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Exam Optimization for Machine Learning – CS-439
Prof. Martin Jaggi

20 June 2019 - from 08h15 to 11h15 in PO01
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First part, multiple choice

There is exactly one correct answer per question.

Lasso Coordinate Descent

The optimization problem for sparse least squares linear regression (also known as the Lasso) is given
by

min
x∈Rn

‖Ax− b‖2 + λ‖x‖1

for some regularization parameter λ > 0.
We write A−i for the (d−1)×n matrix obtained by removing the i-th column Ai from A, and same

for the vector x−i with one entry removed accordingly. The soft thresholding operator S is defined as

Sa(b) :=


0, |b| ≤ a,
b− a b > a,

b+ a b < −a
.

Question 1 The solution to exact coordinate minimization for the Lasso problem above, for the
i-th coordinate, is

x?i = S λ
‖Ai‖2

(
A>i (b−A−ix−i)/‖Ai‖2

)
x?i = S λ

‖Ai‖2

(
A>i (b−Ax)/‖Ai‖2

)
x?i = S λ/2

‖Ai‖2

(
2A>i (b−Ax)/‖Ai‖2

)
x?i = S λ/2

‖Ai‖2

(
2A>i (b−A−ix−i)/‖Ai‖2

)
x?i = S λ/2

‖Ai‖2

(
A>i (b−A−ix−i)/‖Ai‖2

)
Hint: If you don’t recall the precise expression, verify a concrete example with a toy matrix A and a
large value of λ.

Stochastic Gradient Descent

In this section we are interested in finding the minimum of a strongly convex function f : Rn → R,

f? := min
x∈Rn

f(x) ,

with iterative schemes of the form
xt+1 := xt − γtg(xt) ,

for gradient oracles g : Rn → Rn.

Question 2 Given access to a gradient oracle gG : Rn → Rn, with gG(x) := ∇f(x), ∀x ∈ Rn,
we can implement gradient descent (with constant stepsize γt ≡ γ). What is the convergence rate of
gradient descent (with optimal stepsize), i.e. how many iterations T does it take to reach suboptimality
f(xT )− f? ≤ ε?

no answer is correct

T = O(log 1
ε )

T = O(log log 1
ε )

T = O(eε)y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 3 Given access to a stochastic gradient oracle gSG : Rn → Rn we can implement
stochastic gradient descent on f . Assume the stochastic oracle outputs

gSG(x) := gG + ξ

for every call, where ξ ∈ Rn is a random variable with E ξ = 0, and E ‖ξ‖2 ≤ σ2 (and σ2 > 0). What
is the convergence rate of stochastic gradient descent (with optimal constant stepsize γt ≡ γ), for the
last iterate (not the average iterate), i.e. how many iterations T does it take to reach suboptimality
E f(xT )− f? ≤ ε?

no answer is correct

T = O( 1
ε )

T = O(eε)

T = O(log 1
ε )

Consider the following two stochastic oracles:

gA(x) :=

2gG(x), w. prob. 1
2

0, w. prob. 1
2

gB(x) :=

gG(x), w. prob. 1
2

gSG(x), w. prob. 1
2

Question 4 Which statement is true? (Here biased means not having the correct expectation)

Oracle A and B are both biased.

Oracle A is unbiased, oracle B is biased.

Oracle A is biased, oracle B is unbiased.

Oracle A and B are both unbiased.

Question 5 Which statement is true?

no answer is correct

The variance of oracle B is smaller than the variance of oracle A.

The variance of oracle A is smaller than the variance of oracle B.

Question 6 Consider two new oracles, gC and gD. Suppose stochastic gradient descent (with
constant stepsize γ) converges as:

oracle C: E f(xt)− f? ≤
(

1− a

100

)t
(f(x0)− f?)

oracle D: E f(xt)− f? ≤ (1− a)t(f(x0)− f?) + b

where here a ∈ (0, 1) and b > 0 are two parameters. Which algorithm do you prefer, to reach accuracy ε
(in terms of function suboptimality, E f(xt)−f? ≤ ε) as fast as possible? (Assume f(x0)−f? ≥ 100b).

Both algorithms converge equally fast.

Oracle D over C if ε > 10b.

Oracle D over C if ε ≤ 10b.

no answer is correct

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Convexity and Smoothness

For each of the functions below, verify whether they are (1) convex, (2) strictly convex, (3) strongly
convex, and (4) smooth:

A. f(x) = x, x ∈ R B. f(x) = sin(x), x ∈ R

C. f(x) = ReLu(ax+ b), x ∈ R D. f(x) = ReLu(a2x2(a1x1 + b1) + b2), x ∈ R2

E. f(x) = e−x, x ∈ R F. f(x) = exp(−a>x) + ‖Ax− b‖22, x ∈ R2

G. f(x) = x>Ax, x ∈ R2,

where

A :=

(
0 1

1 0

)
, ReLu(x) :=

0, x < 0

x, otherwise
, a, b, ai, bi ∈ R, a,b ∈ R2 .

Question 7 Given the function A. above, which are all of its properties?

convex + smooth

convex

convex + strictly convex + strongly convex

convex + strictly convex

convex + strictly convex + smooth

smooth

convex + strictly convex + strongly convex + smooth

none of these properties

Question 8 Given the function B. above, which are all of its properties?

convex

convex + strictly convex

convex + strictly convex + strongly convex

convex + smooth

smooth

convex + strictly convex + strongly convex + smooth

convex + strictly convex + smooth

none of these properties

Question 9 Given the function C. above, which are all of its properties?

convex + strictly convex + smooth

convex

convex + smooth

convex + strictly convex + strongly convex

convex + strictly convex + strongly convex + smooth

smooth

convex + strictly convex

none of these properties

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 10 Given the function D. above, which are all of its properties?

convex + strictly convex

convex + strictly convex + strongly convex

smooth

convex + strictly convex + smooth

convex

convex + smooth

convex + strictly convex + strongly convex + smooth

none of these properties

Question 11 Given the function E. above, which are all of its properties?

convex + strictly convex + strongly convex

smooth

convex + smooth

convex

convex + strictly convex + strongly convex + smooth

convex + strictly convex

convex + strictly convex + smooth

none of these properties

Question 12 Given the function F. above, which are all of its properties?

convex + strictly convex + strongly convex + smooth

smooth

convex + strictly convex + strongly convex

convex + smooth

convex + strictly convex + smooth

convex

convex + strictly convex

none of these properties

Question 13 Given the function G. above, which are all of its properties?

convex + strictly convex + strongly convex

convex + strictly convex

convex + strictly convex + strongly convex + smooth

convex

convex + strictly convex + smooth

convex + smooth

smooth

none of these properties

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Smoothness and Strong Convexity

Consider an iterative optimization procedure.

Question 14 Which one of the following three inequalities is valid for a smooth convex function f
for some L ∈ R:

f(x?)− f(xt) ≤ ∇f(xt)
>(xt − x?) + L

2 ‖x
? − xt‖2

f(x?)− f(xt) ≤ ∇f(xt)
>(x? − xt) + L

2 ‖x
? − xt‖2

f(x?)− f(xt) ≤ ∇f(xt)
>(x? − xt)− L

2 ‖x
? − xt‖2

Question 15 Which one of the following three inequalities is valid for a strongly convex function f
for some µ ∈ R:

f(xt)− f(xt+1) ≥ ∇f(xt)
>(xt − xt+1) + µ

2 ‖xt − xt+1‖2

f(xt)− f(xt+1) ≤ ∇f(xt)
>(xt − xt+1)− µ

2 ‖xt − xt+1‖2

f(xt)− f(xt+1) ≤ ∇f(xt)
>(xt − xt+1) + µ

2 ‖xt − xt+1‖2

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Second part, true/false questions
Question 16 (Linear Minimization Oracle) The LMO used in the Frank-Wolfe algorithm is given
as LMOX(g) := argmin

s∈X

〈
s,g
〉
. For X := conv(A) being the convex hull of any bounded set A ⊂ Rd,

we have that
LMOX(g) = LMOA(g) .

TRUE FALSE

Question 17 (Hearn Gap in Frank-Wolfe) The duality gap for constrained optimization problems
minx∈X f(x) as resulting from the Frank-Wolfe algorithm is

g(x) := 〈s− x,∇f(x)〉 ≥ f(x)− f(x?) .

where s = LMOX(∇f(x)) is the output of the Linear Minimization Oracle.

TRUE FALSE

Question 18 (Accelerated Gradient Descent) Accelerated Gradient Descent on an L-smooth and
(µ > 0)-strongly convex function f converges as O(1/

√
ε).

TRUE FALSE

Question 19 (Accelerated Gradient Descent) Accelerated Gradient Descent on an L-smooth and
convex function f converges as O(1/

√
ε).

TRUE FALSE

Question 20 (Convexity) A function f : Rd → R is convex if and only if its graph is a convex
set.

TRUE FALSE

Question 21 (Random search) Consider derivative-free random search as discussed in the lecture.
For L-smooth convex functions, random search, with step-size 1/L, converges as O(dL/ε)

TRUE FALSE

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Third part, open questions

Answer in the space provided! Your answer must be justified with all steps. Do not cross any
checkboxes, they are reserved for correction.

Importance Sampling for SGD

Consider a smooth sum-structured objective function:

f(x) =
1

n

n∑
i=1

fi(x) .

The SGD algorithm samples i ∈ [n] uniformly and sets ∇fi(xt) to be the stochastic gradient. Some-
times it is possible to speed up SGD by performing importance sampling.

Question 22: 2 points. Consider any probability distribution p = (p1, . . . , pn) with pi ≥ 0 and∑n
i=1 pi = 1. We sample i according to distribution p and define gt as:

gt :=
1

pin
∇fi(xt) . (IS)

Then show that gt is an unbiased gradient estimator i.e. E[gt|xt] = ∇f(xt).

0 1 2

Solution:

E[gt|xt] =

n∑
i=1

pi
1

pin
∇fi(xt) =

1

n

n∑
i=1

∇fi(xt) = ∇f(xt) .

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 23: 3 points. In the same setting as the previous page, recall that the standard simplex is

defined as ∆n := {y ∈ Rn :
∑n
i=1 yi = 1, yi ≥ 0 ∀i} . For some fixed positive constants ci ∈ R

for i ∈ [n], let y? be the optimum of

y? = argmin
y∈∆n

{
g(y) :=

n∑
i=1

c2i
yi

}
.

Using the first-order optimality condition, prove that

y?i =
|ci|∑n
j=1 |cj |

,∀i ∈ [n] .

0 1 2 3

Solution: The first-order optimality condition states that if y? is an optimum, then for all y ∈ ∆n,

∇g(y?)>(y − y?) > 0 .

The ith coordinate of the gradient at the claimed optimum point is:

∇ig(y?) = − c2i
(y?i )2

= −c
2
i

c2i

 n∑
j=1

|cj |

2

= −

 n∑
j=1

|cj |

2

Substituting the above gradient and y?, the optimality conditions becomes:

n∑
i=1

−

 n∑
j=1

|cj |

2(
yi −

|ci|∑n
j=1 |cj |

)
= −

 n∑
j=1

|cj |

2

(‖y‖1 − 1) = 0 .

Question 24: 3 points. Using the previous result, compute the optimum sampling probability p? to
minimize the variance E[‖gt −∇f(xt)‖2] of our estimator gt defined in (IS).

0 1 2 3

Solution:

E[‖gt −∇f(xt)‖2] = E[‖gt‖2]− ‖∇f(xt)‖2

=

n∑
i=1

pi
1

p2
in

2
‖∇fi(xt)‖2 − ‖∇f(xt)‖2 .

Thus, the optimal sampling distribution to minimize variance is

p? = argmin
p∈∆n

n∑
i=1

1

pi
‖∇fi(xt)‖ .

By the result from the previous question, we know that:

p?i =
‖∇fi(xt)‖∑n
j=1 ‖∇fj(xt)‖

.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Convergence of Signed Gradient Descent

Suppose that f : Rd → R is an L-smooth function. Let us look at an algorithm which only uses the
coordinate-wise signs of the gradient, with step-size γ > 0:

xt+1 := xt − γsign(∇f(xt)) . (sgnGD)

Question 25: 3 points. What is the best step-size γ to use in (sgnGD)?
Hint: plug in the update (sgnGD) into the smoothness condition and maximize the function
decrease.

0 1 2 3

Solution: Using the smoothness condition,

f(xt+1) ≤ f(xt) +∇f(xt)
>(xt+1 − xt) +

L

2
‖xt+1 − xt‖22

= f(xt)− γ∇f(xt)
>sign(∇f(xt)) +

Lγ2

2
‖sign(∇f(xt))‖22

= f(xt)− γ ‖∇f(xt)‖1 +
Ldγ2

2
.

The above expression is a quadratic in γ and we can compute the value at which it attains its minimum
to be

γ =
‖∇f(xt)‖1

Ld
.

Question 26: 3 points. Suppose that function f has an optimum value f? and satisfies the following
PL-condition for a constant µ∞ > 0:

1
2 ‖∇f(x)‖21 ≥ µ∞(f(x)− f?) ∀x .

Then prove that (sgnGD) with the best step-size γ from the previous question gives the following
rate:

f(xt)− f? ≤
(

1− µ∞
dL

)t
(f(x0)− f?) .

0 1 2 3

Solution: Using the above computed γ =
‖∇f(xt)‖1

Ld , we get that

f(xt+1) ≤ f(xt)− γ ‖∇f(xt)‖1 +
Ldγ2

2

= f(xt)−
1

2Ld
‖∇f(xt)‖21

≤ f(xt)−
µ∞
Ld

(f(xt)− f?) .

In the last step we use PL inequality. Subtracting f? from both sides and rearranging gives the
required rate:

f(xt+1)− f? ≤ f(xt)− f? −
µ∞
Ld

(f(xt)− f?) =
(

1− µ∞
dL

)
(f(xt)− f?) .

Coordinate descent vs. Gradient descent

Recall that for a function f , Lc coordinate-wise smoothness is defined as

f(x + γei) ≤ f(x) + γ∇if(x) +
Lc
2
γ2, ∀x ∈ Rd,∀γ ∈ R,∀i ∈ [d] .

In contrast, standard (full gradient) smoothness is defined as

f(x + y) ≤ f(x) +∇f(x)>y +
Lg
2
‖y‖22 , ∀x ∈ Rd,∀y ∈ Rd .y For your examination, preferably print documents compiled from auto-

multiple-choice.
y
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Question 27: 3 points. Assume that

(a) Lg is the smallest constant such that f is Lg smooth,

(b) Lc is the smallest constant such that f is Lc coordinate-wise smooth,

(c) f is convex.

Prove the following two relations:
Lc ≤ Lg ≤ dLc .

0 1 2 3

Solution: For the first inequality, clearly substituting y = γei in the full gradient smoothness
condition shows that f is also Lg coordinate-wise smooth.
For the second inequality note that

f(x + y) = f

(
1
d

d∑
i=1

(x + dyiei)

)

≤ 1

d

d∑
i=1

f(x + dyiei)

≤ 1

d

d∑
i=1

{
f(x) +∇if(x)(dyi) +

Lcd
2y2
i

2

}
= f(x) +∇f(x)>y +

Lcd

2
‖y‖22 .

In the first step we used convexity of f .

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 28: 3 points. Define the symmetric matrix A ∈ Rd×d to be A := εId + 1d1

>
d where Id is

the identity matrix and 1d is a vector of all 1s. For some b ∈ Rd, consider the quadratic function

f(x) := 1
2x
>Ax− b>x . (FQ)

Compute the Lc and Lg smoothness constants for f .

0 1 2 3

Solution: Lg is an upper bound on the the spectral norm of the Hessian. Here the Hessian is A
and has a spectral norm of ε+ d i.e. Lg = ε+ d.
For Lc note that

f(x + γei) = 1
2 (x + γei)

>A(x + γei)− b>(x + γei)

= 1
2x
>Ax + γ(Ax)i +

Ai,iγ
2

2
− b>x− γbi

= 1
2x
>Ax− b>x + γ(Ax− b)i +

Ai,iγ
2

2

= f(x) + γ∇if(x) +
Ai,iγ

2

2
.

Thus Lc = maxiAi,i which in this case is ε+ 1.

Question 29: 2 points. Suppose that performing 1 step of gradient descent on (FQ) requires the
same time as performing d steps of coordinate descent. Which algorithm would you expect to
converge faster? How would the rates of the two algorithms compare for ε→ 0?

0 1 2

Solution: Coordinate descent (CD) would be d times faster than gradient descent (GD). This is
because GD has a rate proportional to Lg whereas the rate of CD is proportional to dLc. Since in
our example Lg = dLc for ε → 0, GD and CD require the same number of iterations. However each
iteration of CD is d times faster and so it is overall d times faster.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Smooth non-convex functions

Question 30: 3 points. Suppose that f is a possibly non-convex, twice differentiable function such
that the Hessian is bounded in spectral norm∥∥∇2f(x)

∥∥
2
≤ L, ∀x .

Show that the function fL as defined below is convex:

fL(x) := f(x) +
L

2
‖x‖22 .

0 1 2 3

Solution: A very short proof:
the Hessian of fL is ∇2f(x) + LI. Since the eigenvalues of ∇2f(x) lie in the interval [−L,L], the
eigenspectrum of ∇2f(x) + LI lies in [0, 2L]. Thus fL is convex and 2L-smooth.
Longer proof:
Since f is possibly non-convex, the eigenvalues of the Hessian may be either positive or negative. The
bounded Hessian condition in this case implies that for any x,y, z:

−L ‖x− y‖2 ≤ (x− y)>∇2f(z)(x− y) ≤ L ‖x− y‖2 .

Using the mean-value form of the remainder term in Taylor’s Theorem, we know that for any x,y

there exists z such that

f(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(z)(y − x) .

Combining the above two together we have:

f(y) ≥ f(x) +∇f(x)>(y − x)− L

2
‖y − x‖2 .

Simply expanding the Euclidean norm gives:

L

2
‖y‖2 =

L

2
‖x + (y − x)‖2

=
L

2
‖x‖2 +

L

2
‖y − x‖2 + Lx>(y − x)

=
L

2
‖x‖2 + (∇L

2 ‖x‖
2
)>(y − x) +

L

2
‖y − x‖2 .

Thus we have proved that

fL(y) = f(y) +
L

2
‖y‖2

≥ f(x) +∇f(x)>(y − x)− L

2
‖y − x‖2 +

L

2
‖y‖2

= f(x) +∇f(x)>(y − x) + (∇L
2 ‖x‖

2
)>(y − x) +

L

2
‖x‖2

= fL(x) + (∇fL(x))>(y − x) .

In the third step we used the expansion of ‖y‖2. This proves that fL is convex.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Over-parameterized problems

Suppose that f satisfies the sum structure:

f(x) =
1

n

n∑
i=1

fi(x) ,

where each of the function fi is L-smooth. In this question assume we are in the over-parameterized
setting which means:

there exists x? such that ∇fi(x?) = 0 ∀i ∈ [n] .

We will run standard SGD on this problem by picking i uniformly and updating with some step-
size γ > 0:

xt+1 := xt − γ∇fi(xt) .

Question 31: 4 points. Given that f is over-parameterized, show that

E
[
‖∇fi(xt)‖2

∣∣xt] ≤ 2L(f(xt)− f(x?)) .

Hint: use the fact that the gradient of fi is L-Lipschitz and that it is 0 at x?.

0 1 2 3 4

Solution: Since fi is L-smooth, the following holds for all y:

fi(y) ≤ fi(xt) +∇fi(xt)>(y − x) +
L

2
‖y − x‖22 .

The inequality holds even if we minimize both sides of the above equation giving that

min
y
fi(y) ≤ fi(xt) + min

y

{
∇fi(xt)>(y − x) +

L

2
‖y − x‖22

}
= fi(xt)−

1

2L
‖∇fi(xt)‖2 .

Further if f is convex, ∇f(x?) = 0 implies that f(x?) = miny f(y). Substituting this and rearranging
the terms in the above equation we get:

1

2L
‖∇fi(xt)‖2 ≤ fi(xt)− fi(x?) .

Now taking conditional expectation on both sides gives us the desired result.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 32: 2 points. Using the result in the previous question prove that

E[f(xt+1)|xt] ≤ f(xt)− γ ‖∇f(xt)‖2 + γ2L2(f(xt)− f(x?)) . (OPS)

Hint: Plug in the SGD update into the smoothness bound on f .

0 1 2

Solution: Since each fi is L-smooth, this implies that f is also L-smooth. Then we can write that

f(xt+1) ≤ f(xt) +∇f(xt)
>(xt+1 − xt) +

L

2
‖xt+1 − xt‖2

= f(xt)− γ∇f(xt)
>∇fi(xt) +

Lγ2

2
‖∇fi(xt)‖2 .

Taking expectation on both sides and using the result in question 31 gives

E[f(xt+1)|xt] ≤ f(xt)− γ ‖∇f(xt)‖2 + γ2L2(f(xt)− f(x?)) .

Question 33: 4 points. Now suppose that f is µ-strongly convex. By picking an appropriate step-
size γ, prove using (OPS) that SGD converges at a linear rate, i.e.,

E[f(xt)]− f(x?) ≤
(

1− µ2

L2

)t
(f(x0)− f(x?)) .

Hint: The best step-size is not 1
L and depends on µ.

0 1 2 3 4

Solution: Since f is s.c., it satisfies the PL-condition

‖∇f(xt)‖2 ≥ 2µ(f(xt)− f?) ,

where f? = f(x?). Replacing this in the result of Question 32 gives

E[f(xt+1)|xt] ≤ f(xt)− 2µγ(f(xt)− f(x?)) + γ2L2(f(xt)− f(x?))

= f(xt)− (2µγ − γ2L2)(f(xt)− f(x?)) .

Let us pick γ = µ
L2 to maximize the dependent term above. Then, subtracting f(x?) from both sides

gives

E[f(xt+1)|xt]− f(x?) ≤
(

1− µ2

L2

)
.

Unrolling the above while taking expectations gives the desired result.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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