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Profs. Martin Jaggi and Nicolas Flammarion
Optimization for Machine Learning – CS-439 - IC
11.08.2020 from 08h15 to 11h15
Duration : 180 minutes

1
Student One

SCIPER : 111111

Wait for the start of the exam before turning to the next page. This document is printed
double sided, 16 pages. Do not unstaple.

• This is a closed book exam. No electronic devices of any kind.

• Place on your desk: your student ID, writing utensils, one double-sided A4 page cheat sheet (hand-
written or 11pt min font size) if you have one; place all other personal items below your desk or on
the side.

• You each have a different exam.

• For technical reasons, do use black or blue pens for the MCQ part, no pencils! Use white
corrector if necessary.

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.

y



PR
O
JE
T

y +1/2/59+ y
First part, multiple choice

There is exactly one correct answer per question.

Convexity and Smoothness

For each of the functions below, verify whether they are (1) convex, (2) strictly convex, (3) strongly convex,
and (4) smooth, in the sense of the definitions used in the course:

A. f(x) = −2x, x ∈ R B. f(x) = sin(x), x ∈ (π, 2π)

C. f(x) = tanh(ax+ b), x ∈ R D. f(x) = x4, x ∈ R
E. f(x) = −log(x), x ∈ R>0 F. f(x) = ‖Ax− b‖22, x ∈ R2

G. f(x) = x>Ax + b>x, x ∈ R2,

where

A :=

(
0 1

1 0

)
, tanh(x) :=

e2x − 1

e2x + 1
, a, b, ai, bi ∈ R, a,b ∈ R2 .
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Question 1 Given the function A. above, which are all of its properties?

convex + strictly convex

convex + strictly convex + strongly convex

convex + strictly convex + strongly convex + smooth

convex

convex + strictly convex + smooth

smooth

convex + smooth

none of these properties

Question 2 Given the function B. above, which are all of its properties?

convex

convex + strictly convex + strongly convex

smooth

convex + smooth

convex + strictly convex

convex + strictly convex + strongly convex + smooth

convex + strictly convex + smooth

none of these properties

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.
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Question 3 Given the function C. above, which are all of its properties?

convex + strictly convex

convex + strictly convex + strongly convex + smooth

convex

convex + smooth

convex + strictly convex + smooth

smooth

convex + strictly convex + strongly convex

none of these properties

Question 4 Given the function D. above, which are all of its properties?

convex + strictly convex

smooth

convex + strictly convex + strongly convex

convex + strictly convex + smooth

convex

convex + strictly convex + strongly convex + smooth

convex + smooth

none of these properties

Question 5 Given the function E. above, which are all of its properties?

convex + smooth

convex + strictly convex + strongly convex + smooth

convex + strictly convex

smooth

convex + strictly convex + smooth

convex + strictly convex + strongly convex

convex

none of these properties

Question 6 Given the function F. above, which are all of its properties?

convex + strictly convex + smooth

convex + strictly convex

smooth

convex + strictly convex + strongly convex + smooth

convex + strictly convex + strongly convex

convex

convex + smooth

none of these properties

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.
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Question 7 Given the function G. above, which are all of its properties?

convex + strictly convex + strongly convex + smooth

convex

convex + strictly convex

smooth

convex + strictly convex + smooth

convex + strictly convex + strongly convex

convex + smooth

none of these properties

Deep linear neural networks
Question 8 The output of a linear network with more than one layer, for a given input, as a function of
the weight matrices,

is a non-convex function, and equally or less expressive than a one-layer linear network.

is a non-convex function, and more expressive than a one-layer linear network.

is a convex function, and equally or less expressive than a one-layer linear network.

is a convex function, and more expressive than a one-layer linear network.

Question 9 Consider a deep linear neural network with 1-dim weights, input & output, with squared
loss. Let c ≥ 1 and δ > 0 such that the initial point x0 > 0 is c-balanced with δ ≤

∏
k(x0)k < 1.

Then the error f(xt)− f? of gradient descent

converges to 0 as Θ(1/t), for an appropriate choice of step-size.

converges to 0 as Θ(1/t), for a constant step-size.

converges to 0 as Θ(1/
√
t), for an appropriate choice of step-size, due to non-convexity.

converges to 0 exponentially fast, for a constant step-size.

Smoothness and gradient descent

Consider the function f(x) = x2 + 3 sin2(x) for the next two questions plotted below.

−2 2
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8

10
f(x)

Question 10 Which of the following properties does f(x) satisfy?

Strongly convex and smooth with L = 7

Convex and smooth with L = 5

Convex and smooth with L = 8

Non-convex and smooth with L = 8

Non-convex and smooth with L = 5

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.
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Question 11 Suppose we run 1000 steps of gradient descent on f(x) as above, with correct stepsizes.
Which of the following is true about the error f(xt)− f?, relative to f(x0)− f?? Assume that the following
inequality holds: x2 + 3 sin2(x) ≤ 16(2x+ 3 sin(2x))2.

The error becomes 128
1000 since f is non-convex

The error is 128
1000 since f satisfies the Polyak-Lojasiewicz Inequality

The error is (1− 1
256 )1000 since f satisfies the Polyak-Lojasiewicz Inequality

The error is (1− 1
128 )1000 since f is strongly convex

The error is 16
1000 since f is non-convex

Adaptive methods
Question 12 Consider the practical implementation of the three algorithms Adagrad, Adam and
SignSGD. After computing a fresh stochastic gradient in every iteration, the practical memory requirement
for the three variants is, for reasonably large machine learning models,

SignSGD � Adam � Adagrad

SignSGD � Adagrad ≈ Adam

SignSGD � Adagrad � Adam

similar for all three variants

Non-smooth optimization
Question 13 For the composite objective function f(x) := g(x) + h(x), where g(x) is convex and L-
smooth, h(x) is convex, define x? as a global minimum of f(x), which of the following statements is true in
general?

x? = x? − 1
L∇g(x?)

x? = proxh,1(x? − 1
L∇g(x?))

x? = proxh, 1L (x? − 1
L∇g(x?))

x? = proxh, 1L (x? + 1
L∇g(x?))

x? = x? − 1
L∇f(x?)

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
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Empirical comparison of different methods

Suppose that your roommate wanted to minimize a linear regression problem with `2 regularization.
Last night, she overheard you mumbling in your sleep something about “SGD”, “gradient descent” and
“stepsizes”, and was curious to try it out. Can you identify the algorithms she ran by looking at their
performance? Note that the scale on the y-axis is logarithmic.
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Figure 1: Performance of different optimization algorithms.

Question 14 Which of these algorithms were gradient descent (not SGD)?

None of them

Algorithm A, Algorithm B, and Algorithm E

Algorithm A and Algorithm B

Only Algorithm B

All of them

Question 15 Which optimization method corresponds to the error-curve for Algorithm C?

SGD with constant stepsize

Gradient descent with stepsize 1/L

Gradient descent with incorrect stepsize

SGD with stepsize decreasing as O
(
1/
√
t
)

SGD with stepsize decreasing as O(1/t)

Question 16 Which optimization method corresponds to the error-curve for Algorithm D?

SGD with stepsize decreasing as O(1/t)

Gradient descent with stepsize 1/L

SGD with stepsize decreasing as O
(
1/
√
t
)

Gradient descent with incorrect stepsize

SGD with constant stepsize

Question 17 Which optimization method corresponds to the error-curve for Algorithm E?

Gradient descent with stepsize 1/L

SGD with stepsize decreasing as O(1/t)

Gradient descent with incorrect stepsize

SGD with stepsize decreasing as O
(
1/
√
t
)

SGD with constant stepsize

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
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Second part, true/false questions
Question 18 (Frank-Wolfe convergence in duality gap) On a convex and smooth function, and a bounded
and convex constraint set, let x0,x1, . . . be the iterates of the Frank-Wolfe algorithm.
The duality gap (or Hearn gap) g(xt) := 〈xt − s,∇f(xt)〉 of the iterates satisfies g(xt) ≤ O(1/t).

TRUE FALSE

Question 19 (Lower Bounds for Iteration Complexity) Every first-order optimization method needs in
the worst case Ω(1/

√
ε) steps (gradient evaluations) in order to achieve an additive error of ε on smooth

functions.

TRUE FALSE

Question 20 (GD non-convex) Gradient descent with stepsize 1/L converges to an optimum function
value on any smooth possibly non-convex function.

TRUE FALSE

Question 21 (Random search) Consider derivative-free random search as discussed in the lecture. For
L-smooth convex functions, using random directions with line-search, converges as O(dL/ε).

TRUE FALSE

Question 22 (Adaptive methods) The three algorithm variants Adagrad, Adam and SignSGD have a
comparable computational complexity per iteration, for deep learning applications

TRUE FALSE

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.
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Solution:

Third part, open questions

Answer in the space provided! Your answer must be justified with all steps. Do not cross any checkboxes,
they are reserved for correction.

Variance reduction for sum of smooth and strongly convex functions

We are here interested in the unconstrained minimization of the function:

f(x) :=
1

n

n∑
i=1

fi(x),

where f1, · · · , fn are L-smooth and convex functions. In addition we assume that the function f is µ-strongly
convex. We denote by x? the global minimum of f .

Question 23: 3 points. Let i be a random variable uniformly distributed in {1, · · · , n}. Then prove that

E[‖∇fi(x)−∇fi(x?)‖22] ≤ 2L(f(x)− f(x?)), (S)

where the expectation is taken with respect to the randomness of i.
Hint: You can assume that for any L-smooth convex function f the following holds

‖∇f(x)−∇f(y)‖22 ≤ 2L
(
f(x)− f(y)−∇f(y)>(x− y)

)
for all vectors x,y

0 1 2 3

Solution: We start from

‖∇fi(x)−∇fi(x?)‖22] ≤ 2L
(
fi(x)− fi(x?)−∇fi(x?)>(x− x?)

)
one point for using the hint on fi

and then use

E[‖∇fi(x)−∇fi(x?)‖22] ≤ E[2L
(
fi(x)− fi(x?)−∇fi(x?)>(x− x?)

)
]

≤ 2L
(
E[fi(x)− fi(x?)]− E[∇fi(x?)>(x− x?)

)
]

≤ 2L
(
f(x)− f(x?)−∇f(x?)>(x− x?)

)
one point for using correctly the expectation

≤ 2L (f(x)− f(x?)) since ∇f(x?) = 0 by definition of x? one point for giving the correct result using that the gradient is zero

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.
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Let x1 ∈ Rd be an arbitrary initial point and consider the following iterates defined for t ≥ 1 as:

xt+1 := xt − γ(∇fit(xt)−∇fit(x1) +∇f(x1)),

where it is drawn uniformly at random and independently in {1, · · · , n}.

Question 24: 1 point. Let us denote by vt := ∇fit(xt)−∇fit(x1)+∇f(x1). Give a closed-form expression
for ‖xt+1 − x?‖22 as a function of ‖xt − x?‖, ‖vt‖22, v>t (xt − x?) and γ.

0 1

Solution:

‖xt+1 − x?‖22 = ‖xt − x?‖22 − 2γv>t (xt − x?) + γ2‖vt‖22. (1)

Question 25: 3 points.

Give a lower bound on Eit [v>t (xt − x?)] depending on the function values f(xt) and f(x?).

0 1 2 3

Solution:

Eit [v>t (xt − x?)] = ∇f(xt)
>(xt − x?)using linearity of the expactation (1 point) (2)

≥ f(xt)− f(x?)by convexity 1 point for giving the correct result and 1 point for justifying it by convexity
(3)

Question 26: 4 points. Prove an upper bound of the form

Eit [‖vt‖22] ≤ C1L (f(xt)− f(x?)) + C2L (f(x1)− f(x?))

where C1 and C2 are constants.

Hint: You may want to use inequality (S) from Question 23, and that

‖a + b + c‖22 ≤ 3 ‖a‖2 + 3 ‖b‖2 + 3 ‖c‖2 for all vectors a,b, c.

0 1 2 3 4

Solution:
First solution:

Eit [‖vt‖22] ≤ 2Eit [‖∇fit(xt)−∇fit(x?)‖22] + 2Eit [‖∇fit(x1)−∇fit(x?)−∇f(x1)‖22]

≤ 2Eit [‖∇fit(xt)−∇fit(x?)‖22] + 2Eit [‖∇fit(x1)‖22]using E[‖X − E[X]‖22] ≤ E[‖X‖22]

≤ 4L (f(xt)− f(x?) + f(x1)− f(x?)) using question 23

Second solution:

Eit [‖vt‖22] ≤ 3Eit [‖∇fit(xt)−∇fit(x?)‖22] + 3Eit [‖∇fit(x1)−∇fit(x?)‖22] + 3‖∇f(x1)−∇f(x?)‖22 1 point

≤ 6L (f(xt)− f(x?)) + 6L (f(x1)− f(x?)) + 6L (f(x1)− f(x?)) using question 23 2 point

≤ 6L (f(xt)− f(x?)) + 12L (f(x1)− f(x?)) 1 point

Question 27: 3 points. Combine the answers to the previous questions to obtain an upper bound on
Eit [‖xt+1 − x?‖22 depending on ‖xt − x?‖22, γ, L and the function values f(xt), f(x?) and f(x1).

Comment: if you did not solve Question 26, you can instead use the general expression from there.y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.
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0 1 2 3

Solution: First solution:

Eit [‖xt+1 − x?‖22 = ‖xt − x?‖22 − 2γv>t (xt − x?) + γ2‖vt‖22
≤ ‖xt − x?‖22 − 2γ(f(xt)− f(x?)) + γ2‖vt‖22
≤ ‖xt − x?‖22 − 2γ(f(xt)− f(x?)) + 4γ2L (f(xt)− f(x?) + f(x1)− f(x?))

≤ ‖xt − x?‖22 − 2γ(1− 2Lγ)(f(xt)− f(x?)) + 4Lγ2(f(x1)− f(x?))

Second solution:

Eit [‖xt+1 − x?‖22 = ‖xt − x?‖22 − 2γv>t (xt − x?) + γ2‖vt‖22
≤ ‖xt − x?‖22 − 2γ(f(xt)− f(x?)) + γ2‖vt‖22 1 point for using question 25

≤ ‖xt − x?‖22 − 2γ(f(xt)− f(x?)) + 6γ2L (f(xt)− f(x?)) + 12γ2L (f(x1)− f(x?)) 1 p for question 26

≤ ‖xt − x?‖22 − 2γ(1− 3Lγ)(f(xt)− f(x?)) + 12Lγ2(f(x1)− f(x?)) 1 point for the correct answer

Question 28: 4 points. Unroll the recursion proven in previous question for t = 1, · · · , T to get a upper
bound on E[‖xT+1 − x?‖22 depending on ‖x1 − x?‖22, γ, L and the function values (f(xt))

T
t=1, f(x?)

and f(x1).

0 1 2 3 4

Solution: Summing the above inequality over t = 1, · · · , T

Question 29: 4 points. Using the properties of the function f and the previous inequality show that for a
certain c ≥ 0, for which you will give the precise expression, we have

E
[
f
( 1

T

T∑
t=1

xt

)]
− f(x?) ≤ c ·

(
f(x1)− f(x?)

)
.

In addition show that c ≤ 0.9 when used with γ = 1
10L and T = 20L

µ .

0 1 2 3 4

Solution:

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
de auto-multiple-choice.
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Averaged SGD for Quadratic Functions

Throughout this exercise we consider minimizing a convex quadratic function:

f(x) :=
1

2
x>Hx− q>x,

where H ∈ Rd×d is an invertible, symmetric positive semi-definite matrix and q ∈ Rd.

Question 30: 3 points. Show that the function f is convex and that it admits a global minimum x? on Rd.
Give a closed-form expression for this minimum x?. Give also a closed-form expression for the excess
cost function f(x)− f(x?) depending only on H, x and x?. Then give the expression of the gradient
of f , first in function of H, x and q and then in function of H, x and x?.

0 1 2 3

Solution:

• f is convex since H is symmetric positive semi-definite matrix and it admits a global minimum since
it is a convex function 1 point

• By setting the gradient to zero we obtain x? = H−1q and f(x) − f(x?) = 1
2 (x − x?)>H(x − x?) 1

point

• ∇f(x) = Hx)− q = H(x− x?) 1 point

Or -1 point by mistakes

Now we assume that the true gradient of f is not available and rather that we have access to a noisy oracle
for the gradient gt = ∇f(xt) + εt+1. The noise (εt) is assumed to be uncorrelated zero-mean with bounded
covariance: E[εt] = 0, E[εtε

>
t′ ] = 0 ∈ Rd×d for all t 6= t′ and E[εtε

>
t ] 4 σ2H, where σ ≥ 0.

Question 31: 2 points. Write the stochastic gradient descent iteration with the stochastic gradient gt with
step-size γ, where you will denote the iterate by xt. Then writing αt := xt−x?, you are asked to state
the recursion satisfied by αt. It should only depend on αt−1, H, εt and the step-size γ.

0 1 2

Solution:

• xt = xt−1 − γgt−1 = xt−1 − γH(xt−1 − x?)− γεt 1 point

• αt = (I − γH)αt−1 − γεt 1 point

Question 32: 4 points. Compute a closed-form expression for αt in function of t, γ, H, the initial iterate α0

and the noise vectors (εk)tk=1.

0 1 2 3 4

Solution: We can check that

αt = (I − γH)tα0 − γ
t∑
i=1

(I − γH)t−iεi (4)

Scale: 1 points for the (I − γH)tα0 term and 3 points for the other. Minus 1 points for mistakes in the
indices.

Question 33: 4 points. Prove that ᾱt := 1
t

∑t−1
i=0 αi satisfies:

ᾱt =
1

t
(I − (I − γH)t)(γH)−1α0 +

γ

t

t−1∑
j=1

(I − (I − γH)t−j)(γH)−1εj .

You will need the identity
∑t−1
k=0(I − γH)k = (I − (I − γH)t)(γH)−1.y Pour votre examen, imprimez de préférence les documents compilés à l’aide

de auto-multiple-choice.
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0 1 2 3 4

Solution:

ᾱt =
1

t

t−1∑
k=0

(I − γH)kα0 −
γ

t

t−1∑
k=1

k∑
j=1

(I − γH)k−jεj

=
1

t
(I − (I − γH)t)(γH)−1α0 −

γ

t

t−1∑
k=1

k∑
j=1

(I − γH)k−jεj using the formula given in the exercice (1 point)

=
1

t
(I − (I − γH)t)(γH)−1α0 −

γ

t

t−1∑
j=1

(

t−1∑
k=j

(I − γH)k−j)εj inverting the two sums (1 point)

=
1

t
(I − (I − γH)t)(γH)−1α0 −

γ

t

t−1∑
j=1

(

t−1−j∑
k=0

(I − γH)k)εj changing the indices (1 point)

=
1

t
(I − (I − γH)t)(γH)−1α0 −

γ

t

t−1∑
j=1

(I − (I − γH)t−j)(γH)−1εj using again the formula (1 point)

Question 34: 4 points.

Using the properties given on the noise εt and the expressions obtained above compute the value of

E[(ᾱt)
>Hᾱt].

0 1 2 3 4

Solution:

E[(ᾱt)
>Hᾱt] = E

∥∥∥H1/2[
1

t
(I − (I − γH)t)(γH)−1α0 −

γ

t

t−1∑
j=1

(I − (I − γH)t−j)(γH)−1εj ]
∥∥∥2

= E
∥∥∥H1/2[

1

t
(I − (I − γH)t)(γH)−1α0

∥∥∥2
+ E

∥∥∥H1/2[
γ

t

t−1∑
j=1

(I − (I − γH)t−j)(γH)−1εj ]
∥∥∥2using that E[εj ] = 0 (1 point)

=
1

γt
α>0 (I − (I − γH)t)2(tγH)−1α0 +

γ2

t2

t−1∑
j=1

E[ε>j (I − (I − γH)t−j)2(γH)−2Hεj ]

since E[εjε
>
i ] = 0 (1 point)

=
1

γt
α>0 (I − (I − γH)t)2(tγH)−1α0 +

1

t2

t−1∑
j=1

tr[(I − (I − γH)t−j)2H−1E[εjε
>
j ]]

1 point for the correct bias term and 1 point for the correct variance term

Question 35: 4 points. Using that (1−(1−u)t)2
tu ≤ 1 for all u ∈ [0, 1], give an upper bound on E[(ᾱt)

>Hᾱt],
which only depends on γ, α0, σ2, t and the dimension d.

0 1 2 3 4

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
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Solution:

E[(ᾱt)
>Hᾱt] ≤

1

γt
‖α0‖22 +

1

t2

t−1∑
j=1

tr[(I − (I − γH)t−j)2H−1E[εjε
>
j ]] using the inequality given in the question

1 point

≤ 1

γt
‖α0‖22 +

1

t2

t−1∑
j=1

tr[H−1E[εjε
>
j ]] using that I − (I − γH)t−j 4 I 1 point

≤ 1

γt
‖α0‖22 +

1

t2

t−1∑
j=1

σ2d using that E[εjε
>
j ] 4 σ2H 1 point

≤ 1

γt
‖α0‖22 +

σ2d

t
1 point

Question 36: 2 points. Give two differences between the convergence result you just proved and the classical
result known for SGD on strongly convex functions.

0 1 2

Solution:

• We obtain a O(1/t) convergence rate independant of the strong convexity constant. The matrix H can
be as badly conditioned as we want.

• We obtain this result for a constant step-size γ. We do not have to make it decrease with the number
of iterations or the time horizon

• We obtain an explicit dependancy on the dimension d.

Question 37: 4 points (BONUS, optional question). Prove the inequality (1−(1−u)t)2
tu ≤ 1, for all u ∈ [0, 1].

(We have used this in Question 35. Previous questions are not necessary to prove the inequality.)

0 1 2 3 4

Solution: Since u ∈ [0, 1], we have that 1−(1−u)t ≤ 1. We will then show that (1−(1−u)t) ≤ tu. We first
note that t(1− (1−u)t−1) ≤ t. Then by integrating the two sides between 0 and u we get 1− (1−u)t ≤ tu.

y Pour votre examen, imprimez de préférence les documents compilés à l’aide
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