
Fuzzing with AFL

Michael Macnair
@michael_macnair

GrayHat, October 2020

Agenda

● Intro to fuzzing and AFL

● Exercise – fuzz a toy program

● Exercise - understanding test harnesses

● Practical fuzzing with AFL

● Challenges

● Tips, target selection, limitations

● Resources

● Challenges continue

Not Covering

● History of fuzzing
● Fuzzing without source
● Fuzzing over a network
● Target specific techniques
● Architecturally complex targets (e.g. kernel)
● Any tools other than afl (and a bit of libFuzzer)
● Running at scale
● Crash triage
● Current research

Background (1)

● Software: f(input) -> output
● Applies at any scale: PowerPoint, grep, the

Linux kernel, a library, a class, a function, a
snippet of code.

● Sometimes, f(unexpected_input) -> security
flaw

Background (2)

● Finding if there are any inputs that cause
security issues is difficult.
○ Design review, code review, static analysis,

dynamic analysis, …
● Dynamic analysis: run program on input,

check it doesn’t violate your constraints.
● Fuzzing

○ Simplest constraint: doesn’t crash.
○ Random inputs

● Surprisingly effective!

Background (3)

Fuzzing steps:

1. Pick a target
2. Identify inputs
3. Pick a fuzzing tool

(or write your own)
4. Make your target and

tool work together
5. Fuzz until done
6. Triage the results

Focus of this
workshop

What fuzzing is good for

● Finding crashes that can be triggered by input

● Running lots of tests that you never would

● Examples:

○ PDF readers; graphics; office suites; ..

○ libraries (images; audio; ...)

○ perl, clang, gcc, sqlite, ...

○ browsers

○ Unix tools: strings, file,

○ Crypto APIs, filesystem drivers, …

○ OS kernels

American Fuzzy Lop

a security-oriented fuzzer that employs a novel type of compile-time instrumentation and genetic
algorithms to automatically discover clean, interesting test cases that trigger new internal states
in the targeted binary.

Ubiquitously known as ‘afl’

The original version is no longer maintained: we now use afl++

Why afl?

● Joint best general purpose fuzzer
○ For C/C++/Objective C programs

● Effective
○ Fast – lots of test cases per second
○ Clever – test cases are well chosen

● Easiest to use

● (see also: libFuzzer)

What does afl do?

● Coverage guided fuzzer
● Compiler instruments code
● AFL learns code path taken for a given input
● Genetic algorithm - mutates inputs that hit new code paths*
● * technically new tuples of basicblock-basicblock
● Skips entries that provide a subset of coverage
● Probabilistically skips unfavoured entries

○ Slow / large
● Various mutation strategies - deterministic + random
● Dictionaries to help with magic values
● Pragmatic:

The tool can be thought of as a collection of hacks that have been tested in
practice, found to be surprisingly effective, and have been implemented in
the simplest, most robust way I could think of at the time.

Workshop Environment

● Your own VM, running the Docker container
● Edit remotely:

○ Terminal – nano, vim, emacs
○ Visual Studio Code – Remote SSH

● Or edit locally, sync to remote:
○ scp/rsync
○ git (fork the repo, push/pull)

● Alternatives:
○ Local docker:

docker run -it -u fuzzer --privileged mykter/afl-training /bin/bash
○ On host:

git clone https://github.com/mykter/afl-training.git

Practical 1

● Taking afl for a spin

● ssh fuzzer@<IP>

● IP & password: check your DMs!

● Instructions in workshop/quickstart/README.md

Status screen

Practical 1 - quickstart

● Walkthrough

● What did afl find?

● Why?

● What if you didn’t have the head seed?

● How might we find the easter egg?

Test Harnesses

● Create a harness that will:

○ Run in the foreground

○ Usefully process input on stdin (or a specified file)

■ Feed input to your target: whole program (maybe you just modified its main function), or
specific API, or function, or code snippet

○ Exit cleanly

○ Crash on an error, if going beyond crashes

○ (skip checksums + cryptographic integrity tests)

○ Use afl’s deferred forkserver + persistent mode

Practical 2 - Test Harness

● workshop/harness/README.md
● Create a fuzz harness for a library

Documentation

● AFLplusplus/docs/

● In particular

○ docs/life_pro_tips.txt

○ docs/README.md

○ llvm_mode/README.md

LLVM Mode

● Deferred forkserver: tell afl where to start each new process

○ Especially useful for processes with an expensive setup phase that isn’t dependent on input

● Persistent mode: don’t fork for each run, just loop around this bit of code

○ Especially useful for fast targets

● llvm_mode/README.md

Initial Test Cases

● (aka seed corpus)
● Don’t waste core-weeks trying to synthesise

your target’s input format (like this!)
● Find some real inputs that exercise as much

of the target as possible.
● From the README:

○ Keep the files small. Under 1 kB is ideal, although
not strictly necessary.

○ Use multiple test cases only if they are
functionally different from each other. There is no
point in using fifty different vacation photos to fuzz
an image library.

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

Sanitizers & Hardening

● Spot things you otherwise wouldn’t

○ Inputs that lead the code to do bad things that don’t crash

● UBSan, MSan, ASan, TSan

● AFL_HARDEN=1

● Mutually incompatible

○ Run at least one fuzzer with each sanitiser, and potentially with the different options AFL

supports, see the guidance in the afl++ README

https://github.com/AFLplusplus/AFLplusplus#b-using-multiple-coresthreads

Parallel Fuzzing

● Not as frictionless as the rest of afl
● Necessary for high performance
● Multicore

○ One main (–M) instance, one secondary (–S) per core.
All share the same output directory (-o).

● Multi machine
○ Lots and lots of secondary instances
○ Script to sync state directories periodically

● Run fuzzers with differing behaviours (sanitizers;
fuzzing algorithms)

● At a certain point, system call overheads often cap
the performance gains from multi-core fuzzing

Dictionaries

● afl-fuzz -x my.dict
● Help the fuzzer to access paths it otherwise

wouldn’t
● Get them from:

○ dictionaries folder
○ Auto dictionary with afl-clang-lto (llvm11+)
○ libFuzzer’s collection
○ libtokencap

■ subdir in afl, creates a dictionary by intercepting calls
like strcmp and memcmp.

■ Useful for identifying head in quickstart!
○ Source code review (/grep)

https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/fuzzers/dicts

Practical 3 - Challenges

● Recommended challenge order
1. libxml2
2. heartbleed
3. sendmail/1301
4. ntpq
5. date
6. cyber-grand-challenge
7. sendmail/1305

● Go!

● Regardless of what you attempt, do read all the
README.md, HINTS.md, and ANSWERS.md files for the
different challenges

Beyond memory corruption

● Add asserts to detect bad things, e.g.:

○ Send input into two different math/crypto libraries and asserts that their output is identical

○ assert that result of BN_sqr(x) == BN_mul(x,x) - CVE-2014-3570 in OpenSSL

○ assert if any filesystem changes have occurred – CVE-2014-6271 in Bash (shellshock)

Misc Tips

● Network targets
○ Ideally write a harness around the target function (e.g.

the parser)
○ Use inetd mode if your target supports it
○ Intercept network system calls, e.g. using preeny

● Disable checksums
● The queue directory contains a corpus of test

cases that exercise your program
○ Run it through CoverageSanitizer or gcov – see what

isn’t hit
○ Integrate into CI, check for no crashes
○ More?

● Resume a fuzzing run with -i- (robust, not
quick)

https://vegardno.blogspot.co.uk/2017/03/fuzzing-openssh-daemon-using-afl.html
https://www.volatileminds.net/2015/08/20/advanced-afl-usage-preeny.html

Triage Tips

● ASan traces can be helpful

● afl-tmin to minimise and simplify test cases whilst retaining the original
control flow

● “Unique” bugs are not unique! Fix ones you can and repeat.

● Memory limits can give false positives

● Scripting helps with lots of crashes (collect stdout/stderr; run with different
sanitizers; get a gdb backtrace; …)

When To Stop

● Never? Fuzz as part of continuous integration

● When the cycles counter is green

○ Last new path was found many cycles ago

○ Pending paths is zero

• If you want to stop earlier:

■ Cycles counter is blue (=> last new path was over a cycle ago)

■ It’s been running for a while (hours + millions of executions + at least 2 cycles)

■ Look at the output of afl-plot

• Remember to check code coverage

Limitations: fuzzing

● Hard to tell when to stop

● Tests the target in the exact configuration you provided, on the input source

you set up

● Can get stuck (e.g. checksums)

● Only notices problems that can be automatically detected

Limitations: afl

● Crashes only
○ Typical of most fuzzers

● stdin / file input only
● Linux/OSX only

○ Windows options: QEMU+Wine / winafl
● Need to build target from source

○ QEMU, Unicorn, Dynamorio
● Gets stuck on magic values

○ auto dictionary / Libtokencap / laf-intel can help
● Basic-block instrumentation won’t guide it

towards all crashes, e.g. x=1/(input – 1234)
● No native parallelisation

https://github.com/AFLplusplus/AFLplusplus/blob/stable/llvm_mode/README.lto.md#autodictionary-feature
https://github.com/AFLplusplus/AFLplusplus/blob/stable/llvm_mode/README.laf-intel.md

Target Selection

● Attributes that make a good target:

○ Parsers

○ Non memory safe languages (C, C++)

○ Legacy code

○ New code

○ Complex code

○ Code with a history of flaws

○ Code that no-one has looked at before

Non-targets

● Memory safe code, that doesn’t require high
availability, where you aren’t able to write a
harness that detects ‘bad’ conditions

● Popular 3rd party components that have a lot of
external attention (libpng, OpenSSL network
facing code, protobuf’s c++ implementation, etc
are all probably “fuzz clean”)

● Test/development/non-production components
● Components with no input?

Getting Started – Developers

● Fuzz anything suitable

○ Every parser written in a memory-unsafe language

● If you’re writing something, write a fuzz test harness and fuzz it.

● If you’re reviewing something, write a fuzz test harness and fuzz it

○ Show your team it, then next time ask them to fuzz it and show you the results

● For open source projects, write an OSS-Fuzz integration (and possibly even
get paid!)

https://www.google.com/about/appsecurity/patch-rewards/

libFuzzer

● The other top general purpose C/C++ fuzzer

● Part of LLVM

● Targets functions rather than programs

○ You always have to write a harness

● In-process -> faster (no forking)

● Similar algorithms to afl

Resources

● The afl docs/ directory
● libFuzzer

○ libFuzzer tutorial
○ libFuzzer workshop

● Ben Nagy’s “Finding Bugs in OS X using AFL” (video)
● The afl-users mailing list
● The smart fuzzer revolution (talk on the future of fuzzing): video / slides
● Papers: Fuzzing: Art, Science, and Engineering, then all the rest
● The fuzzing book - broad coverage
● More challenges from an EkoParty workshop
● Introduction to triaging crashes
● Google's ClusterFuzz and Microsoft's OneFuzz

Please give me feedback (it’s tiny and quick):
https://www.surveymonkey.co.uk/r/YMBP5DC

Thanks!

http://llvm.org/docs/LibFuzzer.html
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/Dor1s/libfuzzer-workshop
https://vimeo.com/129701495
https://groups.google.com/forum/#!forum/afl-users
https://www.youtube.com/watch?v=g1E2Ce5cBhI
https://docs.google.com/presentation/d/1FgcMRv_pwgOh1yL5y4GFsl1ozFwd6PMNGlMi2ONkGec/edit#slide=id.g190ecf0108_0_130
https://arxiv.org/pdf/1812.00140.pdf
https://github.com/wcventure/FuzzingPaper
https://www.fuzzingbook.org/
https://github.com/antonio-morales/EkoParty_Advanced_Fuzzing_Workshop
https://trustfoundry.net/introduction-to-triaging-fuzzer-generated-crashes/
https://github.com/google/clusterfuzz
https://github.com/microsoft/onefuzz
https://www.surveymonkey.co.uk/r/YMBP5DC

