
mvgam :: CHEATSHEET
The mvgam package provides tools for fitting and interrogating univariate or multivariate
time series models that can include nonlinear smooth functions of covariates, dynamic
temporal processes and random effects. A wide variety of latent dynamic processes can be
specified. The package also provides tools for interpreting effects, computing and scoring
forecasts, as well as generating model code and data objects for further customisation.
Models are fitted using Stan for full Bayesian inference.

Modelling with mvgam()
Usage: mvgam(formula, trend formula, data, trend model, family, ...)

formula: observation model regression formula, built off the mgcv package. See
?mvgam formulae for more guidance

trend formula: optional process model formula (see the State-Space model vignette and
the shared latent states vignette for guidance on using trend formulae)

data: a data.frame or list containing the response variable(s) and optional predictor
variables. See the data formatting vignette for guidance on data preparation

trend model: optional latent dynamic process. Options include:
▶ None: default, no dynamic trend
▶ RW(ma = FALSE, cor = FALSE): random walk
▶ AR(p = 1, ma = FALSE, cor = FALSE): autoregressive
▶ VAR(ma = FALSE, cor = FALSE): vector autoregressive
▶ PW(growth = ’linear’): piecewise linear
▶ PW(growth = ’logistic’): piecewise logistic, with max saturation
▶ GP(): squared exponential Gaussian Process

For autoregressive processes (RW(), AR() or VAR()), moving average and correlated
process errors can also be specified by changing the ma and cor arguments

family: observation distribution. Options include (among others):
▶ gaussian(): Gaussian with identity link
▶ student-t(): Student’s T with identity link
▶ lognormal(): LogNormal with identity link
▶ Gamma(): Gamma with log link
▶ betar(): Beta with logit link
▶ poisson(): Poisson with log link
▶ nb(): Negative Binomial with log link

See the introductory vignette for more guidance on supported families and dynamic processes

...: other arguments such as user-specified priors, newdata for generating probabilistic
forecasts and options to control Stan MCMC parameters

Prior to modelling, it is useful to:
▶ Inspect features of the data with plot mvgam series()

▶ Ensure there are no NA’s in predictors (though NA’s are allowed in response variables).
See the data formatting vignette for guidance on data preparation

▶ Inspect default priors with get mvgam priors()

▶ Make any necessary changes to default priors with prior()

sim mvgam() is useful to generate simple example datasets

simdat <- sim_mvgam(n_series = 1)
model <- mvgam(formula = y ˜ s(season, bs = ’cc’),

trend_model = RW(), data = simdat$data_train)

Use code(model) to see the auto-generated Stan code

Diagnostics and Inference
What effects has the model estimated?
summary(model) and coef(model): posterior summaries and diagnostics

fitted(model), logLik(model) and residuals(model): posterior expectations, pointwise
Log-Likelihoods and randomized quantile residuals

loo(model) and loo compare(model1, model2, ...): calculate approximate
leave-one-out information criteria

mcmc plot(model): visualize posterior summaries, pairs plots and a wide range of MCMC
diagnostics using functionality from the Bayesplot package
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Use as.data.frame(model), as.matrix(model), or as.array(model) for posterior
extraction. Use variables(model) to determine what parameters are available for
extraction

The S3 plot() function applied to models can visualise smooth functions (type =
’smooths’), random effects (type = ’re’), posterior predictions and trend estimates
(type = ’forecast’ or type = ’trend’) uncertainty contributions (type =
’uncertainty’) or randomized quantile residual diagnostics (type = ’residuals’). Use
trend effects = TRUE to visualise effects from any process model formulae

conditional effects(model) gives useful conditional effect plots on either the response or
the link scale
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For most mvgam models, functions from the marginaleffects package can be used for
more targeted prediction-based inference. See The Marginal Effects Zoo for guidance on
computing and plotting predictions, slopes and comparisons
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Prediction and forecasting
How good are model predictions?
Use predict(model) with newdata to make predictions for inference purposes. Change the
type argument for different types of predictions (link scale, expectation or response scale).
Or use the brms package equivalents posterior predict(model),
posterior linpred(model) or posterior epred(model). If generating forecasts for
future timepoints, use the forecast() function (see below)

Use ppc(model) to plot various kinds of posterior predictive checks to compare model
predictions against true observations

Extract in-sample posterior predictions with hindcast(model). If validation data exist,
generate forecast predictions with forecast(model, newdata = newdata). As above,
change the type argument for predictions on different scales. Both functions generate an
object of class mvgam forecast, that can be plotted with an S3 plot() function. See the
forecasting vignette for more details about how to produce forecasts.
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Compute probabilistic forecast scores using proper scoring rules with the score() function:

fc <- forecast(model, newdata = simdat$data_test, type = ’response’)
crps <- score(fc, score = ’crps’)
dplyr::glimpse(crps$series_1)

## Rows: 25
## Columns: 5
## $ score <dbl> 0.2315, 0.3944, 0.7198, 0˜
## $ in_interval <dbl> 1, 1, 1, 1, 1, 1, 1, 0, 1˜
## $ interval_width <dbl> 0.9, 0.9, 0.9, 0.9, 0.9, ˜
## $ eval_horizon <int> 1, 2, 3, 4, 5, 6, 7, 8, 9˜
## $ score_type <chr> "crps", "crps", "crps", "˜

Available proper scoring rules in the score() function include:
▶ type = ’crps’: Continuous Rank Probability Score (univariate)
▶ type = ’drps’: Discrete Rank Probability Score (univariate)
▶ type = ’elpd’: Expected Log Predictive Density (univariate)
▶ type = ’sis’: Scaled Interval Score (univariate)
▶ type = ’energy’: Energy Score (multivariate)
▶ type = ’variogram’: Variogram Score (multivariate)

Use lfo cv(model) for approximate leave-future-out cross-validation with an expanding
window training technique (see Bürkner et al. 2020 for details of the algorithm). This
generates expected log predictive density scores at user-specified forecast horizons, which
can be used to compare different models
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