In Proceedings, Special Proceedings in Advanced Robotics at International Symposium on Experimental Robotics 2023.
Repository under frequent updation. For Queries contact [email protected].
python intensity_analyser.py
Extracts the data and calibrates then for training, generating ground truth (Intensity ranges of classes), plotting etc.
python /utils/GT_corrector.py
To correct the outliers in the ground truth and data generated from <intensity_analyser.py>
python /alpha_predictor/alpha_model.py
Contains the ANN architecture of the predictor.
python /alpha_predictor/train_alpha.py
Command to train the model. Please edit the paths to the root file of the dataset.
python intensity_predictor.py
python intensity_predictor_velodyne.py
python ins2ref.py
Command to predict the classes of the LiDAR points. Reads .ply files and predicts for classes: grass, bush, trees, puddle, person.
python /utils/make_video.py python /utils/data_counter.py
To generate movies from images.
If you find this work useful for your research, do cite us.
@InProceedings{10.1007/978-3-031-63596-0_54, author="Viswanath, Kasi and Jiang, Peng and Sujit, P. B. and Saripalli, Srikanth", editor="Ang Jr, Marcelo H. and Khatib, Oussama", title="Off-Road LiDAR Intensity Based Semantic Segmentation", booktitle="Experimental Robotics", year="2024", publisher="Springer Nature Switzerland", address="Cham", pages="608--617", isbn="978-3-031-63596-0" }