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Profs. Martin Jaggi and Nicolas Flammarion
Optimization for Machine Learning – CS-439 - IC
08.07.2021 from 08h15 to 11h15
Duration : 180 minutes
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Student One

SCIPER : 111111

Wait for the start of the exam before turning to the next page. This document is printed
double sided, 16 pages. Do not unstaple.

• This is a closed book exam. No electronic devices of any kind.

• Place on your desk: your student ID, writing utensils, one double-sided A4 page cheat sheet if you
have one; place all other personal items below your desk or on the side.

• You each have a different exam.

• For technical reasons, do use black or blue pens for the MCQ part, no pencils! Use white
corrector if necessary.
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First part, multiple choice

There is exactly one correct answer per question.

Convexity

Question 1 Definition: For a (not necessarily convex) function f : R2 → R, an α-level curve (also
known as contour line) corresponds to the set {x ∈ Rd, f(x) = α} where α ∈ R. We can represent these
curves by drawing them for different values of α. In Figure 1 (a) for example, each heart corresponds to an
α-level line of a certain function f : R2 → R and for different values of α ∈ R. The two perpendicular lines
with arrows at the end are the axis of the plot and not level lines.
Which of the four plots in Figure 1 could correspond to the level curves of a convex function f : R2 → R.

B and C.

A and D.

A and C.

A and B.

B and D.

C and D.

(a) Level lines A (b) Level lines B (c) Level lines C (d) Level lines D

Figure 1: Several level lines for four different functions f : R2 → R

Question 2 Assume we perform constant step-size stochastic gradient descent on f(x) = 1
2 (f1(x)+f2(x)),

where f1(x) = (x− 1)2 and f2(x) = (x+ 1)2 for x ∈ R, i.e. xt+1 = xt − γ∇fit(xt) where at each iteration,
it is chosen uniformly random in {1, 2}. Which of the following statements is false:

For γ = 1, we cannot guarantee that the iterates stay in a bounded set.

x = 0 is the global minimum of f .

Whatever the choice of constant step-size γ > 0, the iterates cannot converge as t goes to infinity.

For γ = 2, for any starting point x0 and after the first iteration, the iterates will belong to {−1,+1}.

Question 3 Considering the same setup as in the question above, but now assuming f1(x) = x2 and
f2(x) = ex, x ∈ R. After running T steps of SGD, we find that ∇fiT (xT ) = 0. Which of the following
statements is true:

xT is a local minimum but not a global minimum.

xT = 0.

xT is a global (and local) minimum.

None of the other choices.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 4 Given a function f : Rd → R we want to minimize. We assume at each iteration t a stochastic
oracle is providing us with stochastic gradient g(xt) to run our SGD algorithm: xt+1 = xt − γg(xt). We
consider the following two stochastic oracles:

gA(x) :=

{
3∇f(x), w. prob. 1

3

ε ∼ N (0, 1), w. prob. 2
3

gB(x) :=

{
∇f(x), w. prob. 1

2

−0.5∇f(x), w. prob. 1
2

Which statement is true?

Oracle A and B are both biased.

Oracle A and B are both unbiased.

Oracle A is unbiased, oracle B is biased.

Oracle A is biased, oracle B is unbiased.

Question 5
Assume that we want to fit an affine line through a given point (x1, y1) = (1, 1) ∈ R2 (datapoint illustrated in
Figure 2). To do so, we want to minimize the function f(a, b) = (y1− (ax1+b))2 using gradient descent from
a starting point (a0, b0) = (0, 0). Using an appropriate and strictly positive step-size, the iterates (at, bt)t∈N,
will converge to:

(a⋆, b⋆) = (0, 1).

(a⋆, b⋆) = (1, 0).

(a⋆, b⋆) = (0.5, 0.5).

(a⋆, b⋆) = (−1, 2).

HINT: do a drawing.

Figure 2: Plot of the datapoint (x1, y1) = (1, 1).

Smoothness and gradient descent
Question 6 Define f(x) := ax2 + b for x ∈ R. Consider running gradient descent with a constant-step
size. For which one of the following statements, it is not possible to find a combination of starting point,
step size and positive real numbers a and b where the statement happens at some step t.

xt+1 < 0 < xt+2 < xt.

xt+1 < xt+2 < 0 < xt.

xt+1 < 0 < xt < xt+2.

xt+1 ̸= xt and xt = xt+2.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 7 Define f(x) := x4 with domain Df := [−2, 2]. Assume we want to find a point xT with
f(xT ) ≤ ε starting from x0 ∈ Df . Among the following statements, which is true and provides the tightest
bound?

Using Nesterov acceleration and an appropriate step size, we have T ∈ O( 1ε ) since f is smooth and
convex over Df .

Using Nesterov acceleration and an appropriate step size, we have T ∈ O( 1√
ε
) since f is smooth and

convex over Df .

Using vanilla Gradient Descent and an appropriate step size, we have T ∈ O( 1√
ε
) since f is smooth

and convex over Df .

Using vanilla Gradient Descent and an appropriate step size, we have T ∈ O(log( 1ε )) since f is smooth
and strongly convex over Df .

Question 8 Consider two algorithms A1,A2. For any L-smooth, µ-strongly convex function f with
global minimum at x⋆, assume the error after T iterations while initialized at x0 satisfies:

Error(A1) =
L∥x0 − x⋆∥2

2T
Error(A2) =

(
1− µ

L

)T ∥x0 − x⋆∥2

2
.

Consider both algorithms for the minimization of a quadratic function f(x) := 1
2x

⊤Mx for x ∈ R2 where

M =

[
1 0

0 10−3

]
when initialized at x0 = (1, 1). Consider the following statements

A: To get a target error of ε = 10−2, A2 takes fewer iterations.

B: To get a target error of ε = 10−7, A2 takes fewer iterations.

Only A is true.

Both A and B are true.

Neither A nor B is true.

Only B is true.

Projected Gradient Descent
Question 9 Consider the minimization of a L-smooth, convex function f over a closed, convex set X
using the projected gradient descent with learning rate γ = 1

L . At iteration t ≥ 0, we have

yt+1 := xt − γ∇f(xt), xt+1 := ΠX (yt+1) .

Which of the following properties is false?

f(xt) ≥ f(xt+1).

(xt+1 − xt)
⊤(yt+1 − xt+1) ≥ 0.

∥xt − xt+1∥2 + ∥yt+1 − xt+1∥2 ≤ ∥xt − yt+1∥2.

None of the other choices.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Subgradient Descent
Question 10 Consider the function f(x) = 4x − x2 for x ∈ R. The gradient and subgradient at x = 2

are, respectively

0, [−1, 1].

0, 0.

0, doesn’t exist.

2 , 2.

Frank-Wolfe

Figure 3: Gradient direction g over a convex set X.

Question 11 Given the gradient direction g and the convex set X as depicted in the above figure, what
is a solution of the Linear Minimization Oracle LMOX(g) ?

D

A and B

F

A

B

C

Newton’s Method and Quasi-Newton
Question 12 Define f(x) := x4 and g(x) := x3 for x ∈ R. Consider running Newton’s method from an
initial point x0 ∈ R on each of these functions. Which one of the following statements is true:

Newton’s method does not converge to 0 on at least one of the functions.

Newton’s method converges to 0 on g(x) with the same speed as on f(x).

Newton’s method converges to 0 on f(x) faster than on g(x).

Newton’s method converges to 0 on g(x) faster than on f(x).

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Second part, true/false questions
Question 13 (Convexity) If a function is strictly convex, then it is also strongly convex.

TRUE FALSE

Question 14 (Strong Convexity) The following level curves (see Question 1 for the definition) could
correspond to the level lines of a strongly convex function f : R2 −→ R.

TRUE FALSE

Question 15 (Nonconvex Convergence) For a nonconvex, L-smooth function f with a global minimum,
and running gradient descent with stepsize γ := 1

L , we have

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤ O
( 1

T

)
, T > 0.

TRUE FALSE

Question 16 (Coordinate-Wise Smoothness) Let f : x ∈ Rd → R be a twice differentiable L-smooth
function that is also smooth along the i-th coordinate with parameter Li, for all i. We have L = maxdi=1 Li

if and only if ∇2f(x) is diagonal for all x ∈ Rd.

TRUE FALSE

Question 17 (Coordinate Descent) Depending on the cost of each iteration, randomized coordinate
descent without importance sampling can be faster than gradient descent.

TRUE FALSE

Question 18 (Proximal-operator) The proximal mapping of any constant function h i.e. h(x) = c,∀x ∈ Rd

is an identity mapping.

TRUE FALSE

Question 19 (Lasso) For any vector v ∈ Rd, the projection onto the ℓ1-ball B i.e. B = {x : ∥x∥1 ≤ 1},
always lies on the boundary of the ℓ1-ball.

TRUE FALSE

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 20 (Frank-Wolfe) Consider the two constrained optimization problems min(x1,x2)∈[0,1]2x

2
1+x3

2

with initial iterate x0 = [1, 1]⊤, and min(x1,x2)∈[0,10]×[0,1](x1/10)
2+x3

2 with initial iterate x0 = [10, 1]⊤, after
any number of iterations of the Frank-Wolfe algorithm, the optimization error for those two problems will
be the same.

TRUE FALSE

Question 21 (SGD) For L-smooth and convex functions. If we use an appropriate step-size sequence
then Stochastic Gradient Descent (SGD) is guaranteed to strictly reduce the loss at each iteration.

TRUE FALSE

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Third part, open questions

Answer in the space provided! Your answer must be justified with all steps. Do not cross any checkboxes,
they are reserved for correction.

In the whole exercise, we consider a convex and differentiable function f : Rd → R and denote by x⋆ ∈
argminx∈Rd f(x) one of its global minima.

Convexity Preliminaries

Until the end of this section, we assume that the function f is L-smooth and µ-strongly convex.

Question 22: 1 point. Prove the following inequalities for x ∈ Rd:

µ

2
∥x− x⋆∥2 ≤ f(x)− f(x⋆) ≤ L

2
∥x− x⋆∥2.

0 1

Question 23: 3 point. Prove the following inequalities for x ∈ Rd:

1

2L
∥∇f(x)∥2 ≤ f(x)− f(x⋆) ≤ 1

2µ
∥∇f(x)∥2.

0 1 2 3

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 24: 1 point. Prove finally the following inequalities for x ∈ Rd:

1

L2
∥∇f(x)∥2 ≤ ∥x− x⋆∥2 ≤ 1

µ2
∥∇f(x)∥2.

0 1

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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The Polyak stepsize rule

In this section, we consider the iterates of the gradient descent algorithm on the function f with stepsize
sequence (γt)t≥0 defined as:

xt+1 = xt − γt∇f(xt) for t ≥ 0, (1)

initialized at x0 ∈ Rd. We investigate here a particular stepsize choice which is due to the Russian mathe-
matician Boris Polyak, one of the founding father of modern optimization. Let us start by controlling the
decrease of the distance to x⋆, a minimizer of the function f .

Question 25: 1 point. Show that the iterates (xt) defined in Eq. (1) satisfy for t ≥ 0:

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 − 2γt
(
f(xt)− f(x⋆)

)
+ γ2

t ∥∇f(xt)∥2. (2)

0 1

Boris Polyak argued that the optimal stepsize sequence should be chosen so that it minimizes the previous
upper bound on ∥xt+1 − x⋆∥2 defined in Eq. (2). In the next question we derive such a formula.

Question 26: 2 points. Let t ≥ 0 and define γt = argminγ≥0 ∥xt−x⋆∥2−2γ
(
f(xt)−f(x⋆)

)
+γ2∥∇f(xt)∥2.

Derive the correct formula for γt.

0 1 2

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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This stepsize is called the Polyak stepsize. From now on, we consider the iterates of gradient descent defined
in Eq. (1) where the sequence (γt) is defined in the previous question.
In the following sections, we study the rates of convergence of the gradient-descent algorithm with such
stepsize. We denote by x̄T the iterate which satisfies f(x̄T ) = min0≤t≤T−1 f(xt).

Question 27: 1 point. Show that the iterates (xt) defined with the Polyak stepsize satisfy for t ≥ 0:

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 − (f(xt)− f(x⋆))2

∥∇f(xt)∥2
. (3)

0 1

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Analysis under bounded gradients assumption

We assume in this section that the function f has bounded gradients, i.e., there exists B ≥ 0 such that
∥∇f(x)∥ ≤ B for all x ∈ Rd.

Question 28: 3 points. Let T ≥ 1. Show the following inequality:

1

T

T−1∑
t=0

(f(xt)− f(x⋆)) ≤ B∥x0 − x⋆∥√
T

.

0 1 2 3

We assume until the end of the section that the function f is µ-strongly convex.

Question 29: 1 point. Show for t ≥ 0:

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 − µ2∥xt − x⋆∥4

4B2
.

0 1

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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For t ≥ 0, let us denote by βt =

µ2∥xt−x⋆∥2

4B2 . We have then proven that:

βt+1 ≤ βt(1− βt).

Question 30: 3 points. Show that for t ≥ 0:

βt ≤
1

t+ 1
.

0 1 2 3

Question 30 directly translates into a bound on the function values. But we will get a different one through
a different analysis. Let us assume that T ≥ 2 is even (odd T would lead to similar result).

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 31: 2 points. Let T ≥ 2 be an even number. Show that

2

T

T−1∑
t=T/2

[
f(xt)− f(x⋆)

]2 ≤ 16B4

µ2T 2
.

0 1 2

Question 32: 2 points. Let T ≥ 2 be an even number. Compare the bound on f(x̄T ) − f(x⋆) implied by
Question 30 and 31 and explain which one is tighter.

0 1 2

Although not proven here, a similar bound that the one proved in Question 32 also holds for any odd
number T .y For your examination, preferably print documents compiled from auto-

multiple-choice.
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Analysis under smoothness assumption

We assume in this section that the function f is L-smooth.

Question 33: 2 points. Let T ≥ 1. Show that

1

T

T−1∑
t=0

(
f(xt)− f(x⋆)

)
≤ 2L∥x0 − x⋆∥2

T
.

0 1 2

We assume until the end of the section that the function f is µ-strongly convex.

Question 34: 2 points. Let T ≥ 1. Show that

f(xT )− f(x⋆) ≤ L

2
∥x0 − x⋆∥2(1− µ/(4L))T .

0 1 2

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Conclusion

Your results imply that

f(x̄T )− f(x⋆) ≤ min

{
B∥x0 − x⋆∥√

T
,
2L∥x0 − x⋆∥2

T
,
4B2

µT
,
L

2
∥x0 − x⋆∥2(1− µ/(4L))T−1

}
.

Question 35: 1 point. Compare this result with what you have seen in the course.

0 1

Question 36: 1 point. Point out a major issue with the applicability of the Polyak stepsize-rule in practice.

0 1

Question 37: 1 point. Do you see an application in modern machine learning where this should not be an
issue?

0 1

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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