Optimization for Machine Learning CS-439

Lecture 7: Newton's and Quasi-Newton Methods

Martin Jaggi

EPFL – github.com/epfml/OptML_course April 21, 2023

Chapter 8

Newton's Method

1-dimensional case: Newton-Raphson method

Goal: find a zero of differentiable $f : \mathbb{R} \to \mathbb{R}$.

Method:

$$
x_{t+1} := x_t - \frac{f(x_t)}{f'(x_t)}, \quad t \ge 0.
$$

 x_{t+1} solves

$$
f(x_t) + f'(x_t)(x - x_t) = 0,
$$

The Babylonian method

Computing square roots: find a zero of $f(x) = x^2 - R$, $R \in \mathbb{R}_+$. Newton-Raphson step:

$$
x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)} = x_t - \frac{x_t^2 - R}{2x_t} = \frac{1}{2} \left(x_t + \frac{R}{x_t} \right).
$$

Starting far (large $x_0 > 0$), we move slowly:

$$
x_{t+1} = \frac{1}{2} \left(x_t + \frac{R}{x_t} \right) \ge \frac{x_t}{2}.
$$

E.g., from $x_0 = R \ge 1$, it takes $\mathcal{O}(\log R)$ steps to get x_t − √ $R < 1/2$ (Exercise [45\)](#page-0-0).

The Babylonian method - Takeoff

Starting close, x_0 $-$ √ $R < 1/2$ (achievable after $\mathcal{O}(\log R)$ steps), things will speed up:

$$
x_{t+1} - \sqrt{R} = \frac{1}{2} \left(x_t + \frac{R}{x_t} \right) - \sqrt{R} = \frac{x_t}{2} + \frac{R}{2x_t} - \sqrt{R} = \frac{1}{2x_t} \left(x_t - \sqrt{R} \right)^2.
$$

Assume $R\geq 1/4.$ Then all iterates have value at least $\sqrt{R}\geq 1/2.$ Hence we get

$$
x_{t+1} - \sqrt{R} \le \left(x_t - \sqrt{R}\right)^2.
$$

$$
x_T - \sqrt{R} \le \left(x_0 - \sqrt{R}\right)^{2^T} < \left(\frac{1}{2}\right)^{2^T}, \quad T \ge 0.
$$

To get $x_T\,-\,$ $\sqrt{R} < \varepsilon$, we only need $T = \log \log(\frac{1}{\varepsilon})$ steps!

EPFL Optimization for Machine Learning CS-439 5/33

The Babylonian method - Example

 $R = 1000$. IEEE 754 double arithmetic

- ▶ 7 steps to get $x_7 \sqrt{2}$ $1000 < 1/2$
- **► 3** more steps to get x_{10} equal to $\sqrt{1000}$ up to machine precision (53 binary digits).
- ▶ First phase: \approx one more correct digit per iteration
- Last phase, \approx double the number of correct digits in each iteration!

Once you're close, you're there. . .

Newton's method for optimization

1-dimensional case: Find a global minimum x^* of a differentiable convex function $f : \mathbb{R} \to \mathbb{R}$.

Can equivalently search for a zero of the derivative f' : Apply the Newton-Raphson method to f' .

Update step:

$$
x_{t+1} := x_t - \frac{f'(x_t)}{f''(x_t)} = x_t - f''(x_t)^{-1}f'(x_t)
$$

(needs f twice differentiable).

d-dimensional case: Newton's method for minimizing a convex function $f : \mathbb{R}^d \to \mathbb{R}$.

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - \nabla^2 f(\mathbf{x}_t)^{-1} \nabla f(\mathbf{x}_t)
$$

Newton's method $=$ adaptive gradient descent

General update scheme:

$$
\mathbf{x}_{t+1} = \mathbf{x}_t - H(\mathbf{x}_t) \nabla f(\mathbf{x}_t),
$$

where $H(\mathbf{x}) \in \mathbb{R}^{d \times d}$ is some matrix.

Newton's method: $H = \nabla^2 f(\mathbf{x}_t)^{-1}$.

Gradient descent: $H = \gamma I$.

Newton's method: "adaptive gradient descent", adaptation is w.r.t. the local geometry of the function at \mathbf{x}_t .

Convergence in one step on quadratic functions

A nondegenerate quadratic function is a function of the form

$$
f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\top M \mathbf{x} - \mathbf{q}^\top \mathbf{x} + c,
$$

where $M\in\mathbb{R}^{d\times d}$ is an invertible symmetric matrix, $\mathbf{q}\in\mathbb{R}^d, c\in R$. Let $\mathbf{x}^{\star}=M^{-1}\mathbf{q}$ be the unique solution of $\nabla f(\mathbf{x}) = \mathbf{0}$.

 \blacktriangleright \mathbf{x}^* is the unique global minimum if f is convex.

Lemma

On nondegenerate quadratic functions, with any starting point $\mathbf{x}_0 \in \mathbb{R}^d$, Newton's method yields $\mathbf{x}_1 = \mathbf{x}^*$.

Proof.

We have $\nabla f(\mathbf{x}) = M \mathbf{x} - \mathbf{q}$ (this implies $\mathbf{x}^\star = M^{-1}\mathbf{q}$) and $\nabla^2 f(\mathbf{x}) = M.$ Hence,

$$
\mathbf{x}_1 = \mathbf{x}_0 - \nabla^2 f(\mathbf{x}_0)^{-1} \nabla f(\mathbf{x}_0) = \mathbf{x}_0 - M^{-1}(M\mathbf{x}_0 - \mathbf{q}) = M^{-1}\mathbf{q} = \mathbf{x}^*.
$$

Affine Invariance

Newton's method is affine invariant

(invariant under any invertible affine transformation):

Lemma (Exercise [46\)](#page-0-0)

Let $f:\mathbb{R}^d\to\mathbb{R}$ be twice differentiable, $A\in\mathbb{R}^{d\times d}$ an invertible matrix, $\mathbf{b}\in\mathbb{R}^d$. Let $g:\mathbb{R}^d\to\mathbb{R}$ be the (bijective) affine function $g(\mathbf{y})=A\mathbf{y}+\mathbf{b},\mathbf{y}\in\mathbb{R}^d$. Finally, for a twice differentiable function $h : \mathbb{R}^d \to \mathbb{R}$, let $N_h : \mathbb{R}^d \to \mathbb{R}^d$ denote the Newton step for h , i.e.

$$
N_h(\mathbf{x}) := \mathbf{x} - \nabla^2 h(\mathbf{x})^{-1} \nabla h(\mathbf{x}),
$$

whenever this is defined. Then we have $N_{f \circ g} = g^{-1} \circ N_f \circ g.$

Affine Invariance

Newton step for $f \circ g$ on \mathbf{y}_t : transform \mathbf{y}_t to $\mathbf{x}_t = g(\mathbf{y}_t)$, perform the Newton step for f on ${\bf x}$ and transform the result ${\bf x}_{t+1}$ back to ${\bf y}_{t+1} = g^{-1}({\bf x}_{t+1})$. This means, the following diagram commutes:

Gradient descent suffers if coordinates are at different scales; Newton's method doesn't.

Minimizing the second-order Taylor approximation

Alternative interpretation of Newton's method:

Each step minimizes the local second-order Taylor approximation.

Lemma (Exercise [49\)](#page-0-0)

Let f be convex and twice differentiable at $\mathbf{x}_t \in \text{dom}(f)$, with $\nabla^2 f(\mathbf{x}_t) \succ 0$ being invertible. The vector x_{t+1} resulting from the Netwon step satisfies

$$
\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathbb{R}^d}{\text{argmin}} \ f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^\top (\mathbf{x} - \mathbf{x}_t) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_t)^\top \nabla^2 f(\mathbf{x}_t) (\mathbf{x} - \mathbf{x}_t).
$$

Local Convergence

We will prove: under suitable conditions, and starting close to the global minimum, Newton's method will reach distance at most ε to the minimum within $\log \log(1/\varepsilon)$ steps.

- \triangleright much faster than anything we have seen so far...
- ▶ ... but we need to start close to the minimum already.

This is a local convergence result.

Global convergence results that hold for every starting point were unknown for Newton's method until very recently [\[KSJ18\]](#page-32-0).

Once you're close, you're there. . .

Theorem

Let $f: \textbf{dom}(f) \to \mathbb{R}$ be twice differentiable with a critical point x^* . Suppose there is a ball $X \subseteq \textbf{dom}(f)$ with center \mathbf{x}^* , s.t.

(i) Bounded inverse Hessians: There exists a real number $\mu > 0$ such that

$$
\|\nabla^2 f(\mathbf{x})^{-1}\| \le \frac{1}{\mu}, \quad \forall \mathbf{x} \in X.
$$

(ii) Lipschitz continuous Hessians: There exists a real number $B \geq 0$ such that

$$
\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\| \le B \|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in X.
$$

Then, for $x_t \in X$ and x_{t+1} resulting from the Newton step, we have

$$
\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\| \leq \frac{B}{2\mu} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2.
$$

Super-exponentially fast

Corollary (Exercise [47\)](#page-0-0)

With the assumptions and terminology of the convergence theorem, and if

$$
\|\mathbf{x}_0 - \mathbf{x}^{\star}\| \leq \frac{\mu}{B},
$$

then Newton's method yields

$$
\|\mathbf{x}_T - \mathbf{x}^{\star}\| \le \frac{\mu}{B} \left(\frac{1}{2}\right)^{2^T - 1}, \quad T \ge 0.
$$

Starting close to a critical point \mathbf{x}^* , we will reach distance at most ε to \mathbf{x}^* within $\mathcal{O} \big(\log \log (1/\varepsilon) \big)$ steps.

Bound as for the last phase of the Babylonian method.

Super-exponentially fast — intuitive reason

Almost constant Hessians close to optimality. . .

 \ldots so f behaves almost like a quadratic function which has truly constant Hessians and allows Newton's method to convergence in one step.

Lemma (Exercise [48\)](#page-0-0)

With the assumptions and terminology of the convergence theorem, and if ${\bf x}_0 \in X$ satisfies

$$
\|\mathbf{x}_0 - \mathbf{x}^{\star}\| \leq \frac{\mu}{B},
$$

then the Hessians in Newton's method satisfy the relative error bound

$$
\frac{\left\|\nabla^2 f(\mathbf{x}_t) - \nabla f^2(\mathbf{x}^*)\right\|}{\|\nabla f^2(\mathbf{x}^*)\|} \le \left(\frac{1}{2}\right)^{2^t - 1}, \quad t \ge 0.
$$

Proof of convergence theorem

We abbreviate $H:=\nabla^2f$, ${\bf x}={\bf x}_t,{\bf x}'={\bf x}_{t+1}.$ Subtracting ${\bf x}^\star$ from both sides of the Newton step definition:

$$
\mathbf{x}' - \mathbf{x}^* = \mathbf{x} - \mathbf{x}^* - H(\mathbf{x})^{-1} \nabla f(\mathbf{x})
$$

= $\mathbf{x} - \mathbf{x}^* + H(\mathbf{x})^{-1} (\nabla f(\mathbf{x}^*) - \nabla f(\mathbf{x}))$
= $\mathbf{x} - \mathbf{x}^* + H(\mathbf{x})^{-1} \int_0^1 H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x}))(\mathbf{x}^* - \mathbf{x}) dt,$

using the fundamental theorem of calculus

$$
\int_a^b h'(t)dt = h(b) - h(a)
$$

with

$$
h(t) = \nabla f(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})),
$$

\n
$$
h'(t) = \nabla^2 f(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x}))(\mathbf{x}^* - \mathbf{x}).
$$

Proof of convergence theorem, II

We so far have

$$
\mathbf{x}' - \mathbf{x}^* = \mathbf{x} - \mathbf{x}^* + H(\mathbf{x})^{-1} \int_0^1 H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x}))(\mathbf{x}^* - \mathbf{x}) dt.
$$

With

$$
\mathbf{x} - \mathbf{x}^* = H(\mathbf{x})^{-1}H(\mathbf{x})(\mathbf{x} - \mathbf{x}^*) = H(\mathbf{x})^{-1}\int_0^1 -H(\mathbf{x})(\mathbf{x}^* - \mathbf{x})dt,
$$

we further get

$$
\mathbf{x}' - \mathbf{x}^* = H(\mathbf{x})^{-1} \int_0^1 \big(H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x}) \big) (\mathbf{x}^* - \mathbf{x}) dt.
$$

Taking norms, we have

$$
\|\mathbf{x}'-\mathbf{x}^{\star}\| \leq \|H(\mathbf{x})^{-1}\| \cdot \left\| \int_0^1 \left(H(\mathbf{x}+t(\mathbf{x}^{\star}-\mathbf{x})) - H(\mathbf{x}) \right) (\mathbf{x}^{\star}-\mathbf{x}) dt \right\|,
$$

because $||Ay|| \le ||A|| \cdot ||y||$ for any A, y (by def. of spectral norm).

EPFL Optimization for Machine Learning CS-439 18/33

Proof of convergence theorem, III

We so far have

$$
\|\mathbf{x}' - \mathbf{x}^*\| \leq \|H(\mathbf{x})^{-1}\| \cdot \left\| \int_0^1 \left(H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x}) \right) (\mathbf{x}^* - \mathbf{x}) dt \right\|
$$

\n
$$
\leq \|H(\mathbf{x})^{-1}\| \int_0^1 \left\| \left(H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x}) \right) (\mathbf{x}^* - \mathbf{x}) \right\| dt \quad \text{(Ex. 51)}
$$

\n
$$
\leq \|H(\mathbf{x})^{-1}\| \int_0^1 \left\| H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x}) \right\| \cdot \|\mathbf{x}^* - \mathbf{x}\| dt
$$

\n
$$
= \|H(\mathbf{x})^{-1}\| \cdot \|\mathbf{x}^* - \mathbf{x}\| \int_0^1 \|H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x})\| dt.
$$

We can now use the properties (i) and (ii) (bounded inverse Hessians, Lipschitz continuous Hessians) to conclude that

$$
\|\mathbf{x}' - \mathbf{x}^{\star}\| \leq \frac{1}{\mu} \|\mathbf{x}^{\star} - \mathbf{x}\| \int_0^1 B \|t(\mathbf{x}^{\star} - \mathbf{x})\| dt = \frac{B}{\mu} \|\mathbf{x}^{\star} - \mathbf{x}\|^2 \underbrace{\int_0^1 t dt}_{1/2} = \frac{B}{2\mu} \|\mathbf{x} - \mathbf{x}^{\star}\|^2.
$$

Strong convexity \Rightarrow Bounded inverse Hessians

One way to ensure bounded inverse Hessians is to require strong convexity over X . Lemma (Exercise [52\)](#page-0-0)

Let f : $\text{dom}(f) \to \mathbb{R}$ be twice differentiable and strongly convex with parameter μ over an open convex subset $X \subseteq \textbf{dom}(f)$ meaning that

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.
$$

Then $\nabla^2 f(\mathbf{x})$ is invertible and $\|\nabla^2 f(\mathbf{x})^{-1}\| \leq 1/\mu$ for all $\mathbf{x} \in X$, where $\|\cdot\|$ is the spectral norm.

Downside of Newton's method

Computational bottleneck in each step:

 \triangleright compute and invert the Hessian matrix

▶ or solve the linear system $\nabla^2 f(\mathbf{x}_t) \Delta \mathbf{x} = -\nabla f(\mathbf{x}_t)$ for the next step $\Delta \mathbf{x}$.

Matrix / system has size $d \times d$, taking up to $\mathcal{O}(d^3)$ time to invert / solve. In many applications, d is large...

The secant method

Another iterative method for finding zeros in dimension 1

Start from Newton-Raphson step

$$
x_{t+1} := x_t - \frac{f(x_t)}{f'(x_t)},
$$

Use finite difference approximation of $f'(x_t)$:

$$
f'(x_t) \approx \frac{f(x_t) - f(x_{t-1})}{x_t - x_{t-1}}.
$$

(for $|x_t - x_{t-1}|$ small)

Obtain the secant method:

$$
x_{t+1} := x_t - f(x_t) \frac{x_t - x_{t-1}}{f(x_t) - f(x_{t-1})}
$$

▶ construct the line through the two points $(x_{t-1}, f(x_{t-1}))$ and $(x_t, f(x_t))$; ▶ next iterate x_{t+1} is where this line intersects the x-axis (Exercise [53\)](#page-0-0)

The secant method III

We now have a derivative-free version of the Newton-Raphson method.

Secant method for optimization: Can we also optimize a differentiable univariate function f ? — Yes, apply the secant method to f' :

$$
x_{t+1} := x_t - f'(x_t) \frac{x_t - x_{t-1}}{f'(x_t) - f'(x_{t-1})}
$$

▶ a second-derivative-free version of Newton's method for optimization.

Can we generalize this to higher dimensions to obtain a Hessian-free version of Newton's method on \mathbb{R}^d ?

The secant condition

Apply finite difference approximation to f'' (still 1-dim),

$$
H_t := \frac{f'(x_t) - f'(x_{t-1})}{x_t - x_{t-1}} \approx f''(x_t)
$$

$$
f'(x_t) - f'(x_{t-1}) = H_t(x_t - x_{t-1}),
$$

the secant condition.

⇔

▶ Newton's method: $x_{t+1} := x_t - f''(x_t)^{-1} f'(x_t)$ ▶ Secant method: $x_{t+1} := x_t - H_t^{-1} f'(x_t)$

In higher dimensions: Let $H_t \in \mathbb{R}^{d \times d}$ be a symmetric matrix satisfying the d-dimensional secant condition

$$
\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}) = H_t(\mathbf{x}_t - \mathbf{x}_{t-1}).
$$

The secant method step then becomes

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - H_t^{-1} \nabla f(\mathbf{x}_t). \tag{1}
$$

Quasi-Newton methods

Newton: $\mathbf{x}_{t+1} := \mathbf{x}_t - \nabla^2 f(\mathbf{x}_t)^{-1} \nabla f(\mathbf{x}_t)$ Secant $\mathbf{x}_{t+1} := \mathbf{x}_t - H_t^{-1} \nabla f(\mathbf{x}_t),$ where $\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}) = H_t(\mathbf{x}_t - \mathbf{x}_{t-1})$

If f is twice differentiable, secant condition and first-order approximation of $\nabla f(\mathbf{x})$ at x_t yield:

$$
\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}) = H_t(\mathbf{x}_t - \mathbf{x}_{t-1}) \approx \nabla^2 f(\mathbf{x}_t)(\mathbf{x}_t - \mathbf{x}_{t-1}).
$$

Might therefore hope that $H_t \approx \nabla^2 f(\mathbf{x}_t)$...

. . . meaning that the secant method approximates Newton's method.

 \blacktriangleright $d = 1$: unique number H_t satisfying the secant condition ▶ d > 1: Secant condition $\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}) = H_t(\mathbf{x}_t - \mathbf{x}_{t-1})$ has infinitely many symmetric solutions H_t (underdetermined linear system).

Any scheme of choosing in each step of the secant method a symmetric H_t that satisfies the secant condition defines a **Quasi-Newton method**.

EPFL Optimization for Machine Learning CS-439 26/33

Quasi-Newton methods II

- \triangleright Exercise [54:](#page-0-0) Newton's method is a Quasi-Newton method if and only if f is a nondegenerate quadratic function.
- ▶ Hence, Quasi-Newton methods do not generalize Newton's method but form a family of related algorithms.
- ▶ The first Quasi-Newton method was developed by William C. Davidon in 1956; he desperately needed iterations that were faster than those of Newton's method in order obtain results in the short time spans between expected failures of the room-sized computer that he used to run his computations on.
- ▶ But the paper he wrote about his new method got rejected for lacking a convergence analysis, and for allegedly dubious notation. It became a very influential Technical Report in 1959 [\[Dav59\]](#page-32-1) and was finally officially published in 1991, with a foreword giving the historical context [\[Dav91\]](#page-32-2). Ironically, Quasi-Newton methods are today the methods of choice in a large number of optimization applications.
- ▶ Here: no convergence analysis (for a change), we focus on development of algorithms from first principles.

Developing a Quasi-Newton method

For efficieny reasons (want to avoid matrix inversions!), directly deal with the inverse matrices H_t^{-1} .

Given: iterates $\mathbf{x}_{t-1}, \mathbf{x}_t$ as well as the matrix $H_{t-1}^{-1}.$

Wanted: next matrix H_t^{-1} needed in next Quasi-Newton step

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - H_t^{-1} \nabla f(\mathbf{x}_t).
$$

How should we choose H_t^{-1} ?

Newton's method: $\nabla f^2(\mathbf x_t)$ fluctuates only very little in the region of extremely fast convergence.

Hence, in a Quasi-Newton method, it also makes sense to have that $H_t \approx H_{t-1}$, or $H_t^{-1} \approx H_{t-1}^{-1}.$

Greenstadt's family of Quasi-Newton methods

Given: iterates $\mathbf{x}_{t-1}, \mathbf{x}_t$ as well as the matrix H_{t-1}^{-1} .

Wanted: next matrix H_t^{-1} needed in next Quasi-Newton step

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - H_t^{-1} \nabla f(\mathbf{x}_t).
$$

Greenstadt [\[Gre70\]](#page-32-3): Update

$$
H_t^{-1} := H_{t-1}^{-1} + E_t,
$$

 E_t an error matrix.

Try to minimize the errror subject to H_t satisfying the secant condition! Simple error measure: Frobenius norm

$$
||E||_F^2 := \sum_{i=1}^d \sum_{j=1}^d E_{ij}^2.
$$

Greenstadt's family of Quasi-Newton methods II

Greenstadt: minimizing $\left\Vert E\right\Vert _{F}$ gives just one method, this is "too specialized".

Greenstadt searched for a compromise between variability in the method and simplicity of the resulting formulas.

More general error measure

$$
\|AEA^\top\|_F^2,
$$

where $A \in \mathbb{R}^{d \times d}$ is some fixed invertible transformation matrix.

 $A = I$: squared Frobenius norm of E, the "specialized" method.

The Greenstadt Update $H_{t-1}^{-1} \rightarrow H_t^{-1}$

Secant condition in terms of H_t^{-1} :

$$
H_t^{-1}(\nabla f(\mathbf{x}_t)-\nabla f(\mathbf{x}_{t-1}))=(\mathbf{x}_t-\mathbf{x}_{t-1}).
$$

Fix t and simplify notation:

 H := H_{t-1}^{-1} (old inverse) $H' \quad := \quad H_t^{-1}$ (new inverse) $E \equiv E_t$. , (error matrix) σ := $x_t - x_{t-1}$ (step in solutions) $y = \nabla f(x_t) - \nabla f(x_{t-1})$ (step in gradients) $r = \sigma - Hy$ (error of old inverse in secant condition)

The update formula is

$$
H'=H+E,
$$

Secant condition becomes

$$
H'y = \sigma \quad (\Leftrightarrow Ey = r).
$$

The Greenstadt Update $H_{t-1}^{-1} \rightarrow H_t^{-1}$ II

Minimizing the error becomes a convex constrained minimization problem in the d^2 variables E_{ii} :

minimize
$$
\frac{1}{2} ||AEA^\top||_F^2
$$
 (error function)
subject to $Ey = \mathbf{r}$ (secant condition)
 $E^\top - E = 0$ (symmetry)

Don't need to solve it computationally (for numbers E_{ij}) ...

... but mathematically (formula for E)

Minimize convex quadratic function subject to linear equations \rightarrow analytic formula for the minimizer from the method of Lagrange multipliers.

Bibliography

F William C. Davidon.

Variable metric method for minimization.

Technical Report ANL-5990, AEC Research and Development, 1959.

William C. Davidon.

Variable metric method for minimization. SIAM J. Optimization, 1(1):1–17, 1991.

晶 J. Greenstadt.

Variations on variable-metric methods. Mathematics of Computation, 24(109):1–22, 1970.

冨 Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients. arXiv, 2018.