Optimization for Machine Learning
CS-439

Lecture 3: Faster, and Projected Gradient Descent

Nicolas Flammarion

EPFL — github.com/epfml/0OptML_course

March 10, 2023

github.com/epfml/OptML_course

Can we go even faster?

So far: Error decreases with 1/v/T, or 1/T...

Could it decrease exponentially in T7

EPFL Optimization for Machine Learning CS-439

2/37

Can we go even faster?

» On f(z) := a?: Stepsize v := % (f is L=2 - smooth)

1
Ti4+1 = Tt — §Vf($t> =Tt — Tt = 0,

» converged in one step!

» Same f(z) := x% Stepsize v := 1 (fis L=4 - smooth)

Tt Tt

1
Te+1 :xt—zvf(l’t) :xt_E 9

so f(z) = f (%) = %x%

» Exponential in ¢ !

EPFL Optimization for Machine Learning CS-439 3/37

Strongly convex functions

“Not too flat”

Definition
Let f : dom(f) — R be a differentiable function, X C dom(f) convex and
w € Ry, > 0. Function f is called strongly convex (with parameter p) over X if

) 2 [0+ V)T (y =x) + Sllx -y’ vxyex.

Lemma (Exercise 21)

If f is strongly convex with parameter . > 0, then f is strictly convex and has a

unique global minimum.

EPFL Optimization for Machine Learning CS-439

Strongly convex functions Il /
Strong convexity: For any x, the graph of f is above a///not too flat tangential

paraboloid at (x, f(x)): /

0+ V) (y = %)+ blx -y

EPFL Optimization for Machine Learning CS-439 5/37

Smooth and strongly convex functions: O(log(1/¢c)) steps

Want to show: lim;_,oo X; = xX*

Vanilla Analysis:

* ’y 1 * *
Vi) (% —x*) = §||Vf(><t)H2 o (Ixe = x*[1% = llxer1 —x*[|?)

Now use stronger lower bound on left hand side, coming from strong convexity:
V) (ke =X = f(x0) = J(x7) + 8 xe = %7

Putting it together:

o) = Fx) < -
Rewriting:

e+t = %2 < 29(f(x") = F(xe)) + PNV ()P + (1 = py) e — x|

EPFL Optimization for Machine Learning CS-439

7
(PIVFGOI” + I = %17 = [ean = x*%) = 5l = x|,

Smooth and strongly convex functions: O(log(1/¢<)) steps Il

e+t — 3|2 < 29(f(x") = F(xe)) + VNV (o)lI” + (1= py) e — x|

Squared distance to x* goes down by a constant factor, up to some “noise”.

Theorem

Let f : R — R be differentiable with a global minimum x*; suppose that f is smooth
with parameter L and strongly convex with parameter . > 0. Choosing v := %
gradient descent with arbitrary x satisfies the following two properties.

(i) Squared distances to x* are geometrically decreasing:
e =2 < (1= %) e = x*[%, 20
(ii) The absolute error after T iterations is exponentially small in T':

flxr) — f(x*) < L (1 - ﬁ)T |xo — x*||?, T >0.

EPFL Optimization for Machine Learning CS-439 - 2 L

Smooth and strongly convex functions: O(log(1/¢c)) steps IlI

e+t — 3|2 < 29(f(x") = F(xe)) + VNV (o)lI” + (1= py) e — x|

Proof of (i).

Bounding the noise:

29(f(x*) — f(x0)) +V2IV(x)|? =

IN

v =1/L , sufficient decrease

. 1
Z(F(x) = £00) + 197 e 2

2

2 (FGxurn) = F6)) + 25 IV S

2 IV AP + 25 VG = 0.

Hence, the noise is nonpositive, and we get (i):

Ierr = %1% < (1=)l = %72 = (1= 2 flxe = x|

EPFL Optimization for Machine Learning CS-439

L

Smooth and strongly convex functions: O(log(1/¢c)) steps IlI
Proof of (ii).
From (i):
T
Ier —x*2 < (1= 2 Jxo — x7)2

Smoothness together with V f(x*) = 0:

L L
Flxr) = F(x7) < V) (xr = x7) 4+ 5 er = %12 = 2 xr — %)
Putting it together:

L L T
foxr) = fx) < Slixe = x P < 5 (1= 2) lxo = x|

EPFL Optimization for Machine Learning CS-439 9/37

Smooth and strongly convex functions: O(log(1/¢)) steps IV

R? := ||xo — x*||2.

2 T
T2£1n <RL> = error §£<1—H) R2<e.
w 2

Conclusion: To reach absolute error at most &, we only need O(log %) iterations, e.g.

> %111(50 - R%L) iterations for error 0.01 ...

» ...as opposed to 50 - R?L in the smooth case

In Practice:
What if we don’t know the smoothness parameter L7

— (similar to) Exercise 15

EPFL Optimization for Machine Learning CS-439

10/37

Chapter 3

Projected Gradient Descent

EPFL Optimization for Machine Learning CS-439 11/37

Constrained Optimization

Constrained Optimization Problem

minimize f(x)

subject to xeX

Solving Constrained Optimization Problems

A Projected Gradient Descent

B Transform it into an unconstrained problem

EPFL Optimization for Machine Learning CS-439 12/37

Constrained Optimization

Solving Constrained Optimization Problems

minimize f(x)

subject to xeX

» Here: Projected Gradient Descent

EPFL Optimization for Machine Learning CS-439

13/37

Projected Gradient Descent
Idea: project onto X after every step: Ilx(y) := argmin,x |[|x — y||

Projected gradient descent: x;y1 :=1lx [xt — nyf(xt)]

EPFL Optimization for Machine Learning CS-439 14/37

The Algorithm

Projected gradient descent:

yir1 = X — YV f(x),
Xep1 = Hx(yee1) == argmin ||x — v 1]
xeX
for timesteps t =0, 1,..., and stepsize v > 0.

EPFL Optimization for Machine Learning CS-439 15/37

Properties of Projection
Fact

Let X C R? be closed and convex, x € X,y € RZ. Then

(i) x—Tx(y) ' (y —Ix(y)) <0.
(i) x = Ix ()| + ly = Ix(3)[1* < [lx =yl

y
o a>90°

EPFL Optimization for Machine Learning CS-439

16/37

Properties of Projection Il
Fact

Let X C R? be closed and convex, x € X,y € R%. Then

() (x—Tx(y)) " (y —Ix(y)) <O0.
(i) [lx = Ix(¥)I?+ [ly — Ix(y)]* < [x — y*.

Proof.
(i) ILx (y) is minimizer of (differentiable) convex function dy(x) = ||x — y||? over X.

By first-order characterization of optimality (Lemma 1.27),

0 < Vdy(Ix(y)) ' (x — Ix(y)

2(Mx(y) —y) " (x — Tx(y))
& 0 > 2y-—Ix(y))T(—Ix(y))
& 0 > (x—Tx(y) (y - Ix(y))

EPFL Optimization for Machine Learning CS-439 __17/37

Properties of Projection |1l
Fact

Let X C R? be closed and convex, x € X,y € RZ. Then

() (x—Tx(y)) " (y —Ix(y)) <O0.
(i) [lx = Ix(¥)I?+ [ly — Ix(y)]* < [x — y*.

Proof.

(ii)
vi=(x—1IIx(y)), w:=(y—Ix(y))

By (i),

0>2viw VI + (W] = [lv = wi®
=[x~ Tx()* + lly — Tx(¥)* ~ Ix - y]*

EPFL Optimization for Machine Learning CS-439 _18/37

Results for projected gradient descent over closed and convex X

The same number of steps as gradient over R

» Lipschitz convex functions over X: O(1/e?) steps
» Smooth convex functions over X: O(1/¢) steps

» Smooth and strongly convex functions over X: O(log(1/¢)) steps

We will adapt the previous proofs for gradient descent.

BUT:

» Each step involves a projection onto X

» may or may not be efficient (in relevant cases, it is). ..

EPFL Optimization for Machine Learning CS-439

19/37

Lipschitz convex functions over X: O(1/¢?) steps
Assume that all gradients of f are bounded in norm over closed and convex X.

» Equivalent to f being Lipschitz over X (Theorem 1.9; Exercise 12).
» Many interesting functions are Lipschitz over bounded sets X.

Theorem (same as the unconstrained one, but more useful)

Let f: R? — R be convex and differentiable, X C R® closed and convex, x* a
minimizer of f over X, furthermore, suppose that ||xo — x*|| < R with x¢ € X, and
that ||V f(x)|| < B for all x € X. Choosing the constant stepsize

projected gradient descent yields

1=

=)~ () <

t=

—_

38

EPFL Optimization for Machine Learning CS-439 20/37

Lipschitz convex functions: O(1/¢?) steps Il
Proof.

» Replace x;4+1 in the vanilla analysis with y;11 (the unprojected gradient step):

1
87 (xe = %) = o (el + lhxe = I =y = X))

> Use Fact (ii): [x = IIx(y)[* + ly — Ix(y)1* < [x - y*
» With x = x*,y = y¢+1, we have IIx(y) = x¢+1, and hence

Ix* = x| <% =yl

» We go back to the original vanilla analyis and continue from there as before:

1
gl (e~) < o (97l e) s —).

EPFL Optimization for Machine Learning CS-439 —21/37

Smooth functions over X

Recall:

f is called smooth (with parameter L) over X if

F9) < F6)+ 95Ty)+ 5k - yl% Wy e X,

EPFL Optimization for Machine Learning CS-439 22/37

Sufficient decrease

Lemma

Let f : R? — R be differentiable and smooth with parameter L over X. Choosing

stepsize
1
fy T L7

projected gradient descent with arbitrary xg € X satisfies

1 L
J(xeg1) < f(xe) — ﬁ”vf(xt)H2 + §HYt+1 —xi41]?, t>0.

Remark

More specifically, this already holds if f is smooth with parameter L over the line
segment connecting x; and X4 1.

EPFL Optimization for Machine Learning CS-439 23/37

Sufficient decrease ||

1 L
Fltean) < 1) = IV FGIE + Z s — sl
Proof.
Use smoothness, yi 11 —x; = —Vf(x¢)/L, 2viw = |[v||? + |w]? — [|[v — w|*:
T L 2
fxer1) < f(xe) +V(x) (X1 — %) + §||Xt — X¢ 41|
L

= f(x¢) = L(yt41 — Xt)T(Xt—i—l — %) + §||Xt - Xt+1||2

_ L o2 o2 B 2\, L. 2

= f(x¢) 5 [ye+1 = xel|” + lIxer1 — x|l = lyesr — xea 7)) + 5 %t — X1

L L
= 1x0) = Slyess =l + S lyes — x|

1 L
= f(x¢) — iHVf(Xt)HQ + §HYt+1 — x¢41] %

EPFL Optimization for Machine Learning CS-439 24/37

Smooth convex functions over X: O(1/¢) steps

Theorem

Let f: R* = R be convex and differentiable. Let X C R be a closed convex set, and
assume that there is a minimizer X* of f over X, furthermore, suppose that f is
smooth over X with parameter L. Choosing stepsize

1
’Y'_ L7

projected gradient descent yields
%o —x*[I”, T >0.

N L
Flocr) = F(x") < o

EPFL Optimization for Machine Learning CS-439 25/37

Smooth convex functions over X: O(1/¢) steps Il

L

o7 %0 =x*|%, T >0.

fxr) — f(x*) <

Proof.

As before, use sufficient decrease to bound sum of squared gradients in vanilla analysis:

L
SIVIGRIP < 70x) = Fsesn) + 5 ves — el

But now: extra term &||y;41 — x441|%

Compensate in the vanilla analysis itself! O

EPFL Optimization for Machine Learning CS-439 26/37

Recall: Constrained vanilla analysis
Proof.

» Replace x;4+1 in the vanilla analysis with y;11 (the unprojected gradient step):

1
g/ (x¢ —x*) = 2 (Vllgell® + llxe — x*[1 = [lyse1 — x*[1?) -

> Use Fact (ii): [x = IIx(y)[* + ly — Ix(y)1* < [x - y*
» With x = x*,y = y¢+1, we have IIx(y) = x¢+1, and hence

I”

" = xealP+ly = Tx()* < lx* = yega

» We get back to the vanilla analysis. .. but with a saving!

1
87 (e = %) < 5 (Pllgel® + lhee = I = s =% P lyes = el

EPFL Optimization for Machine Learning CS-439 —27/37

Smooth convex functions over X: O(1/¢) steps Il

L
—|xo —x*||>, T >0.

flxr) = f(x") <

- 2T
Proof.
Use f(x¢) — f(x*) < g/ (x; — x*) (convexity), vanilla analysis with saving, v = 1/L:
T—1

T-1
S~ fx) < Y gl - x)
t=0

t=0
T-1 T-1
1 2 L *112 L 9
< 927, Z lgell” + §||X0 —x"° - b) Z ye+1 — %41]|*
=0 =0
Use sufficient decrease to bound 2L Z ||gt||2 by
T-1 I L1
Z (f(Xt) — S EHY"/H B Xt+1||2> = f(xo0)— ‘1’5 [yer1 — xep]
t=0 s

EPFL Optimization for Machine Learning CS-439

28/37

Smooth convex functions over X: O(1/¢) steps IV

L
—|xo —x*||>, T >0.

Flocr) = ") < o

Proof.

Putting it together: extra terms cancel, and as in unconstrained case, we get

T L
D (fxe) = f(x) < 5 [0 = x|

t=1

Exercise 24: again, we make progress in every step (not immediate from sufficient
decrease here). Hence,

T
Flxr) =) < 2 37 (F) = F6)) < ellxo — 2

t=1

D29 37

EPFL Optimization for Machine Learning CS-439

Smooth and strongly convex functions over X

Recall:

f is strongly convex (with parameter) over X if

F3) 2 f00) + V) Ty =x) + Sl -y’ vxyex.

EPFL Optimization for Machine Learning CS-439 30/37

Smooth and strongly convex functions over X

Exercise 25: a strongly convex function has a unique minimizer x* of f over X.

We prove that projected gradient descent converges to x*.

EPFL Optimization for Machine Learning CS-439 31/37

Smooth and strongly convex functions over X: O(log(1/¢c)) steps
Theorem

Let f: R?% — R be convex and differentiable. Let X C R be a nonempty closed and
convex set and suppose that f is smooth over X with parameter L and strongly
convex over X with parameter . > 0. Choosing v := % projected gradient descent
with arbitrary x(satisfies the following two properties.

(i) Squared distances to x* are geometrically decreasing:
Icerr =% < (1= 2) e =%, ¢ 0.

(ii) The absolute error after T iterations is exponentially small in T':

/
Fler) — £ < I9FG (1= 2 Ixo — x| - in general, V(x) # 01

L I T * (12 ; H
+ 5 (1 - Z) llxo —x*[|*, T > 0. < as in unconstrained case

EPFL Optimization for Machine Learning CS-439 32/37

Smooth and strongly convex functions over X: O(log(1/¢)) steps |

Proof.

(i) Geometric decrease plus noise: ||x;11 — x*||? < ---

> unconstrained case:

2y(f(x*) = f(x0)) + VIV f (x0)? + (1= py)|lxe = x|

» constrained case (vanilla analysis with a saving):

2y(f(x*) = F(x0)) + VIV ()P = Nyesr = xeral® + (1= py) [xe = x| 1%

EPFL Optimization for Machine Learning CS-439 33/37

Smooth and strongly convex functions over X: O(log(1/¢)) steps Il
Proof.

To bound the noise, we use sufficient decrease.

» unconstrained case:

FOses1) < S0x0) = 57 VGl Ltz

» constrained case:
1 o L 2
Jxe1) < f(xe) — EHVf(xt)H + 5”}’t+1 — X1, £20.
Putting it together, the terms ||y, 11 — x;11||* cancel, and we get

e = %12 < (1=) e = %42 = (1= 2) e = x|

in both cases. O
EPFL Optimization for Machine Learning CS-439 34/37

Smooth and strongly convex functions over X: O(log(1/¢)) stepslI

Proof.

(i) Error bound from smoothness:

f(xr) = f(x)

IN

* * L, .
Vi) (xr —x)+ 5 lx - xrlf?

L
< IV lIxr — x| + EHX* — x7||* (Cauchy-Schwarz)

L

T/2 T
IVFGN (1=2) " lxo =+ 5 (1= %) lhxo =117 (i)

IN

O

constrained error bound & v/unconstrained error bound

required number of steps roughly doubles.

EPFL Optimization for Machine Learning CS-439 35/37

The Projection Step: Ilx(y) := argmin, y [|x — y||
Computing ITx (y) is an optimization problem itself.

It can efficiently be solved in relevant cases:

» Projecting onto an affine subspace (leads to system of linear equations, similar to
least squares)
oy

x(y) ¥

» Projecting onto a Euclidean ball with center ¢ (simply scale the vector y — c)

%y
/HX(Y)

EPFL Optimization for Machine Learning CS-439 36/37

Projecting onto /;-balls (needed in Lasso)

W.l.0.g. restrict to center at 0: Bi(R) = {x € R?: ||x||; = 2%, |zi| < R}.

X = By(R)

\4

Hx(V)

B1(R) is the cross polytope (2d vertices, 2¢ facets). (octahedron, d = 3)

Section 3.5: projection can be computed in O(dlogd) time (can be improved to O(d))

EPFL Optimization for Machine Learning CS-439 37/37

