# promptfoo: test your LLM app [![npm](https://img.shields.io/npm/v/promptfoo)](https://npmjs.com/package/promptfoo) [![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/typpo/promptfoo/main.yml)](https://github.com/typpo/promptfoo/actions/workflows/main.yml) ![MIT license](https://img.shields.io/github/license/typpo/promptfoo) [![Discord](https://dcbadge.vercel.app/api/server/gHPS9jjfbs?style=flat&compact=true)](https://discord.gg/gHPS9jjfbs) `promptfoo` is a tool for testing and evaluating LLM output quality. With promptfoo, you can: - **Systematically test prompts, models, and RAGs** with predefined test cases - **Evaluate quality and catch regressions** by comparing LLM outputs side-by-side - **Speed up evaluations** with caching and concurrency - **Score outputs automatically** by defining [test cases](https://promptfoo.dev/docs/configuration/expected-outputs) - Use as a [CLI](https://promptfoo.dev/docs/usage/command-line), [library](https://promptfoo.dev/docs/usage/node-package), or in [CI/CD](https://promptfoo.dev/docs/integrations/github-action) - Use OpenAI, Anthropic, Azure, Google, HuggingFace, open-source models like Llama, or integrate custom API providers for [any LLM API](https://promptfoo.dev/docs/providers) The goal: **test-driven LLM development** instead of trial-and-error. # [» View full documentation «](https://promptfoo.dev/docs/intro) promptfoo produces matrix views that let you quickly evaluate outputs across many prompts. Here's an example of a side-by-side comparison of multiple prompts and inputs: ![prompt evaluation matrix - web viewer](https://github.com/promptfoo/promptfoo/assets/310310/ce5a7817-da82-4484-b26d-32474f1cabc5) It works on the command line too: ![Prompt evaluation](https://github.com/typpo/promptfoo/assets/310310/480e1114-d049-40b9-bd5f-f81c15060284) ## Why choose promptfoo? There are many different ways to evaluate prompts. Here are some reasons to consider promptfoo: - **Battle-tested**: promptfoo was built to eval & improve LLM apps serving over 10 million users in production. The tooling is flexible and can be adapted to many setups. - **Simple, declarative test cases**: Define your evals without writing code or working with heavy notebooks. - **Language agnostic**: Use Javascript, Python, or whatever else you're working in. - **Share & collaborate**: Built-in share functionality & web viewer for working with teammates. - **Open-source**: LLM evals are a commodity and should be served by 100% open-source projects with no strings attached. - **Private**: This software runs completely locally. Your evals run on your machine and talk directly with the LLM. ## Workflow Start by establishing a handful of test cases - core use cases and failure cases that you want to ensure your prompt can handle. As you explore modifications to the prompt, use `promptfoo eval` to rate all outputs. This ensures the prompt is actually improving overall. As you collect more examples and establish a user feedback loop, continue to build the pool of test cases. LLM ops ## Usage To get started, run this command: ``` npx promptfoo@latest init ``` This will create some placeholders in your current directory: `prompts.txt` and `promptfooconfig.yaml`. After editing the prompts and variables to your liking, run the eval command to kick off an evaluation: ``` npx promptfoo@latest eval ``` ### Configuration The YAML configuration format runs each prompt through a series of example inputs (aka "test case") and checks if they meet requirements (aka "assert"). See the [Configuration docs](https://www.promptfoo.dev/docs/configuration/guide) for a detailed guide. ```yaml prompts: [prompt1.txt, prompt2.txt] providers: [openai:gpt-3.5-turbo, ollama:llama2:70b] tests: - description: 'Test translation to French' vars: language: French input: Hello world assert: - type: contains-json - type: javascript value: output.length < 100 - description: 'Test translation to German' vars: language: German input: How's it going? assert: - type: model-graded-closedqa value: does not describe self as an AI, model, or chatbot - type: similar value: was geht threshold: 0.6 # cosine similarity ``` ### Supported assertion types See [Test assertions](https://promptfoo.dev/docs/configuration/expected-outputs) for full details. Deterministic eval metrics | Assertion Type | Returns true if... | | --------------- | -------------------------------------------------------------- | | `equals` | output matches exactly | | `contains` | output contains substring | | `icontains` | output contains substring, case insensitive | | `regex` | output matches regex | | `starts-with` | output starts with string | | `contains-any` | output contains any of the listed substrings | | `contains-all` | output contains all list of substrings | | `icontains-any` | output contains any of the listed substrings, case insensitive | | `icontains-all` | output contains all list of substrings, case insensitive | | `is-json` | output is valid json (optional json schema validation) | | `contains-json` | output contains valid json (optional json schema validation) | | `javascript` | provided Javascript function validates the output | | `python` | provided Python function validates the output | | `webhook` | provided webhook returns `{pass: true}` | | `rouge-n` | Rouge-N score is above a given threshold | | `levenshtein` | Levenshtein distance is below a threshold | Model-assisted eval metrics | Assertion Type | Method | | ----------------------- | ------------------------------------------------------------------------------------------------ | | `similar` | embeddings and cosine similarity are above a threshold | | `classifer` | Grade using a [classifer](https://promptfoo.dev/docs/configuration/expected-outputs/classifier/) | | `llm-rubric` | LLM output matches a given rubric, using a Language Model to grade output | | `factuality` | LLM output adheres to the given facts, using Factuality method from OpenAI eval | | `answer-relevance` | Ensure that LLM output is related to original query | | `context-recall` | Ensure that ground truth appears in context | | `context-relevance` | Ensure that context is relevant to original query | | `context-faithfulness` | Ensure that LLM output uses the context | | `model-graded-closedqa` | LLM output adheres to given criteria, using Closed QA method from OpenAI eval | Every test type can be negated by prepending `not-`. For example, `not-equals` or `not-regex`. ### Tests from spreadsheet Some people prefer to configure their LLM tests in a CSV. In that case, the config is pretty simple: ```yaml prompts: [prompts.txt] providers: [openai:gpt-3.5-turbo] tests: tests.csv ``` See [example CSV](https://github.com/typpo/promptfoo/blob/main/examples/simple-test/tests.csv). ### Command-line If you're looking to customize your usage, you have a wide set of parameters at your disposal. | Option | Description | | ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `-p, --prompts ` | Paths to [prompt files](https://promptfoo.dev/docs/configuration/parameters#prompt-files), directory, or glob | | `-r, --providers ` | One of: openai:chat, openai:completion, openai:model-name, localai:chat:model-name, localai:completion:model-name. See [API providers][providers-docs] | | `-o, --output ` | Path to [output file](https://promptfoo.dev/docs/configuration/parameters#output-file) (csv, json, yaml, html) | | `--tests ` | Path to [external test file](https://promptfoo.dev/docs/configurationexpected-outputsassertions#load-an-external-tests-file) | | `-c, --config ` | Path to one or more [configuration files](https://promptfoo.dev/docs/configuration/guide). `promptfooconfig.js/json/yaml` is automatically loaded if present | | `-j, --max-concurrency ` | Maximum number of concurrent API calls | | `--table-cell-max-length ` | Truncate console table cells to this length | | `--prompt-prefix ` | This prefix is prepended to every prompt | | `--prompt-suffix ` | This suffix is append to every prompt | | `--grader` | [Provider][providers-docs] that will conduct the evaluation, if you are [using LLM to grade your output](https://promptfoo.dev/docs/configuration/expected-outputs#llm-evaluation) | After running an eval, you may optionally use the `view` command to open the web viewer: ``` npx promptfoo view ``` ### Examples #### Prompt quality In [this example](https://github.com/typpo/promptfoo/tree/main/examples/assistant-cli), we evaluate whether adding adjectives to the personality of an assistant bot affects the responses: ```bash npx promptfoo eval -p prompts.txt -r openai:gpt-3.5-turbo -t tests.csv ``` This command will evaluate the prompts in `prompts.txt`, substituing the variable values from `vars.csv`, and output results in your terminal. You can also output a nice [spreadsheet](https://docs.google.com/spreadsheets/d/1nanoj3_TniWrDl1Sj-qYqIMD6jwm5FBy15xPFdUTsmI/edit?usp=sharing), [JSON](https://github.com/typpo/promptfoo/blob/main/examples/simple-cli/output.json), YAML, or an HTML file: ![Table output](https://user-images.githubusercontent.com/310310/235483444-4ddb832d-e103-4b9c-a862-b0d6cc11cdc0.png) #### Model quality In the [next example](https://github.com/typpo/promptfoo/tree/main/examples/gpt-3.5-vs-4), we evaluate the difference between GPT 3 and GPT 4 outputs for a given prompt: ```bash npx promptfoo eval -p prompts.txt -r openai:gpt-3.5-turbo openai:gpt-4 -o output.html ``` Produces this HTML table: ![Side-by-side evaluation of LLM model quality, gpt3 vs gpt4, html output](https://user-images.githubusercontent.com/310310/235490527-e0c31f40-00a0-493a-8afc-8ed6322bb5ca.png) ## Usage (node package) You can also use `promptfoo` as a library in your project by importing the `evaluate` function. The function takes the following parameters: - `testSuite`: the Javascript equivalent of the promptfooconfig.yaml ```typescript interface EvaluateTestSuite { providers: string[]; // Valid provider name (e.g. openai:gpt-3.5-turbo) prompts: string[]; // List of prompts tests: string | TestCase[]; // Path to a CSV file, or list of test cases defaultTest?: Omit; // Optional: add default vars and assertions on test case outputPath?: string | string[]; // Optional: write results to file } interface TestCase { // Optional description of what you're testing description?: string; // Key-value pairs to substitute in the prompt vars?: Record; // Optional list of automatic checks to run on the LLM output assert?: Assertion[]; // Additional configuration settings for the prompt options?: PromptConfig & OutputConfig & GradingConfig; // The required score for this test case. If not provided, the test case is graded pass/fail. threshold?: number; } interface Assertion { type: string; value?: string; threshold?: number; // Required score for pass weight?: number; // The weight of this assertion compared to other assertions in the test case. Defaults to 1. provider?: ApiProvider; // For assertions that require an LLM provider } ``` - `options`: misc options related to how the tests are run ```typescript interface EvaluateOptions { maxConcurrency?: number; showProgressBar?: boolean; generateSuggestions?: boolean; } ``` ### Example `promptfoo` exports an `evaluate` function that you can use to run prompt evaluations. ```js import promptfoo from 'promptfoo'; const results = await promptfoo.evaluate({ prompts: ['Rephrase this in French: {{body}}', 'Rephrase this like a pirate: {{body}}'], providers: ['openai:gpt-3.5-turbo'], tests: [ { vars: { body: 'Hello world', }, }, { vars: { body: "I'm hungry", }, }, ], }); ``` This code imports the `promptfoo` library, defines the evaluation options, and then calls the `evaluate` function with these options. See the full example [here](https://github.com/typpo/promptfoo/tree/main/examples/simple-import), which includes an example results object. ## Configuration - **[Main guide](https://promptfoo.dev/docs/configuration/guide)**: Learn about how to configure your YAML file, setup prompt files, etc. - **[Configuring test cases](https://promptfoo.dev/docs/configuration/expected-outputs)**: Learn more about how to configure expected outputs and test assertions. ## Installation See **[installation docs](https://promptfoo.dev/docs/installation)** ## API Providers We support OpenAI's API as well as a number of open-source models. It's also to set up your own custom API provider. **[See Provider documentation][providers-docs]** for more details. ## Development Here's how to build and run locally: ```sh git clone https://github.com/promptfoo/promptfoo.git cd promptfoo npm i cd path/to/experiment-with-promptfoo # contains your promptfooconfig.yaml npx path/to/promptfoo-source eval ``` The web UI is located in `src/web/nextui`. To run it in dev mode, run `npm run local:web`. This will host the web UI at http://localhost:3000. The web UI expects `promptfoo view` to be running separately. You may also have to set some placeholder envars (it is _not_ necessary to sign up for a supabase account): ```sh NEXT_PUBLIC_SUPABASE_URL=http:// NEXT_PUBLIC_SUPABASE_ANON_KEY=abc ``` Contributions are welcome! Please feel free to submit a pull request or open an issue. `promptfoo` includes several npm scripts to make development easier and more efficient. To use these scripts, run `npm run ` in the project directory. Here are some of the available scripts: - `build`: Transpile TypeScript files to JavaScript - `build:watch`: Continuously watch and transpile TypeScript files on changes - `test`: Run test suite - `test:watch`: Continuously run test suite on changes # [» View full documentation «](https://promptfoo.dev/docs/intro) [providers-docs]: https://promptfoo.dev/docs/providers