This repository contains code to reproduce results from A Simple Method for Commonsense Reasoning.
Authors and contact:
- Trieu H. Trinh ([email protected], github: thtrieu)
- Quoc V. Le ([email protected])
Commonsense reasoning is a long-standing challenge for deep learning. For example, it is difficult to use neural networks to tackle the Winograd Schema dataset - a difficult subset of Pronoun Disambiguation problems. In this work, we use language models to score substitued sentences to decide the correct reference of the ambiguous pronoun (see Figure below for an example).
This simple unsupervised method achieves new state-of-the-art (as of June 1st, 2018) results on both benchmark PDP-60 and WSC-273 (See Table below), without using rule-based reasoning nor expensive annotated knowledge bases.
Commonsense-reasoning test | Previous best result | Ours |
---|---|---|
Pronoun Disambiguation | 66.7% | 70% |
Winograd Schema Challenge | 52.8% | 63.7% |
If you use our released models below in your publication, please cite the original paper:
@article{TBD}
- Python >=2.6
- Tensorflow >= v1.4
- Numpy >= 1.12.1
The open-sourced components include:
- Test sets from Pronoun Disambiguation Problem (PDP-60) and Winograd Schema Challenges (WSC-273).
- Tensorflow metagraph and checkpoints of 14 language models (See Appendix A in the paper).
- A vocabulary file.
- Code to reproduce results from the original paper.
Download all files from the Google Cloud Storage of this project. The easiest way is to install and use gsutil cp
command-line tool (See install gsutil).
# Download everything from the project gs:https://commonsense-reasoning
$ gsutil cp -R gs:https://commonsense-reasoning/* .
Copying gs:https://commonsense-reasoning/reproduce/vocab.txt...
Copying gs:https://commonsense-reasoning/reproduce/commonsense_test/pdp60.json...
Copying gs:https://commonsense-reasoning/reproduce/commonsense_test/wsc273.json...
...(omitted)
All downloaded content should be in ./reproduce/
. This includes two tests pdp60.json
and wsc273.json
, a vocabulary file vocab.txt
and checkpoints for all 14 language models, each includes three files (.data
, .index
and .meta
). All checkpoint names start with ckpt-best
since they are saved at the best perplexity on a hold-out text corpus.
# Check for the content
$ ls reproduce/*
reproduce/vocab.txt
reproduce/commonsense_test:
pdp60.json wsc273.json
reproduce/lm01:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm02:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm03:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm04:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm05:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm06:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm07:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm08:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm09:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm10:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm11:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm12:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm13:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
reproduce/lm14:
ckpt-best.data-00000-of-00001 ckpt-best.index ckpt-best.meta
To reproduce results from the paper, simply run eval.py
script.
$ python eval.py --data_dir=reproduce
Restored from ./reproduce/lm01
Reset RNN states.
Processing patch (1, 1) / (2, 4)
Probs for
[['Then' 'Dad' 'figured' ..., 'man' "'s" 'board-bill']
['Then' 'Dad' 'figured' ..., 'man' "'s" 'board-bill']
['Always' 'before' ',' ..., 'now' ',' 'for']
...,
['Mark' 'was' 'close' ..., 'promising' 'him' ',']
['Mark' 'was' 'close' ..., 'promising' 'him' ',']
['Mark' 'was' 'close' ..., 'promising' 'him' ',']]
=
[[ 1.64250596e-05 1.77780055e-06 4.14267970e-06 ..., 1.87315454e-03
1.57723188e-01 6.31845817e-02]
[ 1.64250596e-05 1.77780055e-06 4.14267970e-06 ..., 1.87315454e-03
1.57723188e-01 6.31845817e-02]
[ 1.28243030e-07 3.80435935e-03 1.12383246e-01 ..., 9.67682712e-03
2.17407525e-01 1.08243264e-01]
...,
[ 1.15557734e-04 2.92792241e-03 3.46455898e-04 ..., 2.72328052e-05
3.37066874e-02 7.89367408e-02]
[ 1.15557734e-04 2.92792241e-03 3.46455898e-04 ..., 2.72328052e-05
3.37066874e-02 7.89367408e-02]
[ 1.15557734e-04 2.92792241e-03 3.46455898e-04 ..., 2.72328052e-05
3.37066874e-02 7.89367408e-02]]
Processing patch (1, 2) / (2, 4)
...(omitted)
Accuracy of 1 LM(s) on pdp60 = 0.6
...(omitted)
Accuracy of 5 LM(s) on pdp60 = 0.7
...(omitted)
Accuracy of 10 LM(s) on wsc273 = 0.615
...(omitted)
Accuracy of 14 LM(s) on wsc273 = 0.637