Optimization for Machine Learning
CS-439

Lecture 5: Stochastic Gradient Descent and Non-convex optimization

Martin Jaggi

EPFL — github.com/epfml/0OptML_course
March 24, 2023

github.com/epfml/OptML_course

Chapter 5

Stochastic Gradient Descent

EPFL Optimization for Machine Learning CS-439

2/31

Stochastic gradient descent

Many objective functions are sum structured:

Fo =3 i)
=1

Example: f; is the cost function of the i-th observation, taken from a training set of n
observation.

Evaluating V f(x) of a sum-structured function is expensive (sum of n gradients).

EPFL Optimization for Machine Learning CS-439

Stochastic gradient descent: the algorithm

choose xy € R,

sample ¢ € [n] uniformly at random

Xe1 i= Xg — VeV fi(%e).

for times t = 0,1,..., and stepsizes y; > 0.

Only update with the gradient of f; instead of the full gradient!
Iteration is n times cheaper than in full gradient descent.

The vector g, := V fi(x;) is called a stochastic gradient.

g: is a vector of d random variables, but we will also simply call this a random variable.

EPFL Optimization for Machine Learning CS-439

Unbiasedness

Can't use convexity
Fxe) = fF(x) < &/ (xe = x*)

on top of the vanilla analysis, as this may hold or not hold, depending on how the
stochastic gradient g; turns out.

We will show (and exploit): the inequality holds in expectation.

For this, we use that by definition, g; is an unbiased estimate of V f(x;):

E[g:|x; = x] = %ZVfi(x) =Vf(x), xeR%.
i=1

EPFL Optimization for Machine Learning CS-439

31

The inequality f(x;) — f(x*) < g/ (x; — x*) holds in expectation

For any fixed x, linearity of conditional expectations (Exercise 37) yields

E[gtT(X - X*)‘Xt =x| = E[gt‘xt = X]T(X —x*) = Vf(x)"(x —x*).

Event {x; = x} can occur only for x in some finite set X (x; is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise 37):

E[gj(xt -x")] = Z E[gtT(X - x*)‘xt = x| prob(x; = x)
xeX

= Z Vf(x)"(x —x*) prob(x; = x) = E[Vf(xt)T(xt —x")].

xeX
Hence, J convexity

Elg! (x¢ —x")] = E[V/(x¢) " (xt = x")] = E[f(xe) — f(x")].

EPFL Optimization for Machine Learning CS-439

Bounded stochastic gradients: O(1/¢?) steps
Theorem
Let f: R? = R be convex and differentiable, x* a global minimum, furthermore,
suppose that ||xo — x*|| < R, and that E[||g||*] < B? for all t. Choosing the constant

stepsize
R
R ——
BVT
stochastic gradient descent yields
T—1
1 RB
— E|f(x¢)]| — f(x") < —.
T g [f(t)] f() —= \/T

Same procedure as every week. . . except

P> we assume bounded stochastic gradients in expectation;

» error bound holds in expectation.

EPFL Optimization for Machine Learning CS-439 7/31

Bounded stochastic gradients: O(1/¢?) steps Il

Proof.
Vanilla analysis (this time, g; is the stochastic gradient):

T—

—_

T—
’Y
T —x) <23 gl + oo =2
= t=0

t

Taking expectations and using “convexity in expectation”:

T-1 T-1 ~ T— 1
B7x) — 1)) < S Blal - %] < 23 Bllad?] + o - <2
2 2y
t=0 t=0 t=0
7 2 2
< =BT —R .
-2 * 2y
Result follows as every week (optimize) . .. Ol

EPFL Optimization for Machine Learning CS-439 8/31

Convergence rate comparison: SGD vs GD

Classic GD: For vanilla analysis, we assumed that |V f(x)||? < B2y for all x € R¢,
where Bgp was a constant. So for sum-objective:

Pswnl' <ot

SGD: Assuming same for the expected squared norms of our stochastic gradients, now
called BZ.p.

1
EZHsz‘(X)”Q < Béep vx

So by Jensen's inequality for ||.||

2
2
LY V)| < 2 VG| ~ Bl
» B2, can be smaller than B2.p, but often comparable.
Very similar if larger mini-batches are used.

2
> B2~

EPFL Optimization for Machine Learning CS-439 9/31

Tame strong convexity: O(1/¢) steps
Theorem

Let f : RY — R be differentiable and strongly convex with parameter ji > 0; let x* be
the unique global minimum of f. With decreasing step size

2
T W+ 1)

stochastic gradient descent yields

2 & N 282
E[f<T(T+ 1) ;t'xt> —Jx)} S uTE1)
where B? := max{_, E[Hgt||2].

Almost same result as for subgradient descent, but in expectation.

EPFL Optimization for Machine Learning CS-439 10/31

Tame strong convexity: O(1/¢) steps Il
Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize ~;):

g/ (0 —x)] = JBlleil] + 5 (B[lx —] ~ B[t =[]

“Strong convexity in expectation”:
Blg) (x — x")] = B[V £(x) " (x = x)] 2 E[f(x0) — F()] + LB [— 7]

Putting it together (with E[|g:[*] < B?):

2 -1 _ -1
Bl () — F6)] < 252 + O 20 B g - 2] - B[st - 7).

Proof continues as for subgradient descent, this time with expectations. Ol

EPFL Optimization for Machine Learning CS-439 11/31

Mini-batch SGD

Instead of using a single element f;, use an average of several of them:
1 &
5, J
gt - m ;1 8t -

Extreme cases:
m = 1 < SGD as originally defined
m = n < full gradient descent

Benefit: Gradient computation can be naively parallelized

EPFL Optimization for Machine Learning CS-439 12/31

Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces
the variance. So for larger size of the mini-batch m, g; will be closer to the true
gradient, in expectation:

[y e ES SR

—— B} - V()]
2
= B[lg!] - LIVl <

m .

Using a modification of the SGD analysis, can use this quantity to relate convergence
rate to the rate of full gradient descent.

EPFL Optimization for Machine Learning CS-439 13/31

Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to use a
subgradient of f; in each iteration. The update of stochastic subgradient descent is
given by

sample ¢ € [n] uniformly at random
let g, € Of;(x¢)

Xt+1 = Xt — Vt8t-

In other words, we are using an unbiased estimate of a subgradient at each step,
Elg:|x:] € 0f (x).

Convergence in O(1/¢2), by using the subgradient property at the beginning of the
proof, where convexity was applied.

EPFL Optimization for Machine Learning CS-439 14/31

Constrained optimization

For constrained optimization, our theorem for the SGD convergence in O(1/£?) steps
directly extends to constrained problems as well.

After every step of SGD, projection back to X is applied as usual. The resulting
algorithm is called projected SGD.

EPFL Optimization for Machine Learning CS-439 15/31

Chapter 6

Non-convex Optimization

EPFL Optimization for Machine Learning CS-439 16/31

Gradient Descent in the nonconvex world

> may get stuck in a local minimum and miss the global minimum;

EPFL Optimization for Machine Learning CS-439 17/31

Gradient Descent in the nonconvex world I
Even if there is a unique local minimum (equal to the global minimum), we

> may get stuck in a saddle point;
» run off to infinity;
» possibly encounter other bad behaviors.

|
|
I * *
Xo Yy X X X0
° ¢

EPFL Optimization for Machine Learning CS-439 18/31

Gradient Descent in the nonconvex world 11

Often, we observe good behavior in practice.
Theoretical explanations mostly missing.

This lecture: under favorable conditions, we sometimes can say something useful about
the behavior of gradient descent, even on nonconvex functions.

EPFL Optimization for Machine Learning CS-439 19/31

Smooth (but not necessarily convex) functions

Recall: A differentiable f: dom(f) — R is smooth with parameter L € R, over a
convex set X C dom(f) if

/

F9) < F6+ 95Ty =)+ 5 Ix—yl% vy € X 1)

/

Definition does not require convexity.)/

EPFL Optimization for Machine Learning CS-439 20/31

Concave functions
f is called concave if —f is convex.

For all x, the graph of a differentiable concave function is below the tangent
hyperplane at x.

= concave functions are smooth with L = 0. .. but boring from an\optimization point
of view (no global minimum), gradient descent runs off to infinity

EPFL Optimization for Machine Learning CS-439

21/31

Bounded Hessians = smooth

Lemma
Let f : dom(f) — R be twice differentiable, with X C dom(f) a convex set, and

|V2f(x)|| < L for all x € X, where ||-|| is spectral norm. Then f is smooth with
parameter L over X.

Examples:

» all quadratic functions f(x) =x'Ax+b'x +c
» f(x) =sin(z) (many global minima)

EPFL Optimization for Machine Learning CS-439

Bounded Hessians = smooth |l

Proof.
By Theorem 1.10 (applied to the gradient function V f), bounded Hessians imply
Lipschitz continuity of the gradient,

Vi) =V < Llx=-yl, xyeX

To show that this implies smoothness, we use h(1) fo h'(t)dt with

h(t) == f(x+t(y —x)), tel0,1],

Chain rule:
W) = Vi(x+tly —x) (v - x).

EPFL Optimization for Machine Learning CS-439 23/31

Bounded Hessians = smooth Il

Proof.
For x,y € X:

f()f() Vi)' (v - x)
h(1) -

= h(0) () (y —x) (definition of h)

- /h’ Ydt — V(%) (y —x)
0
1

= | Vit) (y = x)dt — Vf(x) " (y — %)
1

N /0 (Vix+ty—x) (y —x) = VF(x) (y —x))dt
1

= | (Vfx+tly ~ Vi) (v - x)dt

0

EPFL Optimization for Machine Learning CS-439 24/31

Bounded Hessians = smooth IV
Proof.
For x,y € X:

fly) = f(x) = Vix) " (y —x)
1
- / (VF(x+tly —x)) = VF(x)) (y — x)dt

1
< [1Tty =) =) Ty =l
1
< /0 H (Vf(x +t(y —x)) — Vf(x)) || |(y — x)||dt (Cauchy-Schwarz)
< /1 L|t(y —x)| |[(y —x)||dt (Lipschitz continuous gradients (6.1))
0

1
L
2 2
= [ntlx-ylt = k- vl
0

EPFL Optimization for Machine Learning CS-439 25/31

Smooth = bounded Hessians?

Yes, over any open convex set X (Exercise 38).

EPFL Optimization for Machine Learning CS-439 26/31

Gradient descent on smooth functions
Will prove: |V f(x;)||? — 0 for t — oco. ..

...at the same rate as f(x;) — f(x*) — 0 in the convex case.

f(x¢) — f(x*) itself may not converge to 0 in the nonconvex case:

EPFL Optimization for Machine Learning CS-439 27/31

What does ||V f(x;)||* — 0 mean?

It may or may not mean that we converge to a critical point (Vf(y*) = 0)

o ---
<

»

»

»

[e)

X0

EPFL Optimization for Machine Learning CS-439 28/31

Gradient descent on smooth (not necessarily convex) functions

Theorem
Let f : R¢ — R be differentiable with a global minimum x*; furthermore, suppose that
f is smooth with parameter L according to Definition 2.2. Choosing stepsize

1
’)/ T L7
gradient descent yields

%ZHVth <*(f(X0)—f(X*)), T > 0.

In particular, |V f(x)||? < 2L (f(x (x*)) for somet € {0,...,T —1}.
And also, limy_s ||V f(x:)||* = (Exerc:se 39).

EPFL Optimization for Machine Learning CS-439 29/31

Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma 2.7), does not require convexity:

Floxrn) < Flox) = 5 IVFGIP, 120

Rewriting:

IV f(xe)I” < 2L(f(xt) — f(xe41))-

Telescoping sum:

*ﬂ

HVf(Xt)II2 < 2L(f(x0) — f(xr)) < 2L(f(x0) — f(x7)).

t

Il
=)

The statement follows (divide by T'). O

EPFL Optimization for Machine Learning CS-439 30/31

No overshooting

In the smooth setting, and with stepsize 1/L, gradient descent cannot overshoot, i.e.
pass a critical point (Exercise 40).

X X/ y* X y*X/ X X/ — y*

x' =x—-9Vf(x),y<1/L overshooting may happen with v = 1/L

EPFL Optimization for Machine Learning CS-439

31/31

