasjclark.github.io/physalia-forecasting-course/day1/tutorial_1_physalia
https://youtu.be/1qeXD4NQ4To
https://www.youtube.com/watch?v=sgw4cu8hrZM
https://www.youtube.com/watch?v=sgw4cu8hrZM
https://www.youtube.com/watch?v=0zZopLlomsQ
https://www.youtube.com/watch?v=iwVqiiXYeC4&list=PLDcUM9US4XdPz-KxHM4XHt7uUVGWWVSus&index=12

This lecture's topics

Useful probability distributions for ecologists
Generalized Linear and Additive Models
Temporal random effects

Temporal residual correlation structures



When applying statistical modelling to a time series, we aim to
estimate parameters for a collection of probability distributions

These distributions are indexed by zime (i.e. the observations are
random draws from a set of time-varying distributions)

Usually we allow the mean of these distributions to vary over
time. But what Kinds of distributions are available to us?



Useful
probability
distributions




Normal (Gaussian)

Y; ~ Normal(ue, o)

Properties

Real-valued continuous observations (including any decimal)
Unbounded (supports —oo to 00)
Symmetric spread, controlled by o, about the mean ()

Nearly all common time series models assume this data distribution

RW, AR, and ARIMA
ETS and TBATS
Meta's Prophet &


https://facebook.github.io/prophet/

Normal (Gaussian)

Y; ~ Normal(0, 2)

5 \ 5




Normal (Gaussian)

Y; ~ Normal(50, 20)

0 50 100




Linear regression

It s common to estimate linear predictors of u with regression
Y; ~ Normal(a + 8 * X4, 0)

Where;

X, represents a design matrix of covariates that contribute
linearly to variation in u;

« 1s an intercept coefficient

(3 1s a vector of regression coefficients

o controls the spread of the errors about



ETS(A,A,A) skip

Exponential smoothing with additive components for trend,
seasonality and error assumes a Normal (Gaussian) distribution

Y; ~ Normal(l;—1 + bi—1 + St—m, 0)

Where;

[ gives the value of the level

b gives the value of the trend

s gives the value of the seasonality
m represents the seasonal period



ARMA(p, q) skip

ARMA processes also assume Normality

p

q
Y, ~ Normal(c + Z (bk(Y,;_k — C) -+ Z 0;€:_;, 0')
k=1 1=1

Where:

c 1s a constant (drift parameter)

p and q gives orders of AR and MA processes
¢ and 6 are AR and MA coefficients

e are historical errors (which are Normal(0, o))



But most real-world ecological observations, including time
series, are not Gaussian
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Properties of monthly CO2 measurement time series at the South Pole
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Properties of lunar monthly Desert Pocket Mouse capture time series from a long-term monitoring study in

Portal, Arizona, USA



Time series Histogram
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Properties of annual American kestrel abundance time series in British Columbia, Canada



“If our data contains small counts (0,1,2....), then we need to use
forecasting methods that are more appropriate for a sample space
of non-negative integers.

Such models are beyond the scope of this book”


https://otexts.com/fpp3/counts.html

Ok. So now what?




Poisson

Y; ~ Poisson(\)

Properties

Discrete, integer-valued observations (including 0)
Lower bound (supports 0 to co)
mean = varlance = \;

Virtually no time series models support this distribution

Most analysts use log or Box-Cox transformation

But see the tscount €



https://otexts.com/fpp3/transformations.html
https://cran.r-project.org/web/packages/tscount/vignettes/tsglm.pdf

Poisson

Y; ~ Poisson(3)

0 1 2 3 4 5 6 7 8 9 10 1

1 12 14



Poisson

Y; ~ Poisson(50)

26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 T8



How can we model non-Normal data using regression?



Generalized linear models

Linear regression can't be trusted to give sensible predictions for
non-negative count data (or other types of bounded / discrete /
non-Normal data)

We can do better by choosing distributions that obey the
constraints on our outcome variables

The 1dea 1s to generalize the linear regression by replacing
parameters from other probability distributions with linear models

This requires a link function that transforms from the unbounded
scale of the linear predictor to a scale that is appropriate for the
parameters being modeled



Modelling the mean

Most GLMs are used to model the conditional mean ()

E(Y:|X:) = e = g~ (a + X )

Where:

[E; 1s the expected value of Y; conditional on X;
g~ ! is the inverse of the link function

« 1S an intercept coefficient

B 1s a vector of regression coefficients



Poisson GLLM

A Poisson GLM models the conditional mean with a log link

Y; ~ Poisson(\;)
log(\t) = X8
=« + ,31:13115 + ,32313215 T T ﬁjmjt

Where;

X; 1s the matrix of predictor values at time ¢
« 1S an intercept coefficient

B 1s a vector of regression coefficients

E(Y;| X:) = exp(a + X;5)



Poisson GLLM

A Poisson GLM models the conditional mean with a log link

Y; ~ Poisson(\;)
log(\) = X4
=+ fixy + Poxor + -+ - + ﬁjmjt

The linear predictor component can be hugely flexible, as we will
see In later slides



What if our data are proportional instead?
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Beta GLLM

A Beta GLM models the conditional mean with a logit link

Y; ~ Beta(/"'tv ¢)

logit(,ut) — Xt/B
= + 51az1t + 523132t T T /Bjmjt

Where;

X; 1s the matrix of predictor values at time ¢
« 1S an intercept coefficient

B 1s a vector of regression coefficients

E(Y;| X;) = logit ' (a + X )



Some other relevant distributions

Many other useful GLM probability distributions exist. Some of these
include:

Negative Binomial — overdispersed integersin (0,1,2,...)

Bernoulli — presence-absence data in {0, 1}

Student's T — heavy-tailed (skewed) real values in (—o0, 00)

Lognormal — heavy-tailed (right skewed) real values in (0, co)

Gamma — lighter-tailed (less skewed) real values in (0, c0)

Multinomial — integers representing K unordered categories in
(0,1,...,K)

Ordinal — integers representing K ordered categories in
(0,1,...,K)


https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html

GLMs allow us to build models that respect the bounds and
distributions of our observed data

They traditionally assume the appropriately transformed mean
response depends linearly on the predictors

But there are many other properties we'd like to model



Remember these?

Non-Gaussian data and missing observations
Measurement error

Time-varying effects

Nonlinearities

Multi-series clustering



Remember these?

Nonlinearities



GAMSs use splines ...
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... made of basis functions
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Weighting basis functions ...
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... gives a spline (f(x))

f(Time)




Penalize f ” () to learn weights
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GAMs are just fancy GLMs, where some (or all) of the predictor
effects are estimated as (possibly nonlinear) smooth functions

But the complexity they can handle is enormous



Partial effect
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GAMs easy to fit in R

J

E(Y:|X:) =g '(a+ ) flz;))

j=1

Where:

g~ ! is the inverse of the link function

« 1s the intercept

f(x) are potentially nonlinear functions of the J
predictors

Texts in Statistical Science

Generalized
Additive Models

An Introduction with R
SECOND EDITION




But how can GAMs and GLMs be useful for modelling ecological
time series?



Temporal
random eftects




Random effects are hierarchical

population
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Johnson et al 2021



https://www.bayesrulesbook.com/
https://www.bayesrulesbook.com/
https://www.bayesrulesbook.com/

Hierarchical models learn from all groups at once to inform
group-level estimates

Induce regularization, where noisy estimates are pulled towards
the overall mean

The regularization is known as partial pooling



https://www.jstor.org/stable/25471160

Partial pooling in action

McElreath 2023
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https://www.youtube.com/watch?v=SocRgsf202M

Noisy estimates pulled to the mean
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https://www.bayesrulesbook.com/
https://www.bayesrulesbook.com/
https://www.bayesrulesbook.com/

How can they be modelled?

Y; ~ Poisson(\)
log(At) = Byearlyear:]
Byear ~ Normal(tyear, Oyear)
Uyear ~ Normal(0, 1)
Oyear ~ Exponential(2)

Where we have multiple time points per year, and:

Byear are yearly intercepts (one effect per year)
Wyeqr €Stimates mean effect among all years
Oyeqr €Stimates how much effects vary across years



Live code
example




Modelling with the mvgam

Bayesian framework to fit Dynamic GLMs and Dynamic GAMs

Hierarchical intercepts, slopes and smooths
Latent dynamic processes
State Space models with measurement error

Built off the mgcv_ & to construct penalized smoothing splines
Convenient and familiar R formula interface

Uni- or multivariate series from a range of response distributions

Uses Stan for efficient Hamiltonian Monte Carlo sampling


https://nicholasjclark.github.io/mvgam/
https://cran.r-project.org/web/packages/mgcv/index.html
https://mc-stan.org/

Example of the intertace

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1 +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)

Where y = response, x's = covarlates, and series = a grouping term



Typical formula syntax

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1l +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



A random intercept effect

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1 +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



A random slope effect

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1 +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



A linear parametric effect

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1l +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



A one-dimensional smooth

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1 +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



A two-dimensional smooth

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1 +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



Data and response distribution

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1 +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



¥ latent dynamics

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1l +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



Sampler parameters

model ¢ mvgam(
formula = y ~

s(series, bs = 're') +
s(x0, series, bs = 're') +
X1l +

s(x2, bs = '"tp', k = 5) +
te(x3, x4, bs = c('cr', 'tp')),

data = data,

family = poisson(),

trend_model = AR(p = 1),

burnin = 500,

samples = 500,

chains = 4)



Example data (long format)

y series time

2 species_1 1
0 species_2 1
NA species_3 1
NA species_4 1
1 species_1
species_2

species_3

g w O
N N NN

species_4




Response (NAs allowed)

y series time

species_1
species_2
species_3
species_4
species_1
species_2

species_3

N N N N A =2 a2 -

species_4




Series indicator (as factor)

y series time

2
0
NA
NA

N N DN N A =2 -m -

1
0
3
5




Time indicator

NA
NA

g1 w O

series time

species_1
species_2
species_3
species_4
species_1
species_2

species_3

species_4




Any other predictors

y

2
0
NA
NA

1
0
3
5

series

species_1
species_2
species_3
species_4
species_1
species_2
species_3

species_4

time x0 x1 x2 x3 x4
038 A 020 118 072
a 11 1 1
a 11 1 1
a 11 1 1
1 029 A 025 1.18 -0.82
4 11 1 1
: 038 B 081 1.33 115
a4 11 1 1




Examples







The data

structure

dplyr:: glimpse(model_data)

#Ht Rows: 199

i Columns: 6

tHt $ series <fct>
PP...

#t $ year <fct>
20...

tH $ time <dbl>

18, ..

#H $ count <int>
NA, ..

tHt $ mintemp <dbl>
16.520, ..

tH $ ndvi <dbl>

PP, PP, PP, PP, PP, PP, PP, PP, PP, PP, PP, PP, PP, PP, PP,

2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

o, 1, 2, NA, 10, NA, NA, 16, 18, 12, NA, 3, 2, NA, NA, 13,

-9.710, -5.924, -0.220, 1.931, 6.568, 11.590, 14.370,

1.4658889, 1.5585069, 1.3378172, 1.6589129, 1.8536561,



The observations

Code Plot

# use mvgam's plot utility to view properties of the observations
plot_mvgam_series(data = model_data, y = 'count')


file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset=code#panelset_code
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset=plot#panelset_plot

The observations

Code

Plot
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Autocorrelation

Time series

34
S P’
. /
Eh JIV VA
o 7 )
1 18 38 58 78 98 121 146 171 196
Time
)} ACF
o0 _|
(e}
+ | h
S
N O 1 | N I
S _|
S b e A e
i ' aik
A
<S4 T T T T
0 5 10 15 20

0.06
|

Density
0.03

0.00

0.8

Empirical CDF
0.4

0.0

Histogram

10 20 30 40 50 60
count

CDF

10 20 30 40 50 60
count


file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset=code#panelset_code
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset=plot#panelset_plot
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Yearly random intercepts

year_random ¢« mvgam(count ~
s(year, bs = 're') - 1,

family = poisson(),
data = model_data,
trend_model = 'None',
burnin = 500,
samples = 500,
chains = 4)

Random effect basis in mgcv language

Global intercept suppressed



Estimated yearly intercepts

Code Plot

# plot the random effect posterior estimates
plot(year_random, type = 're')


file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset1=code2#panelset1_code2
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset1=plot2#panelset1_plot2

Estimated yearly intercepts

Code Plot

s(year)

2004 2006 2008 2010 2012 @ 2014 ' 2016 = 2018 = 2020


file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset1=code2#panelset1_code2
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset1=plot2#panelset1_plot2

Population parameters

Code Means SDs

# extract population estimates
pop_params ¢ as.data.frame(year_random,
variable = c('mean(year)"',
‘sd(year)"'))

# plot as histograms
hist(pop_params$ mean(year)”, main = expression(mu[year]))

hist(pop_params$ sd(year)”, main = expression(sigmal[year]))


file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset2=code3#panelset2_code3
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset2=means#panelset2_means
file:///C:/Users/uqnclar2/OneDrive%20-%20The%20University%20of%20Queensland/Desktop/physalia-forecasting-course-gh-pages/day1/lecture_2_slidedeck.html?panelset2=sds#panelset2_sds

Population parameters
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Or using bayesplot

Code Plot

# use bayesplot utilities to plot parameter estimates
mcmc_plot(year_random, type = 'areas',
variable = c('mean(year)', 'sd(year)'))
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Or using bayesplot

Code Plot

mean(year) /‘\

sd(year) A
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Conditional predictions

Code Plot

# use marginaleffects utilities to plot conditional predictions
library(ggplot2)
plot_predictions(year_randon,
condition = 'year') +
theme_classic()
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Conditional predictions

Code Plot
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Hindcast predictions

Code Plot

# use mvgam's plot to view hindcast predictions
plot(year_random, type = 'forecast')
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Hindcast predictions

Code Plot
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mvgam with yearly smooth

model_data %>%
dplyr::mutate(year = as.numeric(as.character(year))) — model_data

year_smooth <« mvgam(count ~
s(year, bs = 'tp', k = 15),
family = poisson(),
data = model_data,
trend_model = 'None',
burnin = 500,
samples = 500,
chains = 4)

A thin plate regression spline of the numeric year variable

Retain intercept because smooths are zero-centered



Coefficients uninterpretable

rownames(coef(year_smooth))
#Ht [1] "(Intercept)" "s(year).1" "s(year).2" "s(year).3" "s(year).4"

#t [6] "s(year).5" "s(year).6" "s(year).7" "s(year).8" "s(year).9"
tHt [11] "s(year).10" "s(year).11" "s(year).12" "s(year).13" "s(year).14"

We must use predictions and plots to understand the model



Estimated yearly smooth

Code Plot

# plot the smooth effect posterior estimates
plot(year_smooth, type = 'smooth')
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Estimated yearly smooth

Code Plot
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Plotting basis functions

Code Plot

# plot the basis functions with gratia
library(ggplot2); library(viridis); library(gratia)
theme_set(theme_classic())
ggplot(basis(year_smooth$mgcv_model),
aes(x = year, y = .value, color = .bf)) +
geom_borderline(linewidth = 1.25, bordercolour = "white") +
geom_borderline(data = smooth_estimates(year_smooth$mgcv_model),
inherit.aes FALSE,
mapping = aes(x = year, y
scale_color_viridis(discrete = TRUE) +
theme(legend.position = 'none', axis.line = element_line(size = 1),
axis.ticks = element_line(colour = "black", size = 1)) +
ylab('f(Year)') + xlab('Year')

2) +

.estimate), linewidth
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Plotting basis functions

Code Plot

f(Year)
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Rates of change

Code Plot

# plot the smooth effect posterior estimates
plot(year_smooth, type = 'smooth', derivatives = TRUE)
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Rates of change
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Conditional predictions

Code Plot

# use marginaleffects utilities to plot conditional predictions
library(ggplot2)
plot_predictions(year_smooth,
condition = 'year',
points = 0.5) +
theme_classic()
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Conditional predictions

Code Plot
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Hindcast predictions

Code Plot

# use mvgam's plot to view hindcast predictions
plot(year_smooth, type = 'forecast')
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Hindcast predictions

Code Plot
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Forecasts will differ. Why?

We will explore this further in the tutorial and in the next lecture

But how do model diagnostics look?



Random year diagnostics
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Smooth year diagnostics

Resids vs Fitted
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Randomized quantile residuals show evidence of unmodelled
autocorrelation and seasonality

How can we deal with the seasonality?



Adding a smooth of mintemp

year_temp_smooth ¢« mvgam(count ~

s(year, bs = 'tp', k = 15) +
s(mintemp, bs = 'tp', k = 8),

family = poisson(),

data = model_data,

trend_model = 'None',

burnin = 500,

samples = 500,

chains = 4)

A thin plate regression spline of mintemp



Estimated smooths

Code Plot

# use mvgam's plot to view both smooth functions
plot(year_temp_smooth, type = 'smooth')
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Estimated smooths

Code Plot
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Partial residuals

Code Plot

# use mvgam's plot_mgvam_smooth to view partial residuals
plot_mvgam_smooth(year_temp_smooth, smooth = 2, residuals = TRUE)
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Partial residuals

Code Plot
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Randomized quantile residuals still show evidence of unmodelled
autocorrelation

How can we deal with this?



A smooth of time

temp_time_smooth <« mvgam(count ~

s(mintemp, bs = 'tp', k = 8) +
s(time, bs = 'tp', k = 50),

family = poisson(),

data = model_data,

burnin = 500,

samples = 500,

chains = 4)

Replace the spline of year with a complex spline of time to capture
autocorrelation



Updated smooths
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Diagnostics

Resids vs Fitted <« - Normal Q-Q Plot
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Using an additive combination of smooth functions, we have
captured a lot of the variation in the observed data

But we are dealing with a time series, so we'd like our model to
generate sensible forecast predictions

As we'll see in the next lecture, this one has some problems



In the next lecture, we will cover

Extrapolating splines
Latent autoregressive processes
Latent Gaussian Processes

Dynamic coefficient models



