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Coordinate Descent
Goal: Find x* € R? minimizing f(x). (Example: d = 2)

Idea: Update one coordinate at a time, while keeping others fixed.
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Coordinate Descent

Modify only one coordinate per step:

select i; € [d]

X¢+1 = X¢ + 7€y,

Two main variants:

» Gradient-based step-size:

Xt41 = X¢ — %vitf(xt) €,

P Exact coordinate minimization: solve the single-variable minimization
argmin, ¢ f(x¢ + ve;,) in closed form.
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Randomized Coordinate Descent

select 4; € [d] uniformly at random

X1 = X — %v’itf(xt) Ci;

P Faster convergence than gradient descent
(if coordinate step is significantly cheaper than full gradient step)
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Convergence Analysis

Assume coordinate-wise smoothness:

L
fx+ve) < f(x) +yVif(x) + =2 vx € RY, Vy € R, Vi

2

Is implied by coordinate-wise Lipschitz gradient:

IVif(x+~ei) — Vif(x)| < Ly,

Vx € RY, Wy € R, Vi.

» Additionally assume strong convexity
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Convergence Analysis: Linear Rate

Theorem
Let f be coordinate-wise smooth with constant L, and strongly convex with
parameter ;1 > 0. Then, coordinate descent with a step-size of 1/L,

Xe41 =X — £ Vi f(x0) €, .

when choosing the active coordinate iy uniformly at random, has an expected linear
convergence rate of

BLoa) 11 < (1= 22) [F6x0) = 1)
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Convergence Proof

Proof.
Plugging the update rule into the smoothness condition (same as in sufficient

decrease), we have

1
f(xe1) < flxe) = E\Vz‘tf(xt)fz-
Take expectation with respect to 7;:

E[f(x+1)] < f(Xt)**E [V, f () ]

- f(xa—% Vir )l
= ) - QdLwat)nz

[ Lemma: f strongly convex implies PL: 1(|V f(x)[|? > p(f(x) — f*) ¥x ]
Subtracting f* from both sides, we therefore obtain

Elf(xe1) = 7] < (1= 12) 1 (x) = f). .
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The Polyak-Lojasiewicz Condition

Definition: f satisfies the Polyak-Lojasiewicz Inequality (PL) if the following holds for
some p > 0,

VP> w(f(x) - ), V=

Lemma (Strong Convexity = PL)

Let f be strongly convex with parameter ;n > 0. Then f satisfies PL for the same p.

roof
or all x and y we have

I
F¥) 2 f0) + (VI).y = %) + 5 lly — x|
minimizing each side of the inequality with respect to y we obtain

Fx) > Fx) — ;anWx)u?.
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Linear Convergence without Strong Convexity

Examples satisfying PL:

> f(x):= g(Ax) for strongly convex g and arbitrary matrix A, including least
squares regression and many other applications in machine learning.

Linear convergence for all f satisfying the PL condition:

Corollary
For minimization of a function f which is coordinate-wise smooth with constant L,

satisfies the PL inequality, and has a non-empty solution set X*, random coordinate
descent with a step-size of 1/L has the expected linear convergence rate of

Bl e) — 1] < (1 2 7o) — 1]
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Importance Sampling

Uniformly random selection is not always best!
» individual smoothness constants L; for each coordinate ¢

fx+7ei) < f(x) +Vif(x) + 597

Coordinate descent using this modified selection probabilities P[i; = i] = Z;ZLW and

using a step-size of 1/L;, converges (Exercise 59) with the faster rate of
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Steepest Coordinate Descent

» Coordinate selection rule

iy = argmax |V, f(x¢)] .

1€[d]

“Greedy"” or steepest coordinate descent.
Deterministic vs random.
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Convergence of Steepest Coordinate Descent

Has same convergence rate as for random coordinate descent!

Use
max]V f(x Z]V f(x

(And: algorithm is deterministic, so no need to take expectations in the proof.)

Corollary
Steepest coordinate descent with a step-size of 1/L has the linear convergence rate of

Foc) = 1 < (1= 1) 1) = 7).

EPFL Optimization for Machine Learning CS-439 14/20



Faster Convergence of Steepest Coordinate Descent

Faster convergence can be obtained for this algorithm when the strong convexity of f
is measured with respect to the £1-norm instead of the standard Euclidean norm, i.e.

F(y) > () + (V)5 = x) + 5 ly = xI1.

Theorem

If f is coordinate-wise L-smooth, and strongly convex w.r.t. the {1-norm with
parameter (11 > 0, steepest coordinate descent with a step-size of 1/L has the linear
convergence rate of

fox) = £ < (1) [ x0) - 1.
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Faster Convergence of Steepest Coordinate Descent

Proof: Same as above theorem, but using the following lemma measuring the PL
inequality in the /,.-norm:

Lemma
Let f be strongly convex w.r.t. the £1-norm with parameter 1 > 0. Then f satisfies

LIVEENZ, > m(f(x) = ).

(Proof: omitted)
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Non-smooth objectives

Have proved everything for smooth f. What about non-smooth?

Figure: A smooth function: f(x) := ||x||%.

figure by Alp Yurtsever & Volkan Cevher, EPFL
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Non-smooth objectives

For general non-smooth f, coordinate descent fails: gets permanently stuck:

Figure: A non-smooth function: f(x) := ||x[|? + |21 — z2].

figure by Alp Yurtsever & Volkan Cevher, EPFL
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Non-smooth separable objectives
What if the non-smooth part is separable over the coordinates?

F(x) = g(x) + h(x)  with h(x) = hi(z),
» global convergence! i

1
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Figure: A non-smooth but separable function: f(x) := ||x/|% + ||x]|1.
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Applications

» Random coordinate descent
> is state-of-the-art for generalized linear models f(x) := g(Ax) + >, hi(z;).
Regression, classification (with different regularizers)

» Steepest coordinate descent

» Training with the help of GPUs
(or other hardware of limited memory):

Use steepest coordinates to decide which subset of the data A to put onto the GPU.
— DuHL algorithm used by IBM & NVIDIA. linkl, link2
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https://blogs.nvidia.com/blog/2018/03/20/big-blue-touts-partnership-with-nvidia-at-ibm-think-confab/
https://www.zurich.ibm.com/snapml/

