Optimization for Machine Learning
CS-439

Lecture 4: Proximal and Subgradient Descent

Nicolas Flammarion

EPFL — github.com/epfml/0OptML_course

March 17, 2023

github.com/epfml/OptML_course

Section 3.6

Proximal Gradient Descent

EPFL Optimization for Machine Learning CS-439

2/30

Composite optimization problems

Consider objective functions composed as

f(x) = g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional term, which however
doesn't satisfy the assumptions of niceness which we used in the convergence analysis
so far.

In particular, an important case is when h is not differentiable.

EPFL Optimization for Machine Learning CS-439 3/30

Idea

The classical gradient step for minimizing g:

. 1
xp+1 = argmin g(x¢) + Vg(x) (y — x¢) + ally — x|
Yy

For the stepsize v := % it exactly minimizes the local quadratic model of g at our current iterate xy,

formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add A unmodified.

. 1
X1 =argmin g(x) + Vg(x) ' (y — x¢) + gHy —x¢|* + h(y)
Yy

1
=argmin —[ly — (x¢ = 7Vg(x0)|* + h(y)
y i

the proximal gradient descent update.

EPFL Optimization for Machine Learning CS-439 4/30

The proximal gradient descent algorithm
An iteration of proximal gradient descent is defined as
Xt41 = proxy, . (x¢ — YVg(xt)) -

where the proximal mapping for a given function h, and parameter ~v > 0 is defined as

. 1
proxy . (z) := argmin {Q—Hy —z|* + h(y)} .
y g

The update step can be equivalently written as
Xep1 = Xt — VG (X¢)

for Gp, 4(x) := %(x — Proxy, (x — ’ng(x))) being the so called generalized gradient
of f.

EPFL Optimization for Machine Learning CS-439 5/30

A generalization of gradient descent?

» h = 0: recover gradient descent

» h = ix: recover projected gradient descent!

Given a closed convex set X, the indicator function of the set X is given as the
convex function

LX:IE{d—HRU—i-oo

{0 ifx € X,
X = Lx(X) =

+o00 otherwise.

Proximal mapping becomes

1 .
proxy, - (z) := argmin {2—||y —z|* + Lx(y)} = argmin [ly — z|*
Yy v yeX

EPFL Optimization for Machine Learning CS-439

6/30

Convergence in O(1/¢) steps

Same as vanilla case for smooth functions, but now for any h for which we can compute

the proximal mapping.

EPFL Optimization for Machine Learning CS-439

7/30

Subgradients
What if f is not differentiable?

Definition
g € R% is a subgradient of f at x if

fy) > fx)+g'(y—x) forally € dom(f)

f(z)

flz1) + i (z - xl)\
) L (@2) + 9s (z — x2)
f(xz) + g3 (x — x2)

93'1 33'2

- @)Iii(ﬁ}é)t\wcv‘fo%ic}lﬁeq_he subdijfferential, the set of subgradients of f at x.

earning

Subgradients |1

Example:

Yy

fy) > gy y—=—2y

Subgradient condition at z = 0: f(y) > f(0) + g(y — 0) = gy.
o1(0) = [-1,1]

EPFL Optimization for Machine Learning CS-439

Subgradients 1|

Lemma (Exercise 28)

If f:dom(f) — R is differentiable at x € dom(f), then 0f(x) C {V f(x)}.

Either exactly one subgradient Vf(x)... ...or no subgradient at all.

|
I
I
I
I
:
x y

EPFL Optimization for Machine Learning CS-439 10/30

Subgradient characterization of convexity
“convex = subgradients everywhere”

Lemma (Exercise 29)

A function f : dom(f) — R is convex if and only if dom(f) is convex and 0 f(x) # ()
for all x € dom(f).

f(x)

f(z1) + gf(a: — 301)
) /,f(wz) + g5 (z — x2)
f (@) g5 (x — x2)

:ﬁl :ﬁg

EPFL Optimization for Machine Learning CS-439 11/30

Convex and Lipschitz = bounded subgradients

Lemma (Exercise 30)

Let f: dom(f) — R be convex, dom(f) open, B € Ry. Then the following two
statements are equivalent.

(i) |lgll < B for all x € dom(f) and all g € 0f(x).
(i) [f(x) = f(y)| < Bllx —yl| for all x,y € dom(f).

EPFL Optimization for Machine Learning CS-439 12/30

Subgradient optimality condition

Lemma

Suppose that f: dom(f) — R and x € dom(f). If0 € Jf(x), then x is a global
minimum.

Proof.
By definition of subgradients, g = 0 € 0f(x) gives

fy) = fx) +g'(y —x) = f(x)

for all y € dom(f), so x is a global minimum. O

EPFL Optimization for Machine Learning CS-439 13/30

Differentiability of convex functions
How “wild” can a non-differentiable convex function be?

Weierstrass function: a function that is continuous everywhere but differentiable
nowhere

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg
EPFL Optimization for Machine Learning CS-439

14/30

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg

Differentiability of convex functions

Theorem ([Roc97, Theorem 25.5])

A convex function f : dom(f) — R is differentiable almost everywhere.
In other words:

» Set of points where f is non-differentiable has measure 0 (no volume).

» For all x € dom(f) and all € > 0, there is a point x’ such that ||x — x| < ¢ and
f is differentiable at x'.

EPFL Optimization for Machine Learning CS-439 15/30

The subgradient descent algorithm

Subgradient descent: choose xy € R®.

Let g: € Of (xt)

X1 = Xt — N8t
for times t = 0,1, ..., and stepsizes y; > 0.

Stepsize can vary with time!

This is possible in (projected) gradient descent as well, but so far, we didn’t need it.

EPFL Optimization for Machine Learning CS-439 16/30

Lipschitz convex functions: O(1/¢?) steps
Theorem

Let f:R? — R be convex and B-Lipschitz continuous with a global minimum x*;
furthermore, suppose that ||xg — x*|| < R. Choosing the constant stepsize

subgradient descent yields

1=
T
t—

—

fx) = f(x) <

B

Proof is identical to the one of Theorem 2.1, except. ..

» In vanilla analyis, now use g; € df(x;) instead of g, = V f(xy).
» Inequality f(x;) — f(x*) < g/ (x; — x*) now follows from subgradient property
instead of first-order charaterization of convexity.

EPFL Optimization for Machine Learning CS-439 17/30

Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if

these rates are best possible or not. Surprisingly, the rate can indeed not be improved
in general.

Theorem (Nesterov)

For any T < d — 1 and starting point xq, there is a function f in the problem class of

B-Lipschitz functions over R?, such that any (sub)gradient method has an objective
error at least RB
xr) — f(X*) > —— .

EPFL Optimization for Machine Learning CS-439 18/30

Smooth (non-differentiable) functions?
They don't exist (Exercise 31)!

f(@) = o]

At 0, graph can't be below a tangent paraboloid.
Can we still improve over O(1/¢2) steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent
paraboloids).

f(@)

f@1) + gf (= - Il).»
’ RICHES g1 (x — x3)
T f(@) + g5 (= @)

EPFL Optimization for Machine Learning CS-439 19/30

Strongly convex functions

“Not too flat”
Straightforward generalization to the non-differentiable case:
Definition

Let f: dom(f) — R be convex, u € Ry, > 0. Function f is called strongly convex
(with parameter p) if

F3) 2 fx) +87 (v =x) + Slx—yI’. vx,y € dom(f), Vg € 9f(x).

EPFL Optimization for Machine Learning CS-439 20/30

Strongly convex functions: characterization via “normal” convexity

Lemma (Exercise 33)

Let f: dom(f) — R be convex, dom(f) open, i € Ry, > 0. f is strongly convex
with parameter i if and only if f,, : dom(f) — R defined by

Julx) = 7(x) = S Ix]I*, x € dom({)

is convex.

EPFL Optimization for Machine Learning CS-439 21/30

Tame strong convexity

For fast convergence, we consider additional assumptions.
Smoothness? - Not an option in the non-differentiable case (Exercise 31).

Instead: assume that all subgradients g; that we encounter during the algorithm are
bounded in norm.

May be realistic if. ..

» we start close to optimality

» we run projected subgradient descent over a compact set X
May also fail!
» Over RY, strong convexity and bounded subgradients contradict each other!

(Exercise 35).

EPFL Optimization for Machine Learning CS-439

Tame strong convexity: O(1/¢) steps

Theorem

Let f: R? — R be strongly convex with parameter ;i > 0 and let x* be the unique
global minimum of f. With decreasing step size

2
=—, t>0,
T)
subgradient descent yields
T
2 2B?
- t- —) < _—
f(T<T+1> 2 Xt) 100 < 1)
where B = max]_, ||g||. 0

convex combination of iterates

EPFL Optimization for Machine Learning CS-439 23/30

Tame strong convexity: O(1/¢) steps Il
Proof.
Vanilla analysis (g¢ € 0f(x)):

Ve 1
g/ (x¢ — x*) = gl + 5— (Ilxe = x*|* = |xe1 — x*||%) .
2 2’)/15

Lower bound from strong convexity:
I
g (% —x") = flxi) = F(x") + 5l — x|

Putting it together (with ||g:||? < B?):

2 -1 _ -1
f(xt) _ f(X*) < By + (715 /'L)

2

||x¢ — x*

2
Summing over t = 1,...,T: we used to have telescoping (y; = v,u =0)...

EPFL Optimization for Machine Learning CS-439

kg — X

24/30

Tame strong convexity: O(1/¢) steps Il

Proof.
So far we have:
-1

B2 -1
Flo) — o) < 2004 QB e s - ey 2

To get telescoping, we would need 'y[l = 7;:1 — U
Works with ;' = 1u(1 +t), but not v, % = u(1 4 t)/2 (the choice here).
Exercise 36: what happens with 7[1 =p(l+1¢)?

Now: what happens with 7; ! = 1(1 4 t)/2 (the choice here)?

EPFL Optimization for Machine Learning CS-439 25/30

Tame strong convexity: O(1/¢) steps IV

Proof.

So far we have:

32 -1 -1
e e L e D B A

Plug in 7, ' = u(1 4 t)/2 and multiply with ¢ on both sides:

2
()=) € i+ B (1= 1) I = (04 Dt =)

B2 I * |12 * (|2
St t(t = 1) [lxe = x7[" = (€ + D)t [—x7[7).

EPFL Optimization for Machine Learning CS-439 26/30

Tame strong convexity: O(1/¢) steps V

Proof.
We have

* BQt Iu’ * *
E (F0a) = 10) < gy (= D I = o Dl =)

B2 w * |12 *(|2
§7+Z t(t—l) ”Xt—X ” —(t—i—l)t”Xt—f—l—X H .
Now we get telescoping. ..

T 2
SOt (f) — Fx) < o 4

t=1 H

T B2
o

RS

(0-T(T+1) Jxria —x*|*) <

EPFL Optimization for Machine Learning CS-439 27/30

Tame strong convexity: O(1/¢) steps VI
Proof.

Almost done:

4 W _TB? o . TB?
Dot (foe) = £6) < ==+ (0= T@ 4 1) eri =) < = =
Since
9 T
T(T—l—l)tzlt_l’

Jensen's inequality yields

2 T 9 T
f(T(T—f—l) ;t : Xt) - f(X*) < mZt . (f(Xt) — f(X*))

t=1

EPFL Optimization for Machine Learning CS-439 D 28/30

Tame strong convexity: Discussion

T
2 2B?
— NTtex) - fx) < 22
f(T(TH); > TGSy
Weighted average of iterates achieves the bound (later iterates have more weight)

Bound is independent of initial distance ||xo — x*||. ..

... but not really: B typically depends on ||xo — x*|| (for example, B = O(||xo — x*||)
for quadratic functions)

Recall: we can only hope that B is small (can be checked while running the algorithm)

What if we don't know the parameter i of strong convexity?

— Bad luck! In practice, try some pu's, pick best solution obtained

EPFL Optimization for Machine Learning CS-439 29/30

Bibliography

[@ R. Tyrrell Rockafellar.
Convex Analysis.
Princeton Landmarks in Mathematics. Princeton University Press, 1997.

EPFL Optimization for Machine Learning CS-439 30/30

