
Optimization for Machine Learning
CS-439

Lecture 10: Accelerated Gradient Descent, Gradient-free, and Applications

Martin Jaggi

EPFL – github.com/epfml/OptML_course

May 12, 2023

github.com/epfml/OptML_course

Chapter X.1

Accelerated Gradient Descent

EPFL Optimization for Machine Learning CS-439 2/22

Smooth convex functions: less than O(1/ε) steps?

Fixing L and R = ∥x0 − x⋆∥, the error of gradient descent after T steps is O(1/T).

Lee and Wright [LW19]:

▶ A better upper bound of o(1/T) holds.

▶ A lower bound of Ω(1/T 1+δ) also holds, for any fixed δ > 0.

So, gradient descent is slightly faster on smooth functions than what we proved, but
not significantly.

EPFL Optimization for Machine Learning CS-439 3/22

First-order methods: less than O(1/ε) steps?

Maybe gradient descent is not the best possible algorithm?

After all, it is just some algorithm that uses gradient information.

First-order method:

▶ An algorithm that gains access to f only via an oracle that is able to return values
of f and ∇f at arbitrary points.

▶ Gradient descent is a specific first-order method.

What is the best first-order method for smooth convex functions, the one with the
smallest upper bound on the number of oracle calls in the worst case?

Nemirovski and Yudin 1979 [NY83]: every first-order method needs in the worst case
Ω(1/

√
ε) steps (gradient evaluations) in order to achieve an additive error of ε on

smooth functions.

There is a gap between O(1/ε) (gradient descent) and the lower bound!

EPFL Optimization for Machine Learning CS-439 4/22

Acceleration for smooth convex functions: O(1/
√
ε) steps

Nesterov 1983 [Nes83, Nes18]: There is a first-order method that needs only
O(1/

√
ε) steps on smooth convex functions, and by the lower bound of Nemirovski

and Yudin, this is a best possible algorithm!

The algorithm is known as (Nesterov’s) accelerated gradient descent.

A number of (similar) optimal algorithms with other proofs of the O(1/
√
ε) upper

bound are known, but there is no well-established “simplest proof”.

Here: a recent proof based on potential functions [BG17]. Proof is simple but not very
instructive (it works, but it’s not clear why).

EPFL Optimization for Machine Learning CS-439 5/22

Nesterov’s accelerated gradient descent

Let f : Rd → R be convex, differentiable, and smooth with parameter L. Choose
z0 = y0 = x0 arbitrary. For t ≥ 0, set

yt+1 := xt −
1

L
∇f(xt)

zt+1 := zt −
t+ 1

2L
∇f(xt)

xt+1 :=
t+ 1

t+ 3
yt+1 +

2

t+ 3
zt+1.

▶ Perform a “smooth step” from xt to yt+1.

▶ Perform a more aggressive step from zt to zt+1.

▶ Next iterate xt+1 is a weighted average of yt+1 and zt+1, where we compensate
for the more aggressive step by giving zt+1 a relatively low weight.

Why should this work??

EPFL Optimization for Machine Learning CS-439 6/22

Nesterov’s accelerated gradient descent: Error bound

Theorem
Let f : Rd → R be convex and differentiable with a global minimum x⋆; furthermore,
suppose that f is smooth with parameter L. Accelerated gradient descent yields

f(yT)− f(x⋆) ≤ 2L ∥z0 − x⋆∥2

T (T + 1)
, T > 0.

To reach error at most ε, accelerated gradient descent therefore only needs O(1/
√
ε)

steps instead of O(1/ε).

Recall the bound for gradient descent:

f(xT)− f(x⋆) ≤ L

2T
∥x0 − x⋆∥2, T > 0.

EPFL Optimization for Machine Learning CS-439 7/22

Nesterov’s accelerated gradient descent: The potential function

Idea: assign a potential Φ(t) to each time t and show that Φ(t+ 1) ≤ Φ(t).

Out of the blue: let’s define the potential as

Φ(t) := t(t+ 1) (f(yt)− f(x⋆)) + 2L ∥zt − x⋆∥2 .

If we can show that the potential always decreases, we get

T (T + 1) (f(yT)− f(x⋆)) + 2L ∥zT − x⋆∥2︸ ︷︷ ︸
Φ(T)

≤ 2L ∥z0 − x⋆∥2︸ ︷︷ ︸
Φ(0)

.

Rewriting this, we get the claimed error bound.

EPFL Optimization for Machine Learning CS-439 8/22

(optional material) Potential function decrease: Three Ingredients

Sufficient decrease for the smooth step from xt to yt+1:

f(yt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2; (1)

Vanilla analysis for the more aggressive step from zt to zt+1: (γ = t+1
2L , gt = ∇f(xt)):

g⊤
t (zt − x⋆) =

t+ 1

4L
∥gt∥2 +

L

t+ 1

(
∥zt − x⋆∥2 − ∥zt+1 − x⋆∥2

)
; (2)

Convexity (graph of f is above the tangent hyperplane at xt):

f(xt)− f(w) ≤ g⊤
t (xt −w), w ∈ Rd. (3)

EPFL Optimization for Machine Learning CS-439 9/22

(optional material) Potential function decrease: Proof
By definition of potential,

Φ(t+ 1) = t(t+ 1) (f(yt+1)− f(x⋆)) + 2(t+ 1) (f(yt+1)− f(x⋆)) + 2L ∥zt+1 − x⋆∥2 ,
Φ(t) = t(t+ 1) (f(yt)− f(x⋆)) + 2L ∥zt − x⋆∥2 .

Now, prove that ∆ := (Φ(t+ 1)− Φ(t))/(t+ 1) ≤ 0:

∆ = t (f(yt+1)− f(yt)) + 2 (f(yt+1)− f(x⋆)) +
2L

t+ 1

(
∥zt+1 − x⋆∥2 − ∥zt − x⋆∥2

)
(2)
= t (f(yt+1)− f(yt)) + 2 (f(yt+1)− f(x⋆)) +

t+ 1

2L
∥gt∥2 − 2g⊤

t (zt − x⋆)

(1)

≤ t (f(xt)− f(yt)) + 2 (f(xt)− f(x⋆))− 1

2L
∥gt∥2 − 2g⊤

t (zt − x⋆)

≤ t (f(xt)− f(yt)) + 2 (f(xt)− f(x⋆))− 2g⊤
t (zt − x⋆)

(3)

≤ tg⊤
t (xt − yt) + 2g⊤

t (xt − x⋆)− 2g⊤
t (zt − x⋆)

= g⊤
t ((t+ 2)xt − tyt − 2zt)

(algo)
= g⊤

t 0 = 0.
EPFL Optimization for Machine Learning CS-439 10/22

Chapter X.2

Zero-Order Optimization

EPFL Optimization for Machine Learning CS-439 11/22

Look mom no gradients!

Can we optimize minx∈Rd f(x) if without access to gradients?

meet the newest fanciest optimization algorithm,...
Random search

pick a random direction dt ∈ Rd

γ := argmin
γ∈R

f(xt + γdt) (line-search)

xt+1 := xt + γdt

EPFL Optimization for Machine Learning CS-439 12/22

Convergence rate for derivative-free random search
Theorem: Converges same as gradient descent - up to a slow-down factor d.

Proof. Assume that f is a L-smooth convex, differentiable function. For any γ, by
smoothness, we have:

f(xt + γdt) ≤ f(xt) + γ d⊤
t ∇f(xt) +

γ2L

2
∥dt∥2

Minimizing the upper bound, there is a step size γ̄ for which

f(xt + γ̄dt) ≤ f(xt)−
1

L

(d⊤
t

∥dt∥
∇f(xt)

)2

The step size γ we actually took (based on f directly) can only be better:

f(xt + γdt) ≤ f(xt + γ̄dt) .

Taking expectations, and using the Lemma Er(r
⊤g)2 = 1

d ∥g∥
2 for r ∼ sphere ⊆ Rd :

E[f(xt + γdt)] ≤ E[f(xt)]−
1

Ld
E[∥∇f(xt)∥2] .

EPFL Optimization for Machine Learning CS-439 13/22

Convergence rate for derivative-free random search

Same as what we obtained for gradient descent,
now with an extra factor of d. d can be huge!!!

Can do the same for different function classes, as before

▶ For convex functions, we get a rate of O(dL/ε) .

▶ For strongly convex, we get O(dL/µ log(1/ε)) .

Always d times the complexity of gradient descent on the function class.
credits to Moritz Hardt

EPFL Optimization for Machine Learning CS-439 14/22

Applications for derivative-free random search

Applications

▶ competitive method for Reinforcement learning

▶ memory and communication advantages: never need to store a gradient

▶ hyperparameter optimization, and other difficult e.g. discrete optimization
problems

EPFL Optimization for Machine Learning CS-439 15/22

Reinforcement learning

st+1 = f(st,at, et) .

where st is the state of the system, at is the control action, and et is some random
noise. We assume that f is fixed, but unknown.

We search for a control ‘policy’

at := π(a1, . . . ,at−1, s0, . . . , st) .

which takes a trajectory of the dynamical system and outputs a new control action.
Want to maximize overall reward

max
at

Eet

[N∑
t=0

Rt(st,at)
]

s.t. st+1 = f(st,at, et)

(s0 given)

Examples: Simulations, Games (e.g. Atari), Alpha Go

EPFL Optimization for Machine Learning CS-439 16/22

Chapter X.3

Adaptive & other SGD Methods

EPFL Optimization for Machine Learning CS-439 17/22

Momentum SGD

Momentum variant of SGD (Polyak, 1964)

pick a stochastic gradient gt

mt := β1mt−1 + (1− β1)gt (momentum term)

xt+1 := xt − γmt

(standard choice of gt := ∇fj(xt) for sum-structured objective functions f =
∑

j fj)

▶ momentum from previous gradients

▶ is a variant of the Nesterov acceleration seen before

▶ key element of deep learning optimizers, necessary for top accuracy

EPFL Optimization for Machine Learning CS-439 18/22

Adagrad

Adagrad is an adaptive variant of SGD

pick a stochastic gradient gt

update [Gt]i :=

t∑
s=0

([gs]i)
2 ∀i

[xt+1]i := [xt]i −
γ√
[Gt]i

[gt]i ∀i

▶ chooses an adaptive, coordinate-wise learning rate

▶ strong performance in practice

▶ Variants: Adadelta, Adam, RMSprop

EPFL Optimization for Machine Learning CS-439 19/22

Adam

Adam is a momentum variant of Adagrad

pick a stochastic gradient gt

mt := β1mt−1 + (1− β1)gt (momentum term)

[vt]i := β2[vt−1]i + (1− β2)([gs]i)
2 ∀i (2nd-order statistics)

[xt+1]i := [xt]i −
γ√
[vt]i

[mt]i ∀i

▶ faster forgetting of older weights

▶ momentum from previous gradients (see acceleration)

▶ (simplified version, without correction for initialization of m0,v0)

▶ strong performance in practice, e.g. for self-attention networks

EPFL Optimization for Machine Learning CS-439 20/22

SignSGD

Only use the sign (one bit) of each gradient entry:
SignSGD is a communication efficient variant of SGD.

pick a stochastic gradient gt

[xt+1]i := [xt]i − γt sign([gt]i) ∀i

(with possible rescaling of γt with ∥gt∥1)

▶ communication efficient for distributed training

▶ convergence issues

EPFL Optimization for Machine Learning CS-439 21/22

Bibliography

Nikhil Bansal and Anupam Gupta.
Potential-function proofs for first-order methods.
CoRR, abs/1712.04581, 2017.

Ching-Pei Lee and Stephen Wright.
First-order algorithms converge faster than o(1/k) on convex problems.
In ICML - Proceedings of the 36th International Conference on Machine Learning,
volume 97 of PMLR, pages 3754–3762, Long Beach, California, USA, 2019.

Yurii Nesterov.
A method of solving a convex programming problem with convergence rate
o(1/k2).
Soviet Math. Dokl., 27(2), 1983.

Yurii Nesterov.
Lectures on Convex Optimization, volume 137 of Springer Optimization and Its
Applications.
Springer, second edition, 2018.

Arkady. S. Nemirovsky and D. B. Yudin.
Problem complexity and method efficiency in optimization.
Wiley, 1983.

EPFL Optimization for Machine Learning CS-439 22/22

