

Exam Optimization for Machine Learning – CS-439 Prof. Martin Jaggi

②

②

20 June 2019 - from 08h15 to 11h15 in PO01

TUDENT NAM ID STUDEN

SCIPER SCIPER Signature :

Wait for the start of the exam before turning to the next page. This document is printed double sided, 16 pages.

- This is a closed book exam. No electronic devices of any kind.
- Place on your desk: your student ID, writing utensils, one double-sided A4 page cheat sheet (handwritten or 11pt min font size) if you have one; place all other personal items below your desk or on the side.
- You each have a different exam.
- For technical reasons, do use black or blue pens for the MCQ part, no pencils! Use white corrector if necessary.

②

First part, multiple choice

There is exactly one correct answer per question.

Lasso Coordinate Descent

The optimization problem for sparse least squares linear regression (also known as the Lasso) is given by

 $\min_{\mathbf{x} \in \mathbb{R}^n}$ $||A\mathbf{x} - \mathbf{b}||^2 + \lambda ||\mathbf{x}||_1$

for some regularization parameter $\lambda > 0$.

We write A_{-i} for the $(d-1) \times n$ matrix obtained by removing the *i*-th column A_i from A, and same for the vector \mathbf{x}_{-i} with one entry removed accordingly. The soft thresholding operator S is defined as

$$
S_a(b) := \begin{cases} 0, & |b| \le a, \\ b - a & b > a, \\ b + a & b < -a \end{cases}
$$

Question 1 The solution to exact coordinate minimization for the Lasso problem above, for the i-th coordinate, is

Question 1 The solution to exact coordinate minimization for the Lasso problem
th coordinate, is

$$
\Box x_i^* = S_{\frac{\lambda}{\Vert A_i \Vert^2}} \left(A_i^\top (\mathbf{b} - A_{-i} \mathbf{x}_{-i}) / ||A_i||^2 \right)
$$

$$
\Box x_i^* = S_{\frac{\lambda}{\Vert A_i \Vert^2}} \left(A_i^\top (\mathbf{b} - A \mathbf{x}) / ||A_i||^2 \right)
$$

$$
\Box x_i^* = S_{\frac{\lambda}{\Vert A_i \Vert^2}} \left(2 A_i^\top (\mathbf{b} - A \mathbf{x}) / ||A_i||^2 \right)
$$

$$
\Box x_i^* = S_{\frac{\lambda}{\Vert A_i \Vert^2}} \left(2 A_i^\top (\mathbf{b} - A_{-i} \mathbf{x}_{-i}) / ||A_i||^2 \right)
$$

$$
\Box x_i^* = S_{\frac{\lambda}{\Vert A_i \Vert^2}} \left(A_i^\top (\mathbf{b} - A_{-i} \mathbf{x}_{-i}) / ||A_i||^2 \right)
$$

Hint: If you don't recall the precise expression, verify a concrete example with a toy
rge value of λ .
tochaotic Gradient Descent

Hint: If you don't recall the precise expression, verify a concrete example with a toy matrix A and a large value of λ .

Stochastic Gradient Descent

In this section we are interested in finding the minimum of a *strongly convex* function $f: \mathbb{R}^n \to \mathbb{R}$,

$$
f^* := \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}),
$$

with iterative schemes of the form

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \mathbf{g}(\mathbf{x}_t),
$$

for gradient oracles $\mathbf{g} \colon \mathbb{R}^n \to \mathbb{R}^n$.

Question 2 Given access to a gradient oracle $\mathbf{g}_G: \mathbb{R}^n \to \mathbb{R}^n$, with $\mathbf{g}_G(\mathbf{x}) := \nabla f(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{R}^n$, we can implement gradient descent (with constant stepsize $\gamma_t \equiv \gamma$). What is the convergence rate of gradient descent (with optimal stepsize), i.e. how many iterations T does it take to reach suboptimality $f(\mathbf{x}_T) - f^* \leq \varepsilon$?

\n- ■ no answer is correct
\n- ■
$$
T = \mathcal{O}(\log \frac{1}{\varepsilon})
$$
\n- ■ $T = \mathcal{O}(\log \log \frac{1}{\varepsilon})$
\n- ■ $T = \mathcal{O}(e^{\varepsilon})$
\n- ■ For your examination, preferably print documents compiled from automatically结.
\n

②

Question 3 Given access to a stochastic gradient oracle \mathbf{g}_{SG} : $\mathbb{R}^n \to \mathbb{R}^n$ we can implement stochastic gradient descent on f. Assume the stochastic oracle outputs

$$
\mathbf{g}_{\mathrm{SG}}(\mathbf{x}) := \mathbf{g}_{\mathrm{G}} + \boldsymbol{\xi}
$$

for every call, where $\xi \in \mathbb{R}^n$ is a random variable with $\mathbb{E} \xi = 0$, and $\mathbb{E} \|\xi\|^2 \leq \sigma^2$ (and $\sigma^2 > 0$). What is the convergence rate of stochastic gradient descent (with optimal constant stepsize $\gamma_t \equiv \gamma$), for the last iterate (not the average iterate), i.e. how many iterations T does it take to reach suboptimality $\mathbb{E} f(\mathbf{x}_T) - f^* \leq \varepsilon$?

no answer is correct

$$
\Box T = \mathcal{O}(\frac{1}{\varepsilon})
$$

$$
\Box T = \mathcal{O}(e^{\varepsilon})
$$

$$
\Box T = \mathcal{O}(\log \frac{1}{\varepsilon})
$$

Consider the following two stochastic oracles:

DRAFT ^gA(x) := 2gG(x), w. prob. ¹² ⁰, w. prob. ¹² g B (x) := g G (x) , w. prob. 12 gSG (x) , w. prob. 12

Question 4 Which statement is true? (Here biased means not having the correct expectation)

Oracle A and B are both biased.

Oracle A is unbiased, oracle B is biased.

Oracle A is biased, oracle B is unbiased.

Oracle A and B are both unbiased.

Question 5 Which statement is true?

no answer is correct

The variance of oracle B is smaller than the variance of oracle A.

The variance of oracle A is smaller than the variance of oracle B.

Question 6 Consider two new oracles, g_C and g_D . Suppose stochastic gradient descent (with constant stepsize γ) converges as:

oracle C:
$$
\mathbb{E} f(\mathbf{x}_t) - f^* \leq \left(1 - \frac{a}{100}\right)^t (f(\mathbf{x}_0) - f^*)
$$

oracle D: $\mathbb{E} f(\mathbf{x}_t) - f^* \leq (1 - a)^t (f(\mathbf{x}_0) - f^*) + b$

where here $a \in (0, 1)$ and $b > 0$ are two parameters. Which algorithm do you prefer, to reach accuracy ε (in terms of function suboptimality, $\mathbb{E} f(\mathbf{x}_t) - f^* \leq \varepsilon$) as fast as possible? (Assume $f(\mathbf{x}_0) - f^* \geq 100b$).

Both algorithms converge equally fast.

Oracle D over C if $\varepsilon > 10b$.

Oracle D over C if $\varepsilon \leq 10b$.

no answer is correct

②

Convexity and Smoothness

For each of the functions below, verify whether they are (1) convex, (2) strictly convex, (3) strongly convex, and (4) smooth:

A. $f(x) = x, x \in$ **R** $f(x) = \sin(x), x \in \mathbb{R}$ **C.** $f(x) = \text{ReLu}(ax + b), x \in \mathbb{R}$ **D.** $f(x) = \text{ReLu}(a_2x_2(a_1x_1 + b_1) + b_2), x \in \mathbb{R}^2$ **E.** $f(x) = e^{-x}, x \in \mathbb{R}$ **F.** $f(x) = \exp(-a^{\top}x) + ||Ax - b||_2^2, x \in \mathbb{R}^2$ G. $f(\mathbf{x}) = \mathbf{x}^\top A \mathbf{x}, \ \mathbf{x} \in \mathbb{R}^2$,

where

$$
A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \text{ReLU}(x) := \begin{cases} 0, & x < 0 \\ x, & \text{otherwise} \end{cases}, \quad a, b, a_i, b_i \in \mathbb{R}, \quad \mathbf{a}, \mathbf{b} \in \mathbb{R}^2.
$$

Question 7 Given the function A. above, which are all of its properties?

 $convex + strictly convex + strongly convex + smooth$

smooth

convex + strictly convex

- none of these properties
	- For your examination, preferably print documents compiled from automultiple-choice.

Question 10 Given the function D. above, which are all of its properties?

- $convex + strictly convex + strongly convex$
- smooth
- $convex + strictly convex + smooth$
- convex
- $convex + smooth$
- $convex + strictly convex + strongly convex + smooth$
- none of these properties

Question 11 Given the function E. above, which are all of its properties?

 \Box convex + strictly convex + strongly convex + smooth

smooth

 $convex + strictly convex + strongly convex$

 $convex + strictly convex + smooth$

convex

convex + strictly convex

none of these properties \sim

Question 13 Given the function G. above, which are all of its properties?

②

Smoothness and Strong Convexity

Consider an iterative optimization procedure.

Question 14 Which one of the following three inequalities is valid for a *smooth* convex function f for some $L \in \mathbb{R}$:

$$
\begin{aligned}\n\Box \quad & f(\mathbf{x}^*) - f(\mathbf{x}_t) \leq \nabla f(\mathbf{x}_t)^\top (\mathbf{x}_t - \mathbf{x}^*) + \frac{L}{2} \left\| \mathbf{x}^* - \mathbf{x}_t \right\|^2 \\
\Box \quad & f(\mathbf{x}^*) - f(\mathbf{x}_t) \leq \nabla f(\mathbf{x}_t)^\top (\mathbf{x}^* - \mathbf{x}_t) + \frac{L}{2} \left\| \mathbf{x}^* - \mathbf{x}_t \right\|^2 \\
\Box \quad & f(\mathbf{x}^*) - f(\mathbf{x}_t) \leq \nabla f(\mathbf{x}_t)^\top (\mathbf{x}^* - \mathbf{x}_t) - \frac{L}{2} \left\| \mathbf{x}^* - \mathbf{x}_t \right\|^2\n\end{aligned}
$$

Question 15 Which one of the following three inequalities is valid for a *strongly convex* function f for some $\mu \in \mathbb{R}$:

$$
\begin{aligned}\n\Box \ f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) &\geq \nabla f(\mathbf{x}_t)^\top (\mathbf{x}_t - \mathbf{x}_{t+1}) + \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 \\
\Box \ f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) &\leq \nabla f(\mathbf{x}_t)^\top (\mathbf{x}_t - \mathbf{x}_{t+1}) - \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 \\
\Box \ f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) &\leq \nabla f(\mathbf{x}_t)^\top (\mathbf{x}_t - \mathbf{x}_{t+1}) + \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 \\
\end{aligned}
$$

②

Second part, true/false questions

Question 16 (Linear Minimization Oracle) The LMO used in the Frank-Wolfe algorithm is given as LMO_X(g) := argmin $\langle s, g \rangle$. For $X := conv(\mathcal{A})$ being the convex hull of any bounded set $\mathcal{A} \subset \mathbb{R}^d$, $s \in X$ we have that

Question 17 (Hearn Gap in Frank-Wolfe) The duality gap for constrained optimization problems $\min_{\mathbf{x}\in X} f(\mathbf{x})$ as resulting from the Frank-Wolfe algorithm is

 $g(\mathbf{x}) := \langle \mathbf{s} - \mathbf{x}, \nabla f(\mathbf{x}) \rangle \ge f(\mathbf{x}) - f(\mathbf{x}^*)$.

where $\mathbf{s} = \text{LMO}_X(\nabla f(\mathbf{x}))$ is the output of the Linear Minimization Oracle.

For L-smooth convex functions, random search, with step-size $1/L$, converges as $\mathcal{O}(dL/\varepsilon)$

RUE RALSE

Third part, open questions

Answer in the space provided! Your answer must be justified with all steps. Do not cross any checkboxes, they are reserved for correction.

Importance Sampling for SGD

Consider a smooth sum-structured objective function:

$$
f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}).
$$

The SGD algorithm samples $i \in [n]$ uniformly and sets $\nabla f_i(\mathbf{x}_t)$ to be the stochastic gradient. Sometimes it is possible to speed up SGD by performing importance sampling.

Question 22: 2 points. Consider any probability distribution $p = (p_1, \ldots, p_n)$ with $p_i \geq 0$ and $\sum_{i=1}^{n} p_i = 1$. We sample *i* according to distribution **p** and define **g**_t as:

$$
\mathbf{g}_t := \frac{1}{p_i n} \nabla f_i(\mathbf{x}_t)
$$
 (IS)

Then show that \mathbf{g}_t is an unbiased gradient estimator i.e. $\mathbb{E}[\mathbf{g}_t|\mathbf{x}_t] = \nabla f(\mathbf{x}_t)$.

②

Question 23: 3 points. In the same setting as the previous page, recall that the standard simplex is defined as $\Delta_n := \{ \mathbf{y} \in \mathbb{R}^n : \sum_{i=1}^n y_i = 1, y_i \geq 0 \; \forall i \}.$ For some fixed positive constants $c_i \in \mathbb{R}$ for $i \in [n]$, let \mathbf{y}^* be the optimum of

$$
\mathbf{y}^{\star} = \underset{\mathbf{y} \in \Delta_n}{\operatorname{argmin}} \left\{ g(\mathbf{y}) := \sum_{i=1}^n \frac{c_i^2}{y_i} \right\}.
$$

Using the first-order optimality condition, prove that

$$
y_i^* = \frac{|c_i|}{\sum_{j=1}^n |c_j|}, \forall i \in [n].
$$

Question 24: 3 points. Using the previous result, compute the optimum sampling probability p^* to minimize the variance $\mathbb{E}[\|\mathbf{g}_t - \nabla f(\mathbf{x}_t)\|^2]$ of our estimator \mathbf{g}_t defined in (IS).

For your examination, preferably print documents compiled from automultiple-choice.

②

Convergence of Signed Gradient Descent

Suppose that $f: \mathbb{R}^d \to \mathbb{R}$ is an L-smooth function. Let us look at an algorithm which only uses the coordinate-wise signs of the gradient, with step-size $\gamma > 0$:

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma sign(\nabla f(\mathbf{x}_t)).
$$
\n^(sgnGD)

Question 25: 3 points. What is the best step-size γ to use in (sgnGD)?

Hint: plug in the update (sgnGD) into the smoothness condition and maximize the function decrease.

Question 26: 3 points. Suppose that function f has an optimum value f^* and satisfies the following PL-condition for a constant $\mu_{\infty} > 0$:

$$
\frac{1}{2} \left\| \nabla f(\mathbf{x}) \right\|_1^2 \ge \mu_\infty(f(\mathbf{x}) - f^*) \; \forall \mathbf{x} \, .
$$

Then prove that (sgnGD) with the best step-size γ from the previous question gives the following rate:

$$
f(\mathbf{x}_t) - f^* \leq \left(1 - \frac{\mu_{\infty}}{dL}\right)^t \left(f(\mathbf{x}_0) - f^*\right).
$$

For your examination, preferably print documents compiled from automultiple-choice.

②

Coordinate descent vs. Gradient descent

Recall that for a function f, L_c coordinate-wise smoothness is defined as

$$
f(\mathbf{x} + \gamma \mathbf{e}_i) \leq f(\mathbf{x}) + \gamma \nabla_i f(\mathbf{x}) + \frac{L_c}{2} \gamma^2, \ \forall \mathbf{x} \in \mathbb{R}^d, \forall \gamma \in \mathbb{R}, \forall i \in [d].
$$

In contrast, standard (full gradient) smoothness is defined as

$$
f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^\top \mathbf{y} + \frac{L_g}{2} ||\mathbf{y}||_2^2, \ \forall \mathbf{x} \in \mathbb{R}^d, \forall \mathbf{y} \in \mathbb{R}^d.
$$

Question 27: 3 points. Assume that

- (a) L_g is the smallest constant such that f is L_g smooth,
- (b) L_c is the smallest constant such that f is L_c coordinate-wise smooth,
- (c) f is convex.

Prove the following two relations:

②

Question 28: 3 points. Define the symmetric matrix $A \in \mathbb{R}^{d \times d}$ to be $A := \varepsilon I_d + \mathbf{1}_d \mathbf{1}_d^{\top}$ where I_d is the identity matrix and $\mathbf{1}_d$ is a vector of all 1s. For some $\mathbf{b} \in \mathbb{R}^d$, consider the quadratic function

$$
f(\mathbf{x}) := \frac{1}{2}\mathbf{x}^\top A \mathbf{x} - \mathbf{b}^\top \mathbf{x}.
$$
 (FQ)

Compute the L_c and L_g smoothness constants for f.

Question 29: 2 points. Suppose that performing 1 step of gradient descent on (FQ) requires the same time as performing d steps of coordinate descent. Which algorithm would you expect to converge faster? How would the rates of the two algorithms compare for $\varepsilon \to 0$?

Smooth non-convex functions

Question 30: 3 points. Suppose that f is a possibly non-convex, twice differentiable function such that the Hessian is bounded in spectral norm

$$
\left\|\nabla^2 f(\mathbf{x})\right\|_2 \leq L, \ \forall \mathbf{x}.
$$

Show that the function f_L as defined below is convex:

$$
f_L(\mathbf{x}) := f(\mathbf{x}) + \frac{L}{2} ||\mathbf{x}||_2^2.
$$

Over-parameterized problems

Suppose that f satisfies the sum structure:

$$
f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}),
$$

where each of the function f_i is L-smooth. In this question assume we are in the over-parameterized setting which means:

there exists \mathbf{x}^* such that $\nabla f_i(\mathbf{x}^*) = 0 \ \forall i \in [n]$.

We will run standard SGD on this problem by picking i uniformly and updating with some stepsize $\gamma > 0$:

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f_i(\mathbf{x}_t).
$$

Question 31: \neq points. Given that f is over-parameterized, show that

$$
\mathbb{E}\left[\left\|\nabla f_i(\mathbf{x}_t)\right\|^2 \big|\mathbf{x}_t\right] \leq 2L(f(\mathbf{x}_t) - f(\mathbf{x}^*)).
$$

Hint: use the fact that the gradient of f_i is L-Lipschitz and that it is $\mathbf{0}$ at \mathbf{x}^* .

②

Question 32: 2 points. Using the result in the previous question prove that

$$
\mathbb{E}[f(\mathbf{x}_{t+1})|\mathbf{x}_t] \le f(\mathbf{x}_t) - \gamma \|\nabla f(\mathbf{x}_t)\|^2 + \gamma^2 L^2(f(\mathbf{x}_t) - f(\mathbf{x}^*))\,. \tag{OPS}
$$

Hint: Plug in the SGD update into the smoothness bound on f.

Question 33: 4 points. Now suppose that f is μ -strongly convex. By picking an appropriate stepsize γ , prove using (OPS) that SGD converges at a linear rate, i.e.,

$$
\mathbb{E}[f(\mathbf{x}_t)] - f(\mathbf{x}^*) \leq \left(1 - \frac{\mu^2}{L^2}\right)^t \left(f(\mathbf{x}_0) - f(\mathbf{x}^*)\right).
$$

Hint: The best step-size is not $\frac{1}{L}$ and depends on μ .

②

For your examination, preferably print documents compiled from automultiple-choice.