
DRAFT
Distributed Hosting

A Blockchain Based Distributed Hosting Engine

Alex Oberhauser, Stavros Champilomatis, Nikos Sarris and Maria Efthimiadou

DRAFT

Copyright c© 2015 The BlackGate Team

PUBLISHED BY THE BlackGate TEAM

HTTP://BLACKGATE.NETWORLD.TO

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view this license visit http://creativecommons.org/licenses/by/4.0/.

First released, March 2015

http://creativecommons.org/licenses/by/4.0/

DRAFT
Contents

I Overview

1 Introduction . 7

1.1 Terminology 7

1.2 Hosting Paradigm Shift 8

1.3 Use Cases 9

1.3.1 Simple Blog Hosting . 9

1.3.2 Shared Access with Optional Paid Service . 9

2 Empowering Technology . 11

2.1 Blockchain 11

2.2 Tor Hidden Services 11

3 Ecosystem . 13

3.1 Hosting Provider 13

3.2 Complementary Services 13

DRAFT

II Specifications

4 Blockchain Specification . 17

4.1 Transaction Definition 17
4.1.1 Transaction Definition . 17
4.1.2 CLONE Transaction Definition . 18

4.2 Block Definition 19
4.3 Mining Process 19

5 Protocol Specification . 21

5.1 Blockchain Overlay Network 21
5.1.1 [REJECTED] Solution 1: Global Blockchain . 22
5.1.2 [ACCEPTED] Solution 2: Distributed Hash Table lookup 23

5.2 Data Overlay Network 24
5.3 Hosting Algorithm 24
5.4 Node Handling 24
5.5 Scenarios 24
5.5.1 Page request for a page who’s owner is online . 24
5.5.2 Page request for a page who’s owner is offline . 25
5.5.3 First access to a web page who’s owner is offline. 25

III Appendix

Bibliography . 29

DRAFT
I

1 Introduction . 7
1.1 Terminology
1.2 Hosting Paradigm Shift
1.3 Use Cases

2 Empowering Technology 11
2.1 Blockchain
2.2 Tor Hidden Services

3 Ecosystem . 13
3.1 Hosting Provider
3.2 Complementary Services

Overview

DRAFT

DRAFT
1. Introduction

This part gives a motivation and a general overview about the Distributed Hosting Engine.
It introduces some concepts that will be explained in more detail in the next part. If you
are looking for a detailed specification you can directly go to Part II.

The here presented Distributed Hosting Engine is designed with the following proper-
ties in mind:
Self-Managed Overlay Networks Hosted pages are distributed between nodes, depen-

dent on different metrics. This increases not only performance, but makes the
network also robust against malicious nodes, failures and other expected or unex-
pected changes.

Hosting from Everywhere By design pages can be hosted behind NATs (no public IP)
and Firewalls, making the participation of mobile nodes possible.

Privacy Protecting The blockchain, nor the protocol, does expose IPs, locations or any
other privacy critical data.

Distributed There is no central authority, nor should there be any central infrastructure.

1.1 Terminology
Blockchain A chain of blocks that origin from the same genesis block.
Block A collection of transactions that are bundled together to a block. Each block links

exactly to one previous block (except the genesis block). All transactions that are
part of a block are confirmed by the network.

Genesis Block First block in a blockchain. Does not reference a previous block.
Transaction There are two types of transactions, UPDATE and CLONE. UPDATE trans-

actions can only be issued by the content owner. CLONE transactions are issued
by everybody that decides to host a page. Both transactions include a proof of
ownership of the included hostname.

DRAFT

8 Chapter 1. Introduction

Protocol A set of rules how nodes communicate with each other and how the transmitted
packages look like. In the wider sense also how multiple blockchains are managed.

Content Owner The entity that currently owns a page with related blockchain. Ownership
is reflected by a crypographical keypair.

Co-Host An entity that hosts a page with related blockchain that it does not own.
Website A website typically includes at least html, css, javascript files and images.
Snapshot A version of a website that is distributed from the content creator to all co-hosts.

A new snapshot is announced in a UPDATE transaction and co-host upgrades are
announces by CLONE transactions.

Node A host that is able to communicate with other participants in the network. Generally
a node is capable to manage blockchains and distributed snapshots.

Overlay Network An overlay network is logical network structure on top of physical
network. The main overlay networks are the connections between different nodes that
share the same blockchain. Another overlay network is the filesharing peer-to-peer
network.

1.2 Hosting Paradigm Shift

This Whitepaper specifies a new protocol and blockchain that will change the hosting of
semi-static pages - like blogs, company, private and news pages. Instead of retrieving
pages from a specific location, they are hosted directly on end-user devices. The distributed
hosting algorithm and protocol, specified here, takes care of the optimal location for each
page. By taking into account different metrics, like response times, availability and/or
relevance, the perfect place for each page will be found after some time. This not only
increases the performance for single page accesses, but reduced also network load and
hence increases the overall network health.

Additional to the increased performance, the underlying blockchain assures the cor-
rectness and validity of each page, also, or especially, if hosted by a random node in the
network. This validation mechanism is then used to create a reputation system, allowing
blocking of malicious nodes that have a reputation score that is lower than a threshold
value.

This mechanism, together with the page distribution algorithm, makes the network
self-managing, self-healing and robust against changes.

By design the Distributed Hosting Engine is censorship resistance, but only under the
assumption that there are enough nodes that are willing to host the page. This moves
responsibility what could be hosted from a central authority to the collective.

From an economical point of view, the here proposed approach, allows the creation
of an interoperable hosting ecosystem. Each hosting provider acts as clone and has no
direct access to the page, but can support the user with additional (paid or free) services
and hosting space. By design a switch from one hosting provider to another one does not
affect the hosting of the page, nor the page itself. Technical there is not even a migration
happening, only a switch from one complementary service to another one.

DRAFT

1.3 Use Cases 9

1.3 Use Cases
1.3.1 Simple Blog Hosting

Jane Doe creates locally a new blog with the help of the jekyll static site generator [Pre15].
The Distributed Hosting Engine software takes in the background care of the generation of
a new blockchain for this page and the distribution to a bunch of neighbour nodes. After
some time, when the page was successfully distributed, Jane switches off her laptop. Even
though offline, John can access her blog, because he has previously cloned the page content
and has the complete blockchain locally.

1.3.2 Shared Access with Optional Paid Service
John and Jane Doe share access to the same blog. Both have access to the same, related
blockchain of this page. John is not familiar with website programming, so he decides
to pay for a service in order to have a higher level frontend that allows him to generate
pages via a wizard. Jane on the other side is a senior web developer and decides not to pay
for any service, but to develop the page by her own without using an external service and
hence for free.

DRAFT

DRAFT
2. Empowering Technology

This chapter explains the technologies that make the Distributed Hosting Engine pos-
sible. Most notable the concept of Blockchains for the distributed management and
self-organization of pages and Tor Hidden Services that not only protect the privacy of all
involved parties, but that also allows to host pages behind NATs and Firewalls.

2.1 Blockchain
Blockchain is a rather new concept, with a lot of potential. A Blockchain is a distribute
ledgers that prevents double spending without a central authority. The first time the
Blockchain was mentioned and implemented was for Bitcoin [Nak08].

2.2 Tor Hidden Services
Tor hidden services are generally used to host pages anonymously and protect visitors and
hosters alike. In the scope of this whitepaper tor hidden services are used to enable hosting
from everywhere, no matter if the device is behind a NAT or a Firewall. This allows to host
pages from public wireless hotspots, from the office or from home. Without the possibility
to abstract away from public accessible IPs and the capability to circumvent Firewalls it
would not be possible to develop real distributed hosting on end-user devices.

DRAFT

DRAFT
3. Ecosystem

3.1 Hosting Provider
TODO: Explain here the role change of hosting providers. For example: A hosting
provider does provide service on top of the blockchain, like page generators and frontends
for page publications and updates. If a hosting provider decides to host a page, it is only
one clone out of many without special role.

By introducing the Distributed Hosting Engine the role of hosting providers will change.
Instead of being the only entity that hosts an instance of a page, they will be part of an
overall network of hosters. The hosting responsibility is shared between always-on devices,
like servers and partially-on devices, like laptops or desktop computers. Additional a single
hosting provider will not be able to control the distribution of the page, because that is
determined by the collective of nodes in the network. That said, hosting providers are
playing an important role in the overall ecosystem. They not only guarantee uptime of
pages by hosting them 24/7, but can also provide additional services that abstract away
from the underlying blockchain and page development. Especially the former point is
important in the early stage of the network and/or when a new page joins the network. A
bigger network with pages that had time to distribute in an optimal way makes dedicated
hosting servers unnecessary.

3.2 Complementary Services
TODO: Figure out what alternatives services could be provided by the ecosystem. This
includes also new business ideas for new types of startups.

Hosting Space As mentioned in the previous section, in the early stage there is a need
for 24/7 online hosting servers in order to guarantee uptime. These Clones are not

DRAFT

14 Chapter 3. Ecosystem

different than any other clone, except that they are always online.
Page Generation The countless simple page generation services that exists today can be

used to support non-technical users to host their pages.
Host Wallets Like Bitcoin Wallets this Host Wallets manage all pages related to one users.

Not really recommended for security reasons, because private keys are controlled by
the Host Wallet provider.

DRAFT
II

4 Blockchain Specification 17
4.1 Transaction Definition
4.2 Block Definition
4.3 Mining Process

5 Protocol Specification 21
5.1 Blockchain Overlay Network
5.2 Data Overlay Network
5.3 Hosting Algorithm
5.4 Node Handling
5.5 Scenarios

Specifications

DRAFT

DRAFT
4. Blockchain Specification

4.1 Transaction Definition
This section defines transactions and their relationship to each other and to external data.
It also defines a (de-)serialization format to and from the binary format that is transferred
over the wire. In Figure 4.1 a chain of transactions, with relevant fields, is shown. This
example includes three hosts that have cloned the page and in total three updates.

Figure 4.1: Transaction chain example for one page.

4.1.1 Transaction Definition
Update transactions can only be created by the page creator. Additional to the proof of
ownership they also include a reference to the new content, with related checksums.

DRAFT

18 Chapter 4. Blockchain Specification

TRANSACTION HEADER
TransactionID Double SHA256 hash of this transaction.
Parent The previous update TransactionID
ScriptSig TODO Future Work: Proof here ownernship of the host-

name and all requirements that come with this update.
Hostname The tor hidden service onion hostname of this page. Tor

hidden services are needed to be able to host page behind
firewalls and NATs. Additional they protect the identity of
the content owner and more importantly of clone hosts.

CONTENT SECTION
Snapshot The hash value of the content. This hash value is used

to find all peers in the Distributed Hash Table (DHT) that
share currently this snapshot. The DHT is bootstrapped by
using all active hostname in the blockchain. For increased
compatibility the MAGNET URI scheme is used.

SnapshotChecksum Checksum of the Snapshot content, used to verify the down-
loaded data.

ResponseChecksum Checksums for all endpoints of this page. Makes each page
verifiable and hence could be served by a random node. If
the returned content does not match the here checksum the
response is invalid.

Flags TODO Future Work: Could be used for differentiation
between incremental and full updates, but also indicating
that this page is not hosted anymore and could be deleted.

4.1.2 CLONE Transaction Definition

TODO: This transaction can be merge with the UPDATE transaction. They do not differ
too much, except that they have different Flags content and that the CLONE transaction
does not include all fields.

Clone transactions are created and propagated by all hosts that start hosting a page or
if they receive a new update transaction. This transactions always link back to exactly one
update transaction.

TransactionID Double SHA256 hash of this transaction.
Parent The previous update TransactionID
ScriptSig TODO Future Work: Proof here ownernship of the host-

name and all requirements that come with this update.
Hostname The tor hidden service onion hostname of this page. Tor

hidden services are needed to be able to host page behind
firewalls and NATs. Additional they protect the identity of
the content owner and more importantly of clone hosts.

Flags Possible values are: CLONE when new update was received
or PURGE if the page is not hosted anymore.

DRAFT

4.2 Block Definition 19

4.2 Block Definition
TODO: Define here the block as transmitted via the network and how it will be stored
(slightly different).

4.3 Mining Process
Note: This section is work in progress. The resulting description is a first naive solution.
Currently in discussion are multi- entity ownerships and a consensus network between
this small group of page owners, e.g. with Practical Byzantine Fault Tolerance (PBFT)
[C+99].

By definition each page in the hosting space has an own blockchain. In the Genesis
Block the Content Creator proofs ownership of this blockchain and hence the related page.
The assumption here is that only the Content Creator can update the page and that (s)he is
the only entity that has not intention to compromise the own page.

DRAFT

DRAFT
5. Protocol Specification

In Figure 5.1 the relationship between the page content (html, css, javascript, images...),
in the middle cloud, the data (above) and blockchain overlay network (below) is shown.
The network that manages the page content has not to be the same as the blockchain
network, but they maybe nearly identical or overlapping. The page content is not part of
the blockchain, but referenced from it. This allows to have no page content size limit and
the data exchange could be optimized.

TODO: Addition of the architecture figure.
The user browses a page and the proxy checks if it is hosted locally by querying the

database. If the query returns result(s) then it compares the results’ checksum with the one
computed as the SHA256 of the page’s files. Finally it returns to the user the first valid
available (online) hosted page (if any). In the case the query does not return any results,
the proxy sends a request to the Blockchain Handler with the page name. This component
is responsible for initially locating the page, by searching the DHT, afterwards it fetches
the Blockchain. Finally the proxy makes a HTTP call directly to the found host and the
hosting component which hosts the page .

5.1 Blockchain Overlay Network
The blockchain overlay network consists of nodes that are responsible for blockchain
exchanges. Each nodes keeps track of a set of blockchains, dependent on the surfing
behaviour of the user. Each blockchain includes a list of known nodes that are used to
keep track of updates insides this blockchain. As a matter of fact it is valid to say that the
overall network consists of multiple overlay networks, one for each blockchain or page.

After extracting the original host and all co-hosts from a blockchain, the node keeps
track about the performance of each found node and prioritises them. For the prioritisation
quality of service properties, like availability or correctness of received information, are

DRAFT

22 Chapter 5. Protocol Specification

Figure 5.1: Relationship between blockchain and page content from a network perspective.

used. The highest ranking nodes are used to keep track about updates and propagate
changes.

If a blockchain is known, new nodes can be found by extracting them from the
propagated CLONE transactions. If the blockchain is not yet known, the node accesses the
page for the first time, there are not fallback nodes if the original host is offline. For that
specific node the page looks like if it is offline, also if there enough co-host to satisfy the
request.

5.1.1 [REJECTED] Solution 1: Global Blockchain

One solution to this problem is to introduce a global blockchain that keeps track of all page
blockchains. By using the sidechain approach [Bac+14], the page blockchains could be
linked against the global blockchain. Each time a new co-hosts starts hosting a page and
propagates a CLONE transaction, in one of the sidechains, the global blockchain keeps
track of this change and adds this host to a list of co- hosts related to the sidechain. Without
going into detail how this could be specified and implemented, there are some problems
with this approach.

Dynamic Nature

In difference to the Bitcoin and other blockchains our approach relies on an external state
that can not be usefully modelled in transactions, through the high frequency of changes,
and that is the availability of co-hosts. Co-hosts are only relevant if they are online at a
given point in time. Keeping track of availability of nodes in a global blockchain is not only
counter productive, but also infeasible. A solution would be to keep track of all co-hosts
and let figure out the nodes what to node to contact. This makes it pretty inefficient if the
sidechain grows.

DRAFT

5.1 Blockchain Overlay Network 23

Scalability issue of block generation
The Bitcoin mining approach to solve the scalability problem by hashing power and
changing complexity based on the networks’ computation power is not suitable in this case.
The here presented blockchain has no underlying asset that has to be mined. This makes
the proof of work a waste of energy and time. For the same reason proof of stake is also
not suitable. The mentioned approaches in literature are suitable from a theoretical point
of view, but are not able to scale, e.g. “Practical Byzantine fault tolerance” [C+99].

5.1.2 [ACCEPTED] Solution 2: Distributed Hash Table lookup

An alternative solution is to avoid a global blockchain altogether and instead keep track of
co-hosts, related to the original page host, inside a Distributed Hash Table (DHT). For page
content, aka. snapshots, distributions a DHT is used to lookup which node has currently
the needed snapshot. After that the BitTorrent protocol is used to download and then
distributed the content further. With minimal or no modifications at all the same approach
can be used to lookup co-hosts, that are related to an original page host.

Every node in all blockchains is also part of this DHT and can be hence used as entry
point for lookups for all other blockchains. If a host does not have any blockchains at all,
publicly known hosts can be used as entrypoints. These entrypoints should be maintained
by the community.

Figure 5.2: Proposed solution, based on a Distributed Hash Table (DHT) for the first
lookup problem if the original host is offline.

Figure 5.2 explains that approach. Node 1 is the content creator and hosts a page.
Node 2 and 3 access the page, fetch the blockchain and start hosting. After propagating
a CLONE transaction to the network, they also announce themselves to the DHT. Each
time they continue hosting, e.g. coming back online, an announce messages is send. Node
4 wants to access the page of Node 1, but this node is currently offline. By looking up
all, currently online co-hosts Node 4 can choose in this example between Node 2 or 3, it
chooses Node 2.

DRAFT

24 Chapter 5. Protocol Specification

5.2 Data Overlay Network

5.3 Hosting Algorithm

5.4 Node Handling
All nodes assign priorities to its neighbor nodes in the overlay network. The priority, which
is a subjective metric, represents ratio of the response messages, Transaction or a Block,
requested from a specific host to the overall responses (from all the hosts).
score = receivedTransaction+receivedBlock

allResponses
The host, which receives the response message, increments always the allResponses

value but only the receivedTransaction or receivedBlock one for the host whose message
arrived first.

5.5 Scenarios
In this section the complete flow behaviour of the Framework for the basic scenarios is
presented. The analysis is based on the following scenarios:

1. In the first scenario, some user tries to access a webpage whose creator is up and
running.

2. In the second scenario, the creator of the requested page is offline. Nevertheless the
node that makes the request has already the blockchain of that page.

3. In the third scenario the owner of the requested page is offline and besides, the node
who makes the request, does not host this web page.

5.5.1 Page request for a page who’s owner is online

Figure 5.3: First access of a web page whose creator is online.

In particular, when the user types the url of his choice in his browser the Proxy is
triggered and makes a query to the local database. The local database returns an empty
result, which is interpreted as absence of a stored snapshot and the blockchain for this
page. Accordingly, the proxy sends a message to the Blockchain Handler that is going
to access a web page for the first time and makes an HTTP request to the owner of the web
page. The message to the Blockchain Handler is essential because this is the component
that stores statistics and decides which pages are hosted. Finally, the owner responds to the
HTTP request and the user accesses the page.

DRAFT

5.5 Scenarios 25

5.5.2 Page request for a page who’s owner is offline

Figure 5.4: A node fetches a page from a co-host because its creator is offline.The
blockchain of the page is stored locally.

In this case, when the url of the requested page is typed on the browser, the Proxy is
triggered. The database is then queried and a sorted list of the known hosts of the target
web page is returned. Typically, the returned list is sorted by the criteria described in
chapter to be specified/referenced.

Accordingly, the Proxy makes HTTP requests to the hosts of the list until it finds the
first available host. This procedure should be pretty quick because the higher a node is in
the list the better the chances are to be online and satisfy the request.

5.5.3 First access to a web page who’s owner is offline.

Figure 5.5: A node fetches a page from a co-host because its creator is offline.The list of
the co-hosts is provided by a DHT.

In this scenario, the Proxy queries the local database for the requested url and gets an
empty result because the specific blockchain is not stored. Accordingly, the Proxy sends
an HTTP request to the owner of the web page which fails too because the owner is offline.

Accordingly, the Proxy looks up the Distributed Hash Table (DHT) which is the
component that stores which nodes host which web page. The DHT returns a list with the

DRAFT

26 Chapter 5. Protocol Specification

co-hosts of the web page and then the Proxy starts sending HTTP requests to these nodes
until it receives the content of the web page.

DRAFT
III

Bibliography . 29

Appendix

DRAFT

DRAFT
Bibliography

[Bac+14] Adam Back et al. Enabling blockchain innovations with pegged sidechains.
2014. URL: http://www.bitcoin.fr/public/divers/docs/sidechains.
pdf (cited on page 22).

[C+99] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In:
OSDI. Volume 99. 1999, pages 173–186. URL: http://www.pmg.lcs.mit.
edu/papers/osdi99.pdf (cited on pages 19, 23).

[Nak08] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Con-
sulted 1 (2008), page 2012. URL: https://bitcoin.org/bitcoin.pdf
(cited on page 11).

[Pre15] Tom Preston-Werner. Jekyll - A simple, blog-aware, static site generator. 2015.
URL: http://jekyllrb.com/ (cited on page 9).

http://www.bitcoin.fr/public/divers/docs/sidechains.pdf
http://www.bitcoin.fr/public/divers/docs/sidechains.pdf
http://www.pmg.lcs.mit.edu/papers/osdi99.pdf
http://www.pmg.lcs.mit.edu/papers/osdi99.pdf
https://bitcoin.org/bitcoin.pdf
http://jekyllrb.com/

DRAFT

	Part I — Overview
	1 Introduction
	1.1 Terminology
	1.2 Hosting Paradigm Shift
	1.3 Use Cases

	2 Empowering Technology
	2.1 Blockchain
	2.2 Tor Hidden Services

	3 Ecosystem
	3.1 Hosting Provider
	3.2 Complementary Services

	Part II — Specifications
	4 Blockchain Specification
	4.1 Transaction Definition
	4.2 Block Definition
	4.3 Mining Process

	5 Protocol Specification
	5.1 Blockchain Overlay Network
	5.2 Data Overlay Network
	5.3 Hosting Algorithm
	5.4 Node Handling
	5.5 Scenarios

	Part III — Appendix
	Bibliography
	Index

