-
Notifications
You must be signed in to change notification settings - Fork 9
/
LoweringCorrectness.v
496 lines (445 loc) · 18.5 KB
/
LoweringCorrectness.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
(*! Circuits | Proof of correctness for the lowering phase !*)
Require Import Coq.setoid_ring.Ring_theory Coq.setoid_ring.Ring Coq.setoid_ring.Ring.
Require Import Koika.Common Koika.Environments Koika.Syntax
Koika.SemanticProperties Koika.PrimitiveProperties Koika.SyntaxMacros Koika.Lowering.
Require Koika.TypedSemantics Koika.LoweredSemantics.
Section LoweringCorrectness.
Context {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t: Type}.
Context {R: reg_t -> type}.
Context {Sigma: ext_fn_t -> ExternalSignature}.
Notation CR := (lower_R R).
Notation CSigma := (lower_Sigma Sigma).
Context {REnv: Env reg_t}.
Context (r: REnv.(env_t) R).
Context (sigma: forall f, Sig_denote (Sigma f)).
Notation lr := (lower_r r).
Notation lsigma := (lower_sigma sigma).
Lemma lower_r_eqn:
forall idx, getenv REnv lr idx = bits_of_value (getenv REnv r idx).
Proof.
unfold lower_r; intros; rewrite getenv_map; reflexivity.
Qed.
Lemma lower_sigma_eqn:
forall (fn : ext_fn_t) (v : arg1Sig (Sigma fn)),
lsigma fn (bits_of_value v) = bits_of_value (sigma fn v).
Proof.
unfold lsigma; intros; rewrite value_of_bits_of_value; reflexivity.
Qed.
Notation taction := (TypedSyntax.action pos_t var_t fn_name_t R Sigma).
Notation laction := (LoweredSyntax.action pos_t var_t CR CSigma).
Notation tinterp := (TypedSemantics.interp_action r sigma).
Notation linterp := (LoweredSemantics.interp_action lr lsigma).
Notation tcontext := TypedSemantics.tcontext.
Notation lcontext := LoweredSemantics.lcontext.
Notation tlog := (Logs.Log R REnv).
Notation llog := (Logs.CLog CR REnv).
Context {var_t_eq_dec: EqDec var_t}.
Ltac lower_op_t :=
match goal with
| _ => progress intros
| _ => progress simpl in *
| _ => progress unfold Bits.extend_beginning, Bits.extend_end,
struct_sz, field_sz, array_sz, element_sz
| _ => rewrite bits_of_value_of_bits
| [ H: linterp _ _ _ _ = _ |- _ ] => rewrite H
| [ |- context[match ?d with _ => _ end] ] => is_var d; destruct d
| [ |- context[eq_rect _ _ _ _ ?pr] ] => destruct pr
| [ |- Some (_, _, _) = Some (_, _, _) ] => repeat f_equal
| [ |- Some _ = Some _ ] => f_equal
| _ => (apply _eq_of_value ||
apply _neq_of_value ||
apply get_field_bits_slice ||
apply subst_field_bits_slice_subst ||
apply get_element_bits_slice ||
apply subst_element_bits_slice_subst)
| _ => rewrite sel_msb, vect_repeat_single_const
| _ => solve [eauto]
end.
Ltac lower_op_correct_t :=
repeat match goal with
| _ => progress intros
| [ |- context[match linterp _ _ _ ?a with _ => _ end] ] =>
let v := fresh "v" in
let Heq := fresh "Heq" in
destruct (linterp _ _ _ a) as [((?, v), ?) | ] eqn:Heq; cbn;
[ rewrite <- (bits_of_value_of_bits _ v) in Heq;
remember (value_of_bits v) in *; clear dependent v | ]
| [ fn: PrimTyped.fn1 |- _ ] => destruct fn; repeat lower_op_t
| [ fn: PrimTyped.fn2 |- _ ] => destruct fn; repeat lower_op_t
end.
Theorem lower_unop_correct {sig lGamma lL ll}:
forall fn (a: laction sig _),
linterp lGamma lL ll (lower_unop fn a) =
match linterp lGamma lL ll a with
| Some (ll', bs, lGamma') =>
let v := value_of_bits bs in
Some (ll', bits_of_value (PrimSpecs.sigma1 fn v), lGamma')
| None => None
end.
Proof.
lower_op_correct_t.
Qed.
Theorem lower_binop_correct {sig lGamma lL ll}:
forall fn (a1 a2: laction sig _),
linterp lGamma lL ll (lower_binop fn a1 a2) =
match linterp lGamma lL ll a1 with
| Some (ll1, v1, lGamma1) =>
match linterp lGamma1 lL ll1 a2 with
| Some (ll2, v2, lGamma2) =>
let v1 := value_of_bits v1 in
let v2 := value_of_bits v2 in
Some (ll2, bits_of_value (PrimSpecs.sigma2 fn v1 v2), lGamma2)
| None => None
end
| None => None
end.
Proof.
lower_op_correct_t.
Qed.
Definition lower_context {sig}
(tGamma: tcontext sig) :=
cmap (V := fun k_tau => type_denote (snd k_tau))
(V' := Bits.bits)
(fun k_tau => type_sz (@snd var_t type k_tau))
(fun _ v => bits_of_value v)
tGamma.
Arguments lower_context : simpl never.
Definition context_equiv {sig}
(tGamma: tcontext sig)
(lGamma: lcontext (lsig_of_tsig sig)) :=
lGamma = lower_context tGamma.
Lemma context_equiv_cassoc {sig: tsig var_t} :
forall (tGamma: tcontext sig) {k tau} (m: member (k, tau) sig),
cassoc (lower_member m) (lower_context tGamma) =
bits_of_value (cassoc m tGamma).
Proof.
intros; rewrite <- (cmap_cassoc _ (fun _ v => bits_of_value v) _ m); reflexivity.
Qed.
Lemma context_equiv_creplace:
forall {sig: tsig var_t} {k: var_t} {tau: type}
(m: member (k, tau) sig) (v: tau)
(tGamma: tcontext sig),
context_equiv
(creplace m v tGamma)
(creplace (lower_member m) (bits_of_value v) (lower_context tGamma)).
Proof.
unfold context_equiv, lower_member, lower_context; intros.
rewrite cmap_creplace; reflexivity.
Qed.
Lemma context_equiv_CtxCons:
forall (sig: tsig var_t) (tau: type) (k: var_t) (v: tau) (tGamma: tcontext sig),
context_equiv (CtxCons (k, tau) v tGamma)
(CtxCons (type_sz tau) (bits_of_value v) (lower_context tGamma)).
Proof. reflexivity. Qed.
Lemma context_equiv_ctl:
forall (sig: tsig var_t) (tau: type) (k: var_t)
(tGamma: tcontext ((k, tau) :: sig)),
context_equiv (ctl tGamma) (ctl (lower_context tGamma)).
Proof.
unfold context_equiv, lower_context; intros; rewrite cmap_ctl; reflexivity.
Qed.
Definition lower_log (tL: tlog) : llog :=
log_map_values (fun idx => bits_of_value) tL.
Arguments lower_log : simpl never.
Definition log_equiv (tL: tlog) (lL: llog) : Prop :=
lL = lower_log tL.
Lemma log_equiv_empty:
log_equiv log_empty log_empty.
Proof.
unfold log_equiv; symmetry; apply log_map_values_empty.
Qed.
Lemma log_equiv_cons:
forall (tL: tlog) idx tle,
log_equiv (log_cons idx tle tL)
(log_cons idx (LogEntry_map bits_of_value tle) (lower_log tL)).
Proof.
intros; red; unfold lower_log; rewrite log_map_values_cons; reflexivity.
Qed.
Lemma log_equiv_app:
forall (tL tl: tlog),
log_equiv (log_app tL tl)
(log_app (lower_log tL) (lower_log tl)).
Proof.
unfold log_equiv, lower_log; intros.
rewrite <- log_map_values_log_app; reflexivity.
Qed.
Lemma log_equiv_may_read:
forall (tL: tlog) (port: Port) (idx: reg_t),
Logs.may_read tL port idx =
Logs.may_read (lower_log tL) port idx.
Proof. intros; symmetry; apply may_read_log_map_values. Qed.
Lemma log_equiv_may_write:
forall (tL tl: tlog) (port: Port) (idx: reg_t),
Logs.may_write tL tl port idx =
Logs.may_write (lower_log tL) (lower_log tl) port idx.
Proof. intros; symmetry; apply may_write_log_map_values. Qed.
Lemma log_equiv_latest_write0:
forall (tl: tlog) idx,
latest_write0 (lower_log tl) idx =
match latest_write0 tl idx with
| Some v => Some (bits_of_value v)
| None => None
end.
Proof.
intros; unfold lower_log; rewrite latest_write0_log_map_values; reflexivity.
Qed.
Definition lower_result {sig tau} (r: option (tlog * type_denote tau * tcontext sig))
: option (llog * bits (type_sz tau) * lcontext (lsig_of_tsig sig)) :=
match r with
| None => None
| Some (tl, tv, tGamma) =>
Some (lower_log tl, bits_of_value tv, lower_context tGamma)
end.
Definition lower_results {sig argspec} (r: option (tlog * tcontext argspec * tcontext sig))
: option (llog * lcontext _ * lcontext (lsig_of_tsig sig)) :=
match r with
| None => None
| Some (tl, tvs, tGamma) =>
Some (lower_log tl,
cmap (fun (k_tau: var_t * type) => type_sz (snd k_tau))
(fun k v => bits_of_value v)
tvs,
lower_context tGamma)
end.
Definition lacontext (sig arg_sigs: lsig) :=
context (fun sz => laction sig sz) arg_sigs.
Fixpoint linterp_args
{sig: lsig}
(Gamma: lcontext sig)
(sched_log: llog)
(action_log: llog)
{arg_sigs: lsig}
(args: context (fun sz => var_t * laction sig sz)%type arg_sigs)
: option (llog * lcontext arg_sigs * (lcontext sig)) :=
match args with
| CtxEmpty => Some (action_log, CtxEmpty, Gamma)
| @CtxCons _ _ arg_sigs k_tau (k, arg) args =>
let/opt3 action_log, ctx, Gamma := linterp_args Gamma sched_log action_log args in
let/opt3 action_log, v, Gamma := linterp Gamma sched_log action_log arg in
Some (action_log, CtxCons _ v ctx, Gamma)
end.
Lemma interp_infixed':
forall {sg: lsig} {sz: nat} (a: laction sg sz) {sig sig'} (Heq: sg = sig ++ sig')
{infix: lsig} (gamma: lcontext infix) (Gamma : lcontext sg)
(L l: llog),
linterp (infix_context gamma (rew Heq in Gamma)) L l
(infix_action infix (rew [fun sg => laction sg sz] Heq in a)) =
match linterp Gamma L l a with
| Some (l, v, Gamma) => Some (l, v, infix_context gamma (rew Heq in Gamma))
| None => None
end.
Proof.
Arguments infix_context : simpl never.
induction a;
repeat match goal with
| _ => reflexivity
| _ => progress intros
| _ => progress subst
| _ => progress cbn
| _ => progress change (CtxCons ?sz ?v (infix_context ?gamma ?Gamma)) with
(infix_context (sig := sz :: _) gamma (CtxCons sz v Gamma))
| [ H: forall _ _ (Heq: _ = _), _ |- _ ] =>
change (?x :: ?a ++ ?b) with ((x :: a) ++ b) in H;
specialize (H _ _ eq_refl); cbn in H
| [ H: context[_ = _] |- _ ] => rewrite H
| [ |- context[if ?x then _ else _] ] => destruct x
| _ => destruct linterp as [((?, ?), ?) | ]; [ | reflexivity ]
| _ => rewrite ?cassoc_minfix, ?creplace_minfix
end.
Qed.
Lemma interp_infixed:
forall {sig sig': lsig} {sz: nat} (a: laction (sig ++ sig') sz)
{infix: lsig} (gamma: lcontext infix) (Gamma : lcontext (sig ++ sig'))
(L l: llog),
linterp (infix_context gamma Gamma) L l (infix_action infix a) =
match linterp Gamma L l a with
| Some (l, v, Gamma) => Some (l, v, infix_context gamma Gamma)
| None => None
end.
Proof. intros; apply (interp_infixed' a eq_refl). Qed.
Lemma interp_prefixed:
forall {sig: lsig} {sz: nat} (a: laction sig sz)
{prefix: lsig} (gamma: lcontext prefix) (Gamma : lcontext sig)
(L l: llog),
linterp (capp gamma Gamma) L l (prefix_action prefix a) =
match linterp Gamma L l a with
| Some (l, v, Gamma) => Some (l, v, capp gamma Gamma)
| None => None
end.
Proof. intros; apply (@interp_infixed []). Qed.
Lemma linterp_cast:
forall {sg: lsig} {sz: nat} f (a: laction (f sg) sz) {sg'} (Heq: sg = sg')
(Gamma : lcontext (f sg)) (L l: llog),
linterp (rew [fun sg => lcontext (f sg)] Heq in Gamma) L l
(rew [fun sg => laction (f sg) sz] Heq in a) =
rew [fun sg => option (llog * bits sz * lcontext (f sg))] Heq in
(linterp Gamma L l a).
Proof. destruct Heq; cbn; reflexivity. Qed.
Lemma interp_suffixed:
forall {sig: lsig} {sz: nat} (a: laction sig sz)
{suffix: lsig} (gamma: lcontext suffix) (Gamma : lcontext sig)
(L l: llog),
linterp (capp Gamma gamma) L l (suffix_action suffix a) =
match linterp Gamma L l a with
| Some (l, v, Gamma) => Some (l, v, capp Gamma gamma)
| None => None
end.
Proof. unfold suffix_action; intros.
rewrite capp_as_infix.
rewrite linterp_cast.
unfold eq_rect_r; rewrite interp_infixed'.
destruct linterp as [((?, ?), ?) | ]; cbn.
- rewrite capp_as_infix.
destruct (capp_nil_r suffix); cbn.
reflexivity.
- destruct capp_nil_r; reflexivity.
Qed.
Theorem InternalCall'_linterp_args :
forall {sig sz argspec} (args: context (fun sz => var_t * laction sig sz)%type argspec)
Gamma L l (body: laction (argspec ++ sig) sz),
linterp Gamma L l (InternalCall' args body) =
(let/opt3 l', results, Gamma' := linterp_args Gamma L l args in
let/opt3 l'', v, Gamma'' := linterp (capp results Gamma') L l' body in
Some (l'', v, snd (csplit Gamma''))).
Proof.
induction args as [ | sig' sz' (var, arg) tl IH ]; cbn; intros.
- destruct linterp as [((?, ?), ?) | ]; reflexivity.
- rewrite IH; cbn.
destruct linterp_args as [((?, ?), ?) | ]; cbn; try reflexivity.
rewrite interp_prefixed.
repeat (destruct linterp as [((?, ?), ?) | ]; cbn; try reflexivity).
Qed.
Section Args.
Context (IH: forall sig tau (v: taction sig tau) (Gamma: tcontext sig) tL tl,
linterp (lower_context Gamma) (lower_log tL) (lower_log tl) (lower_action v) =
lower_result (tinterp Gamma tL tl v)).
Lemma linterp_args_correct:
forall {sig argspec} (args : context (fun k_tau : var_t * type => taction sig (snd k_tau)) argspec)
(tGamma: tcontext sig) tL tl,
linterp_args (lower_context tGamma) (lower_log tL) (lower_log tl) (lower_args args) =
lower_results (interp_args r sigma tGamma tL tl args).
Proof.
induction args; cbn; intros.
- reflexivity.
- rewrite IHargs by eauto.
destruct (interp_args _ _ _ _ _ _) as [((?, ?), ?) | ]; cbn; try reflexivity.
rewrite IH; destruct tinterp as [((?, ?), ?) | ]; reflexivity.
Defined.
Lemma InternalCall_correct:
forall {sig argspec} (args : context (fun k_tau : var_t * type => taction sig (snd k_tau)) argspec)
{tau} (ta: taction argspec tau) (tGamma : tcontext sig) tL tl,
linterp (lower_context tGamma) (lower_log tL) (lower_log tl)
(InternalCall (lower_args args) (lower_action ta)) =
lower_result
(let/opt3 action_log, results, Gamma := interp_args r sigma tGamma tL tl args in
let/opt3 action_log0, v, _ := tinterp results tL action_log ta in
Some (action_log0, v, Gamma)).
Proof.
unfold InternalCall; intros.
rewrite InternalCall'_linterp_args.
rewrite linterp_args_correct by auto.
destruct (interp_args r sigma tGamma tL tl args) as [((?, ?), ?) | ]; cbn; try reflexivity.
rewrite interp_suffixed.
rewrite IH.
destruct tinterp as [((?, ?), ?) | ]; cbn.
- rewrite csplit_capp; reflexivity.
- reflexivity.
Defined.
End Args.
Create HintDb lowering.
Hint Rewrite @context_equiv_cassoc : lowering.
Hint Rewrite @context_equiv_creplace : lowering.
Hint Rewrite @context_equiv_CtxCons : lowering.
Hint Rewrite @context_equiv_ctl : lowering.
Hint Rewrite <- @log_equiv_cons : lowering.
Hint Rewrite @lower_unop_correct : lowering.
Hint Rewrite @lower_binop_correct : lowering.
Hint Rewrite @value_of_bits_of_value : lowering.
Hint Rewrite @lower_r_eqn : lowering.
Hint Rewrite @lower_sigma_eqn : lowering.
Hint Rewrite @log_equiv_may_read : lowering.
Hint Rewrite @log_equiv_may_write : lowering.
Hint Rewrite @log_equiv_latest_write0 : lowering.
Hint Rewrite @latest_write0_app : lowering.
Hint Rewrite @csplit_capp : lowering.
Hint Rewrite @InternalCall_correct : lowering.
Ltac destruct_res r :=
destruct r as [((?, ?), ?) | ] eqn:?; cbn.
Ltac lowering_correct_t_step :=
match goal with
| _ => cleanup_step
| _ => progress (subst; unfold opt_bind)
| _ => progress autorewrite with lowering
| [ H: context[linterp _ _ _ _ = _] |-
context[linterp (lower_context ?G) (lower_log ?L) (lower_log ?l) (lower_action ?ta)] ] =>
setoid_rewrite (H _ _ ta G L l)
| [ |- context[linterp (CtxCons _ _ _) _ _ _] ] => setoid_rewrite context_equiv_CtxCons
| [ |- context[ctl (lower_context _)] ] => setoid_rewrite context_equiv_ctl
| [ |- context[tinterp] ] => destruct tinterp as [((?, ?), ?) | ]
| [ |- context[latest_write0] ] => destruct latest_write0
| [ |- context[if ?x then _ else _] ] => destruct x
| _ => eauto using InternalCall_correct
end.
Ltac lowering_correct_t :=
repeat lowering_correct_t_step.
Theorem action_lowering_correct:
forall {sig tau} (ta: taction sig tau) tGamma tL tl,
linterp (lower_context tGamma) (lower_log tL) (lower_log tl) (lower_action ta) =
lower_result (tinterp tGamma tL tl ta).
Proof.
fix IHta 3; destruct ta; simpl; intros; cbn.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
- lowering_correct_t.
Qed.
Context (rules: rule_name_t -> TypedSyntax.rule pos_t var_t fn_name_t R Sigma).
Notation lrules r := (lower_action (rules r)).
Lemma scheduler_lowering_correct':
forall s L,
LoweredSemantics.interp_scheduler' lr lsigma (fun r => lrules r) (lower_log L) s =
lower_log (TypedSemantics.interp_scheduler' r sigma rules L s).
Proof.
induction s; intros; cbn;
unfold TypedSemantics.interp_rule, LoweredSemantics.interp_rule.
- reflexivity.
- rewrite log_equiv_empty.
setoid_rewrite (action_lowering_correct (rules r0) CtxEmpty L log_empty).
destruct tinterp as [((?, ?), ?) | ]; cbn;
try rewrite log_equiv_app; eauto.
- rewrite log_equiv_empty.
setoid_rewrite (action_lowering_correct (rules r0) CtxEmpty L log_empty).
destruct tinterp as [((?, ?), ?) | ]; cbn;
try rewrite log_equiv_app; eauto.
- eauto.
Qed.
Theorem scheduler_lowering_correct:
forall s,
LoweredSemantics.interp_scheduler lr lsigma (fun r => lrules r) s =
lower_log (TypedSemantics.interp_scheduler r sigma rules s).
Proof.
unfold TypedSemantics.interp_scheduler; intros.
rewrite <- scheduler_lowering_correct', <- log_equiv_empty; reflexivity.
Qed.
Theorem cycle_lowering_correct:
forall s,
LoweredSemantics.interp_cycle lsigma (fun r => lrules r) s lr =
lower_r (TypedSemantics.interp_cycle sigma rules s r).
Proof.
unfold TypedSemantics.interp_cycle, LoweredSemantics.interp_cycle; intros.
rewrite scheduler_lowering_correct.
unfold lower_r, lower_log;
rewrite SemanticProperties.commit_update_log_map_values;
reflexivity.
Qed.
End LoweringCorrectness.