
6 . 1 6 0 0 S TA F F

6 . 1 6 0 0
F O U N D AT I O N S O F
C O M P U T E R S E C U R I T Y

6.1600 foundations of computer security 2

0.1 Disclaimer

This set of notes is a work in progress. It may have errors and be
missing citations. It is certainly incomplete. Please let the staff know
of any errors that you find.

0.2 Contributors

These notes are based on lectures by the 6.1600 course staff:

• 2023: Henry Corrigan-Gibbs and Nickolai Zeldovich

• 2022: Henry Corrigan-Gibbs, Nickolai Zeldovich, and Yael Kalai

• 2021: Henry Corrigan-Gibbs, Nickolai Zeldovich, Srini Devadas,
and Yael Kalai

Ben Kettle, our course TA in 2022, was responsible for transcribing
the first set of these lecture notes in Fall 2022.

Contents

1 What is Security? 7

I Authentication 15

2 Authenticating People 17

3 Collision Resistance and File Authentication 29

4 Message Authentication Codes 37

5 Digital Signatures 45

6 RSA Signatures 57

7 Public-key Infrastructure 65

II Transport Security 71

8 Introduction to Encryption 73

9 Authenticated Encryption 81

6.1600 foundations of computer security 4

10 Key Exchange and Public-key Encryption 85

11 Encryption in Practice 93

12 Open Questions in Encryption 99

III Platform Security 105

13 Architecting a secure system 107

14 Isolation 113

15 Software Trust 121

16 Hardware Security 129

17 Case Study: iOS Security 135

IV Software Security 141

18 Software Security 143

19 Privilege Separation 151

20 Bug Finding 159

21 Runtime Defenses 165

V Advanced Topics in Cryptography 169

6.1600 foundations of computer security 5

22 Privacy with Utility 171

23 Differential Privacy 175

VI Conclusions 179

24 Conclusions 181

VII Appendices 185

A Factoring integers 187

*

1
What is Security?

1.1 Overview

The goal of this course is to give you an overview of the most im-
portant “Big Ideas” on securing computer systems. Throughout the
course, we will touch on ideas from the fields of computer security,
cryptography, and (to some extent) computer systems.

1.2 What is Security?

Security is a very broad property, but generally the goal of computer
security is to ensure that a particular computer system is behaves
correctly even in the face of an adversary (or attacker) whose goal is to
foil the system. We will use the terms “adversary” and

“attacker” interchangeably throughout
this course.

To achieve this goal, we will need some kind of systematic plan.
That is, we will have to carefully define what it means for our system
to behave correctly and we will have to specify the class of adversaries
against which we want to defend.

For the purposes of this course, we will typically structure our
plan in terms of three components: a model of the system and the
adversary, a security goal, an implementation.

• Model: The system model specifies: Sometimes people call this the “threat
model.” For the purposes of this chap-
ter, think of the model as describing
how the attacker and system interact
and the security goal as defining what
our implementation is trying to achieve.

1. what the system is that we are trying to defend,

2. what the attacker is, and

3. how the system and attacker interact.

For example, in network security we might think of the system
and the attacker as being two computers that interact over a
network. In this model, the attacker can send network packets to
the victim system. (The attacker in this model cannot, for example,
swap out the hard drive of the victim system.)

6.1600 foundations of computer security 8

When we are studying hardware security, we might consider a
different model: The system we are trying to defend is a CPU, and
the adversary is an external device that can read all of the contents
of the victim system’s RAM. (The attacker in this model cannot,
for example, read the internal state of the victim’s CPU.)

When we are studying ATM security, the system we are trying to
defend is an ATM machine. For an attacker, we might consider a
person interacting with the ATM through it’s normal interface: the
attacker can insert a malformed ATM card into the machine and
type arbitrary PINs into the device. (The attacker in this model
cannot, for example, take a jackhammer to the ATM to extract the
cash.)

Modeling the adversary and the system in question is almost
always the first step of thinking about system security. While
we often only have an informal system model in mind, the more
precise you—as a system designer—can be about your system
model, the clearer your security properties can be.

• Goal: The security goal defines what we want our system to
achieve in our specified model.

For example, in network security, we might want the property
that “only someone knowing Alice’s secret password can execute
shell commands on the machine.” In hardware security, we might
want the property that “the attacker learns nothing about the data
stored in RAM, apart from its size.” In ATM security, we might
want the property that “an attacker can fraudulently authenticate
as a victim with probability at most 1/10000.”

As you will learn throughout the course, figuring out exactly what
your security goal should be is often quite subtle and challenging.

• Implementation: The implementation is how we achieve the goal.
For example, in securing a computer system on a network, we
might use password-based authentication to protect access to a
computer system.

Together, the model and the goal model create our definition of
security. As such, the model and goal cannot be “wrong”—the threat When you read about security failures

in the news, it is worth trying to
understand whether the failure arose
from a problem with the model, the
goal, or the implementation.

model might not have captured all of the attacks that a real-world
adversary can mount, and goal might turn out to not be exactly what
we needed. Often, the process of designing the model and goal is
iterative: when the system designer discovers a surprising gap in the
security goal (we will see some shortly), she patches the goal and the
implementation accordingly.

The implementation, on the other hand, can definitely be wrong—
if the implementation does not guarantee the goal under the model

6.1600 foundations of computer security 9

in question, due to bugs or oversights or supply chain vulnerabilities
or anything else, the implementation has a mistake.

The implementation is always public: Kerckhoff’s principle. Throughout
this course, we will always assume that the attacker knows the
implementation of whatever security mechanism we are using. The
only thing that we keep secret from the adversary are the system’s
secret keys. This is known as Kerckhoff’s principle. The logic behind
this way of thinking is that: (1) it is often relatively easy for the
attacker to learn bits of information about the system design and (2)
it is much easier to replace a set of cryptographic keys (if the attacker
learns them) than to redesign the entire system from scratch.

1.2.1 Security is Hard

Building secure systems is challenging. There are at least two broad
reasons for this.

Secure systems must defend against worst-case behavior. First, a secure
system must defend against all possible attacks within the scope of
the system model. In contrast, when we are just concerned about
functionality or correctness, we are often satisfied with a system that
performs well for the cases that users care about. In other words, Some developers do worry about

correctness of their system for all
possible inputs and corner cases; this
is is indeed the mindset that is often
necessary for security.

security is concerned with behavior in worst-case situations, while
correctness is often about behavior in expected situations (i.e., average-
case situations).

For example, suppose that you are a car manufacturer and you
want to test a car stereo functions correctly. Testing that the stereo
works well on average (i.e., in expected situations) is easy: turn the
stereo on and off 10,000 times, try playing some music through it,
and accept it as working if all of these checks pass. Testing that the
stereo works well in the worst case is not as easy: it is possible that if
someone connects an adversarial USB device that sends some spe-
cially crafted malicious packets to the stereo, they can hijack the car
and cause it to explode. But you will never find these malicious pack-
ets by random testing—only by careful inspection. A secure system These attacks are actually possible

in practice! See: Karl Koscher et al.
“Experimental security analysis of
a modern automobile”. In: IEEE
Symposium on Security and Privacy. 2010

must defend against all possible attacks within the threat model;
being certain that a system satisfies this strong security property is a
challenge.

An implementation can never defend against all possible threats. When
we specify a system model, we delimit the set of adversaries against
which our implementation must defend. But real-world adversaries
can behave in ways that are outside of our model and thereby violate

6.1600 foundations of computer security 10

our security goals.
For example, someone besides a TA might be able to access the

grades file for our class by:

• finding a bug in the server software,

• breaking into a TA’s office,

• compromising the TA’s laptop,

• stealing the password to an administrator’s account,

• tricking a TA into disclosing grades,

• breaking the server’s cryptography,

• getting a job at the registrar and making herself a TA.

And the list never ends. Because our threat model cannot capture
all possible threats, security is never perfect. There will essentially
always be some attacker than can break your system.

This is why we need a threat model: the threat model defines what
kinds of attacks we worry about and which we decide are out of
scope.

1.2.2 Designing security goals and a threat model

Specifying security goals and a threat model is all about comparing
the cost of defending against an attack with the cost of that attack
if it were to happen. It is almost always impractical to exactly cal-
culate these costs, but this framework is useful conceptually. Cheap
defenses that block major holes are likely to be worth implementing,
but defending against an esoteric RF side channel that could leak
unimportant information is likely not.

Building a threat model always requires iterating—you will not get
it right on the first try. There is likely to be some type of attack that
you didn’t consider at first that ends up being important.

1.2.3 Designing an implementation

We will focus largely in this class on techniques that have a big
payoff—methods of developing software and tools to use that elimi-
nate entire classes of attacks (or make them much harder).

1.3 Examples

We give a handful of examples of security failures arising from poor
choices of security goals or threat model.

6.1600 foundations of computer security 11

1.3.1 Insufficient Attack Models

Assuming specific strategy: CAPTCHA. CAPTCHAs were designed to
be expensive to solve via automation, but easy for a human to read.
Indeed it might be expensive to build an optical-character recognition
system for CAPTCHAs in general, but attackers who want to bypass
CAPTCHAs do not do this. Instead, they set up computer centers
in countries where the cost of labor is cheap. Attackers then pay
people working in these centers to solve CAPTCHAs.1 The result is 1 Marti Motoyama et al. “Re:

CAPTCHAs—Understanding
CAPTCHA-Solving Services in an
Economic Context”. In: Proceedings of
the 19th USENIX Security Symposium.
Washington, DC, Aug. 2010.

that it costs some fraction of a cent to solve a CAPTCHA. The cost of
solving a CAPTCHA is still non-zero, but the cost is much lower than
the system designers may have intended.

Assuming low limit on computational power: DES. There used to be
an encryption standard called DES that had 256 possible keys. At the
time that it was designed, the U.S. government standards agencies as-
serted that it was secure against even powerful attackers, but today a
modern computer can try all 256 keys at only modest cost. (Academic For example, https://crack.sh/ uses

an array of FPGAs to provide a service
that exhaustively checks all possible
keys.

researchers even at the time of DES’s design understood that 56-bit
keys were not large enough to prevent exhaustive cryptanalysis.2)

2 Whitfield Diffie and Martin E. Hell-
man. “Exhaustive Cryptanalysis of the
NBS Data Encryption Standard”. In:
Computer 6.10 (1977), pp. 74–84.

Because of the weakness of DES against modern computers, ev-
eryone using the standard had to upgrade their block ciphers. For
example, MIT had to switch from using DES for authentication to
newer block ciphers with longer keys, such as AES.

Assuming a secure out-of-band channel: Two-factor authentication (2FA) via
SMS. Many 2FA systems use a text message for authentication, but
an attacker then just needs to convince the clerk at the AT&T store to
give them a new SIM card for your phone number. These attacks are often called “SIM

swapping” or “SIM hijacking”.

This prescient paper from 1984 antic-
ipated the XcodeGhost attack: Ken
Thompson. “Reflections on trusting
trust”. In: Communications of the ACM
27.8 (1984)

Assuming a correct compiler: Xcode. iPhone apps are normally created
and compiled on a developer’s machine, sent to Apple’s App Store,
and sent to iPhones from there. iPhone apps are created using a
tool called Xcode that is normally downloaded from Apple servers.
However, Xcode is a big piece of software and for developers behind
China’s firewall, it was very slow to download. Someone within
China set up a much faster mirror of Xcode, and lots of developers
in China used the version of Xcode from this mirror. However, this
mirror was not serving exactly Apple’s version of Xcode—instead, it
was serving a slightly modified version of Xcode that would inject
some malicious code into every app that was compiled with it. This
took a long time to detect. The Wikipedia article on XcodeGhost,

https://en.wikipedia.org/wiki/

XcodeGhost, provides more details
about this attack.

https://crack.sh/
https://en.wikipedia.org/wiki/XcodeGhost
https://en.wikipedia.org/wiki/XcodeGhost

6.1600 foundations of computer security 12

1.3.2 Insufficient security goal

Business-class airfare. An airline tried to add value to their business-
class tickets by allowing ticket-holders to change the ticket (i.e., the
departure date, origin, and destination) at any time with no fee.
One customer realized that they could board the flight then change
their ticket. The customer could then take an unlimited number of
business-class flights for the price of one.

In this case, the airline’s goal did not meet their real needs—
perhaps they needed to add an additional goal of the form “every
time someone takes a flight, we get paid.”

Sarah Palin’s Email. Sarah Palin had a Yahoo email account, and
Yahoo used security questions for password reset—their goal may
have been something like “no one can reset a user’s password unless
they know all of the answers to the user’s security questions.” (The
security questions are typically things like “What is your mother’s
maiden name?”) As it turned out, it was possible to find the answer
to all of Palin’s account-recovery security questions on the Internet.3 3 Kim Zetter. Palin e-mail hacker says it

was easy. https://www.wired.com/2008/
09/palin-e-mail-ha/. Sept. 2008.

Yahoo’s implementation may have been perfect, but their goal did not
provide any meaningful security for certain users.

Instruction Set Architecture (ISA) Specification. When defining ISAs
for processors, computer architects thought it would be acceptable
for each instruction to take a different number of cycles to execute.
This had big benefits for performance and for compatibility, but
as we’ll talk about later in the semester, researchers have recently
exploited this timing variability to perform sophisticated attacks on
wide ranges of processors.4 Even if a processor’s implementation 4 Mark D. Hill et al. “On the Spectre

and Meltdown Processor Security
Vulnerabilities”. In: IEEE Micro 39.2
(2019), pp. 9–19.

faithfully implements the specification, the specification itself allows
for certain types of timing side-channel attacks.

Complicated access-control policies. A school in Fairfax, Virginia used
an online course-management software with a somewhat complex
access-control structure: each teacher is in charge of some class, each
class has many students, and each student has many files. Teachers
cannot access student’s files, and there is also a superintendent that
has access to all the files. Teachers are able to change their students’
passwords, and are able to add students to their class. It turned out
that a teacher could add the superintendent as a student, change
the superintendent’s password, and then access all files via the
superintendent’s account. While each of the access-control policies
individually sounds reasonable, together they lead to a bad outcome.

https://www.wired.com/2008/09/palin-e-mail-ha/
https://www.wired.com/2008/09/palin-e-mail-ha/

6.1600 foundations of computer security 13

Mat Honan’s Gmail Account. A journalist for wired named Mat
Honan had his Gmail account compromised via a clever attack.5 5 Mat Honan. How Apple and Amazon

Security Flaws Led to My Epic Hacking.
https://www.wired.com/2012/08/

apple-amazon-mat-honan-hacking/.
Aug. 2012.

Honan had a Gmail account. Gmail’s reset-password feature avoided
using security questions, and instead used a backup email account.
The attacker triggered the reset-password feature, which sent a reset
link to Honan’s Apple email account.

The attacker then attempted to gain access to Honan’s Apple email
account. The attacker triggered the reset-password feature on the
Apple account. Apple’s reset-password feature, in turn, required
Honan’s address and the last four digits of the credit card number.
The attacker was able to find Honan’s address publicly, but could not
easily find his credit-card number.

The attacker found this credit-card information through Honan’s
Amazon account. Amazon, which knew his credit card number,
required a full credit-card in order to reset an account. However,
Amazon allowed buying something for a certain account without
logging in, so long as you provide a new credit card number. It also
allowed saving this new credit card number to the user’s Amazon
account. So, the attacker made a purchase on Amazon with the
attacker’s credit card. Then, the attacker saved their own credit card
number to Honan’s Amazon account. Next, the attacker triggered
Amazon’s reset-password feature, and—using the credit-card number
saved to the account—were able to reset Honan’s Amazon password
and access his Amazon account. The attacker was then able to see
the last four digits of Honan’s real credit card within his Amazon
account, use that to reset his Apple mail account, and then use that to
reset Honan’s Gmail account.

Complex chains of systems like this can be very hard to reason
about, but these interactions ultimately are security-critical.

1.3.3 Buggy implementations

Bugs, misconfigurations, and other mistakes are the most common
cause of security issues. A rule of thumb to keep in mind is that
every 1000 lines of code will have around one bug. This is a very
rough estimate, but the basic idea is that more code will have more
bugs. An effective strategy to reduce security vulnerabilities is to
reduce the amount of code in your system.

Missing Checks: iCloud. Apple’s iCloud performs many functions—
email, calendar, storage, and Find my iPhone. Each of these had their
own way of logging in, but across all of them a common goal was to
limit the attacker’s ability to guess a user’s password. To do this, they
added rate limiting to all the login interfaces, allowing something like

https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/

6.1600 foundations of computer security 14

only 10 login attempts per hour—but they forgot the Find my iPhone
login interface.6 Because this authentication code was duplicated all 6 J. Trew. ‘Find My iPhone’ exploit may be

to blame for celebrity photo hacks (update).
https://www.engadget.com/2014-09-

01-find-my-iphone-exploit.html.
Sept. 2014.

over the place, there were many places to remember to add this rate
limiting, but the attacker only needed one weak login interface to
brute-force a password. In general, avoiding this repition will make it
much easier to build a secure system.

Insecure Defaults. When you set up a new service, they almost
always come with some defaults to make the setup simpler. Wi-Fi
routers come with default passwords, AWS S3 buckets come with
default permissions, and so on. These defaults can be convenient, but
they are very important to security because many people will forget
or neglect to change the default. Because of this, the default becomes
the way that the system operates. In order to build a secure system, it
is important that the default is secure.

1.4 What are the general principles for secure system design?

1.4.1 Threat Models and Goals

• Create simple, general goals.

• Avoid assumptions (such as “no one else will be able to get a
user’s SIM card”) through better designs.

• Learn and iterate.

• Practice Defense in Depth: don’t rely on one single defense for all
your security—it is useful to use backup defenses to guard against
bugs that will inevitably come up in one defense.

1.4.2 Implementation

• A simpler system will lead to fewer problems.

• Factor out the security-critical part into a small separate system or
piece of code (for example, hardware security keys).

• Reuse well-designed code, such as well-tested crypto libraries.

• Understand and test the corner cases.

https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html
https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html

Part I

Authentication

2
Authenticating People

In this class, we will talk a lot about requests going to a computer
system. And a lot of security comes down to looking at that request
and deciding how to handle it. For this, it is crucial to know who
issued the request. Then, we can decide whether the system should
allow the request.

Typically, a computer system performs two steps before processing
a request:

1. Authenticate: Identify the person or machine (the “principal”)
making the request.

2. Authorize: Decide if the principal is authorized to make the
request.

3. Audit: Log some information about what requests your system
authorized, so that you can identify malicious requests after the
fact and/or clean up your system after attacks on the authentica-
tion system. (For example, a user who accidentally reveals their
password to an attacker.)

This chapter focuses on authentication. We will first discuss the
attack model and security goals. Then we will describe common
implementations that aim to achieve these goals.

2.1 Authentication: Security goals

In the simplest model of authentication, we have a client and server—
two machines communicating over a network. Another common scenario has a human

being authenticating to a computer:
think about typing a PIN into a phone
or a password into a computer terminal.
We will discuss this setting more when
we come to passwords.

All authentication schemes try to prevent an attacker from im-
personating an honest user. To precisely define the security goal of
an authentication system though, we have to specify the attacker’s
power: against which types of attack are we trying to defend?

Figure 2.1 sketches three types of attacks on authentication sys-
tems. In more detail these are, in increasing order of strength are:

6.1600 foundations of computer security 18

>

(a) * 7

server
Client

I >

(b)
client
De

server

> 8
() I

=1

Client
server

Figure 2.1: There are (at least)
three interesting security goals
for client-server authentication
systems: (a) direct attack, (b)
eavesdropping attack, and (c)
active attack.

• Direct attack. The attacker never sees the target user authenticate
and then tries to impersonate the honest user. PIN-based authenti-
cation systems, e.g., on your phone or on an ATM machine, often
aim to defend only against direct attacks. The screen-lock pass-
word that protects your laptop is also an authentication system
that just attempts to protect against direct attack.

That is, these systems do not protect against an attacker that can
look over your shoulder while you are typing your password.
These systems only aim to provide security when the attacker
never sees you (the honest user) authenticate.

• Eavesdropping attack. The attacker observes an honest user authenti-
cating many times—i.e., the attacker sees all of the traffic between
the client and server—and then tries to impersonate that user.
One-time passwords, such as the six-digit authentication codes
that the Google Authenticator app uses, aim to protect against
eavesdropping attacks: an attacker who sees one of your one-time
passwords will not be able to use it to authenticate as you; it is a
one-time password.

• Active attack. The attacker that compromises the server, interacts
with the honest user, and after the server is restored to a good

6.1600 foundations of computer security 19

state, tries to authenticate as the honest user (active attack).

U2F security keys, and other schemes based on digital signatures
(Chapter 5), aim to protect against active attacks.

Systems that defend against active attacks provide the strongest
form of security, in that they also protect against eavesdropping at-
tacks and direct attacks. Systems that defend against eavesdropping
also defend against direct attacks. Systems that defend against di-
rect attacks are the weakest—they do not necessarily provide any
protection against the other types of attack.

2.2 Protecting against direct attacks:
Bearer tokens, PINs, and passwords

k

K
~ k

1 >

A
Client

server

k challenge < k

~ L

1 f(k,)
A >

Client
server

k

~ L
challenge <

F(k)
1
A Proof that I know R

<
Client

server

Figure 2.2: A bearer-token-
based authentication scheme.
To authenticate, the client sends
its secret key k to the server.
WARNING: In practice, the
server should store the secret k
under a slow hash function (see
??).The simplest form of authentication uses secret passwords or PINs.

We sometimes call these secret values bearer tokens; whoever bears
(holds) a user’s token can authenticate as that user. Authentication
with such schemes works as follows:

1. The server holds a password (or PIN or random token string) for
the client.

2. To authenticate, the client sends their password to the server.

3. The server checks the password against its stored password and
accepts if they match.

The benefit of password-based authentication schemes is that
they are simple and easy to implement. In addition, a human can
play the role of the client in a password-based authentication system
(e.g., as you do when you type a PIN into your phone). Fancier
authentication systems require the client to compute non-trivial
cryptographic functions—not functions that normal humans can
compute in their brains.

Bearer-token-based schemes do provide security against direct
attacks: if an attacker has never seen the user authenticate, the at-
tacker’s best strategy is to just guess the user’s password. Thus, the

6.1600 foundations of computer security 20

security of these schemes against direct attacks depends entirely on
the adversary’s uncertainty about the password.

In some bearer-token-based systems, the server can assign a ran-
dom password to each user. For example, when you create an ac-
count for certain web APIs, the API provider will give you a random
secret key—a bearer token. You will have to include this secret key
with each API request. Modern APIs use the stronger authentication
mechanisms we describe later in this chapter.

In the vast majority of password- and PIN-based login systems,
the user may choose their own password. This creates all sorts of
headaches. . .

2.2.1 What makes a good password?

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

12
34
56

12
34
56
78
9

12
34
5

qw
er
ty

pa
ss
w
or
d

12
34
56
78

11
11
11

12
31
23

12
34
56
78
90

12
34
56
7

qw
er
ty
12
3 0

1q
2w

3e
aa
12
34
56
78

ab
c1
23

pa
ss
w
or
d1

12
34

qw
er
ty
ui
op

12
33
21

pa
ss
w
or
d1
23

1q
2w

3e
4r
5t

ilo
ve
yo
u

65
43
21

66
66
66

98
76
54
32
1

12
3

12
34
56
a

qw
e1
23

Fr
eq
ue
nc
y

(n
or

am
liz

ed
 to

 1
)

Figure 2.3: The most common
passwords, according to Nord-
Pass (https://nordpass.com/
most-common-passwords-list/),
sorted by their frequency de-
scending. A small number of
common passwords dominate.

Rank Password
1 123456

2 123456789

3 12345

4 qwerty
5 password
6 12345678

7 111111

8 123123

9 1234567890

10 1234567

11 qwerty123

12 000000

13 1q2w3e
14 aa12345678

15 abc123

16 password1

17 1234

18 qwertyuiop
19 123321

20 password123

Table 2.1: The most pop-
ular passwords in 2021,
according to NordPass,
https://nordpass.com/

most-common-passwords-list/.

The security of a password-based authentication system rests
entirely on the attacker’s inability to guess the password in a small
number of guesses.

Entropy is a way to quantify an adversary’s uncertainty about a
value sampled using a random process, or from a particular probabil-
ity distribution. If a distribution has b bits of entropy, then it will take
at least roughly 2b guesses for an attacker to correctly guess a value
sampled from this distribution.

The uniform distribution over 128-bit strings has 128 bits of en-
tropy. The distribution from which humans typically choose their
passwords has much less entropy—empirically, more like 20 bits.

Ideally, we would want all passwords to be equally as likely,
from the adversary’s perspective. (These would be “high-entropy”
passwords.) If a system generated a truly random password for
each user, each password would be indeed equally likely. But then it

https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/

6.1600 foundations of computer security 21

becomes very difficult for a user to remember their password, much
less many random passwords for many different services.

Typically, people have to remember their passwords, so we let
them pick their own passwords. When they do, it turns out that
many people are likely to choose the same password.

A typical password might be sampled from a distribution with
roughly 20 bits of entropy—if an adversary is able to make 220

guesses at the password, they can expect to guess the password
correctly. One can computer easily make 220 authentication requests
to another in a few minutes.

2.2.2 Dealing with weak passwords

Every system that uses password- or PIN-based authentication must
contend with the fact that most passwords are not that difficult for an
attacker to guess.

In this section, we describe some mitigation strategies: all are
flawed, but each is better than nothing. The goal of each is to make
the attacker’s job slightly more difficult; by stacking a few of these
defenses on top of each other, we can substantially strengthen the
end-to-end system.

Aggressively limit the number of guesses. Therefore, when using pass-
words as an authentication mechanism, an authentication system
must always somehow limit the number of password guesses.

For example, some phones allow 10 guesses at the screen-lock
PIN before the device resets itself. Limiting the number of guesses
effectively prevents a single account from being compromised—
provided that the password is not too too weak. One downside is
guess limits create the possibility for denial-of-service attacks: an
attacker can potentially make 10 guesses at your password and lock
you out of your phone or online-banking account.

In addition, in many physical computer systems have multiple
authorized users, each with their own password. If the guess limit
is enforced only on a per-user basis, then an attacker can often com-
promise some account on the machine if it is allowed 10 guesses at
every user’s password. Preventing these types of attacks requires
some additional measures: websites that use password authentication
rate-limit guesses by IP, or use CAPTCHAs, etc.

Try to coerce users into picking stronger passwords. Modern websites
will often provide the user with a “password-strength checker”
that tries to give the user some sense of how strong or weak their
password is. These strength meters are completely heuristic and can

6.1600 foundations of computer security 22

be wildly wrong: they might say that 6175551212 is a great password;
if the attacker knows that 617-555-1212 is my phone number, it is
probably not a great password. These strength meters sometimes
check a user’s password against public lists of popular passwords.
Ensuring that your password isn’t in the million most popular ones
gives you at least some protection against untargeted attacks.

Two common strategies for encouraging users to choose strong
passwords that don’t work terribly well are:

• Require longer passwords. If someone tries to use abc123 as a pass-
word but it’s not long enough, they might use abc123456—but this
doesn’t really add much uncertainty. There are standard ways to
lengthen passwords, and a clever attacker will try these first.

• Prohibit using common English words in passwords. It’s not clear
that this is a good idea. Five randomly chosen words from the
dictionary will form a strong password, and prohibiting English
words in passwords may make passwords much more difficult to
remember.

2.2.3 Avoiding weak passwords with a password manager

When using passwords to authenticate to a website, a user can install
a password manager on their computer that will generate random
passwords for them. Since the user doesn’t need to remember these
passwords, they can be sampled truly at random from a high-entropy
distribution. Once the user authenticates to their computer (using a
password, typically), they can then access their randomly generated
passwords and use them to log in to their websites.

Internally, the password-manager software maintains a table of
servers and the corresponding passwords:

server user pw
amazon.com alice 3xyt42...

mit.edu alice4 a21\$z...

Even when using a password manager, password-based authenti-
cation schemes provide no security against eavesdropping or active
attacks. If an attacker can observe you sending your password to the
server (e.g., with a phishing attack) it can still authenticate as you.

2.2.4 Password hashing: Trying to get some protection against server
compromise

Password-based authentication schemes provide no security against
active attacks, in which the attacker compromises the server. And yet,

6.1600 foundations of computer security 23

since attackers manage to breach web servers quite often, we would
really like to provide some defense against server compromise. Forcing password changes. A system may

force their users to change passwords
on a regular schedule (e.g., every six
months). If an attacker has compro-
mised the password database on the
server, it only has a limited amount
of time to access the system before
the passwords change and it will get
locked out. It is not clear that the cost
of requiring frequent password changes
is worth the benefit.

Since, as we have seen, passwords are easy to guess, avoiding
password-based authentication entirely is the safest option where
possible. When a system must use passwords for authentication, the
safest way to store them (e.g., on a server) is using a salted crypto-
graphic password-hashing function. The goal is to make it as difficult as
possible for an attacker to recover the plaintext passwords, given the
hashed values stored on the server.

To describe how this works: when a user creates an account with
password pw, the server chooses a random 128-bit string, called a
salt, and the server stores the salt and the hash value h = H(salt∥pw),
where H is a special password-hashing function.

The server then stores a table that looks like this: A rainbow table is a common data struc-
ture that an attacker can use to invert
unsalted password hashes. A rainbow
table is essentially a compressed table
(passwd, H(passwd)) pairs, where H is
a common hash function, and passwd

ranges over a large set of common
passwords.

An attacker can download rainbow
tables for common cryptographic
hash functions, such as MD5 or SHA1,
from the web. If the password hash
is salted with a 128-bit salt, it will be
infeasible to produce a table that covers
any reasonably large fraction of the
(salt∥passwd) pairs.

user salt H(salt∥pw)

alice ra ha

bob rb hb

Later on, when the user sends a password pw′ to the server to
authenticate, the server can use the salt and hash function to compute
a value h′ = H(salt∥pw′). If this hash value h′ matches the server’s
stored value h for this user, the server accepts the password.

To explain the rationale for this design:

• The password-hashing function H is designed to be relatively
expensive to compute—possibly using a large amount of RAM
and taking a second or more of computation. This makes it more
difficult for an attacker to brute-force invert the hash value, since
each guess at the password requires a second of computation
(instead of the microseconds required to compute a standard hash
function, such as SHA256).

• The use of a per-user random salt ensures that guesses at one
user’s password are useless in inverting another user’s password
hash. Salting also defeats precomputation attacks, in which an
attacker precomputes the hashes of many common passwords to
speed up this hash-inversion step later on.

2.2.5 Biometrics

Biometrics are physical features like your fingerprints, your face,
etc. These are essentially a type of bearer token: whoever is able to
produce a face that looks like yours is able to authenticate as you.

Biometrics are very convenient to use for authentication, since
you will not forget them and cannot easily lose them. Biometrics
most useful when authenticating in person to a device, such as for

6.1600 foundations of computer security 24

phone unlock, or to grant a person access to a secure vault. In these
settings, the device performing the authentication has a “trusted
input path” that can provide some assurance that a real human who
owns that biometric is on the other end. Biometrics are not so useful
for authenticating over a network because the network typically does
not provide a trusted input path (i.e., does not provide any assurance
that the biometric readings are coming from a real human), and
the biometric data itself is not particularly secret. In particular, if
we used biometrics for network authentication, an adversary who
knows what your fingerprints looks like could log in to your account.
(Since biometrics are essentially impossible to change, this is a major
drawback.)

2.3 Protecting against eavesdropping attacks:
Challenge-response protocols

We have so far been talking about a human manually authenticating
to a device (ATM, phone, laptop, etc.) by physically entering a PIN or
password into the device. But we often log in to some server on the
network—Facebook, Gmail, MIT, and so on. In this scenario, we can
get much more creative with the authentication mechanism we use
and the security properties we can demand.

We now assume that our computer has some key k (e.g., a random
128-bit string), and the server also holds the same key k. In this set-
ting, we can hope to provide security against eavesdropping attacks:
even if an attacker can observe the traffic between the client and
server, the attacker learns no information that can help it authenticate
as the client later on.

k

K
~ k

1 >

A
Client

server

k challenge < k

~ L

1 f(k,)
A >

Client
server

k

~ L
challenge <

F(k)
1
A Proof that I know R

<
Client

server

Figure 2.4: A challenge-
response-based authentica-
tion system. The server and
client share a secret key k. To
authenticate, the client sends a
function F of its secret key and
the server’s challenge c.

Figure 2.4 describes an über-simplified challenge-response authen-
tication scheme that provides security against eavesdropping attacks.
The protocol takes place between a client and server holding a shared
secret key k.

1. The server chooses a long random string c, which we call a chal-
lenge and sends it to the authenticating client.

6.1600 foundations of computer security 25

2. The client computes an authentication “tag” t ← F(k, c), where
F(·, c) is hard to compute without knowing k. (The function F
here is a Message Authentication Code, which we will talk more
specifically about in Chapter 4.) The sends the MAC tag t to the
server.

3. The server receives a tag t′ from the client and ensures that t′ =
F(k, c). If so, the server considers the authentication successful.

The security of this scheme derives from the fact that an attacker
cannot produce tags F(k, c) on new challenge values c. (An attacker
can always try to replay an old tag it has seen, but since the challenge
changes with every authentication request, the server will always
reject the old tag.)

2.3.1 Time-based One-Time Passwords (TOTP)

Time-based one-time passwords are a type of challenge-response
authentication protocol. The only difference from Fig. 2.4 is that in
a TOTP scheme, the client and server derive the challenge from the
current time. The user has a device, such as a phone, that shares a se-
cret key k (e.g., a random 128-bit string) with the server. Both parties
agree on a protocol by which to generate this code—something like
F(k, gettimeofday() / 30). The phone can generate the code, display
it to the user, and the server can then verify the code by recomputing
it.

2.3.2 Authenticating requests

Often, a client will want to send an authenticated message to a server.
That is, the client often wants to simultaneously authenticate to
the server and send a request req, such as req = rm file.txt. To
accomplish this, the client can compute the challenge value as the
hash of the server-provided challenge c and the client’s request. So
the tag looks like: treq ← F(k, c∥req). Then the client sends the pair
(treq, req) to the server. In this way, the server can simultaneously
authenticate the client and be sure that the request req came from the
client.

An unsafe way for the client to simultaneously authenticate to
the server and send a request would be for the client to compute
the MAC tag t ← MAC(k, r) and then send (t, req) to the server. A
network attacker could modify the client’s request to (t, req′) en route
to the server without the server being able to detect this attack.

6.1600 foundations of computer security 26

2.3.3 Phishing attacks (attacker-in-the-middle attacks)

A phishing attack is one in which an attacker tricks a user into giving
away their Gmail password, for example, by creating a website that
looks, for example, like the gmail.com login page. TOTP passwords
have a similar vulnerability: an attacker can simply ask the user to
give her the one-time code by pretend to be tech support, or the
user’s employer, or a customer-service representative. In this setting,
TOTP codes are slightly better than standard passwords since the
attacker must use a stolen TOTP code within ≈30 seconds of stealing
it, which requires a much more sophisticated attack.

Phishing attacks take advantage of the fact that in password- and
TOTP-based authentication schemes, there is no binding between the
authentication process and the server’s subsequent communication
with the client. The attacker here doesn’t really break the authenti-
cation scheme; the problem is that the authentication scheme didn’t
authenticate enough. U2F, which we now discuss, handles that issue.

2.4 Protecting against active attacks: Signatures and U2F

k

K
~ k

1 >

A
Client

server

k challenge < k

~ L

1 f(k,)
A >

Client
server

k

~ L
challenge <

F(k)
1
A Proof that I know R

<
Client

server

Figure 2.5: An authentication
scheme based on digital signa-
tures.

To provide security against active attacks, we can use an authen-
tication scheme based on digital signatures, which we will discuss
in Chapter 5. With these schemes, the client has a secret key k and
the server stores some hard-to-invert function of the key F(k). (We
call F(k) the “public key.”) In particular, the server does not store any
secrets—even if the attacker can compromise the server and/or inter-
act with the honest client, it cannot learn the client’s secret key k nor
learn any information that it can use to later authenticate as the client.
To authenticate, the server sends the client a challenge and the client
produces a digital signature on the challenge c—essentially a proof
that the client knows the secret key k and that it intended to sign the
challenge c.

The U2F USB security tokens that you may have seen use this form
of authentication. As an added bonus, they prevent phishing attacks
by binding the authentication process to the name of the server that
the client is trying to authenticate to. In particular, the U2F software

6.1600 foundations of computer security 27

on the client passes the name of the server (e.g., amazon.com), in
addition to a server-provided random challenge c, to the U2F token.
The token then produces a signature on the string c∥amazon.com. If
the attacker sets up amason.com and gets the user to visit it, the U2F
device will only generate a code that is good for amason.com and not
the real amazon.com.

2.5 Two-Factor Authentication

Many systems use multiple forms of authentication to try to boost
security. In particular, as we have already seen, passwords are a
weak authentication mechanism: humans are bad at choosing strong
passwords and attackers have become good at stealing password
databases and recovering many users’ passwords at once.

A common technique to harden password-based authentica-
tion systems is to combine passwords with a second method of
authentication—one with a different failure mode. Common authenti-
cation schemes are:

• Something you know: password, PIN, etc

• Something you have: USB key, phone, etc

• Something you are: biometrics (fingerprint, face ID)...

3
Collision Resistance and File Authentication

In the last chapter, we focused on authenticating people—ensuring
that a person (or a request on behalf of that person) is likely who
they claim to be. In this chapter, we will focus on authenticating files,
code, and other data. When we say that we want to authenticate a
file, we mean that we want to verify that the file’s contents are exactly
as they were when we or someone we trust last viewed them. The
key new tool we use to do so is a collision-resistant hash function.

3.1 Intuition: Collision resistance

For our purposes, a hash function H maps a bitstring of any length
onto a fixed-size space of outputs, so the type signature is H :
{0, 1}∗ → {0, 1}λ.

In order for a hash function to be collision-resistant, we want it
to be the case that for any input, the generated output should be
“unique.” Of course, it cannot really be unique—we are mapping
infinitely many inputs onto finitely many outputs—but we want it to
be computationally infeasible to find a pair of distinct inputs that have
the same hash values (a “collision”).

Security goal: A hash function H is collision resistant if it is
“computationally infeasible” to find two distinct strings x and x′

such that H(x) = H(x′).

Given a long message m, it’s hash H(m) under a collision-resistant
hash function is like a short “fingerprint” of the message—the
hash essentially uniquely identifies the message m. For that rea-
son, collision-resistant hash functions let you authenticate a long
message m by authenticating the short fixed-length string H(m). We
often call the hash value H(m) a digest.

6.1600 foundations of computer security 30

3.1.1 Applications

Secure File Mirroring. Often a user wants to download large files
(e.g., software updates) from a far-away server. To speed up this
process, a company or Internet-service provider may set up local
mirrors of the remote files. Users can then download the files from
the nearby mirror instead of the far-away server. However, without
additional security measures, the mirror may server users a different
file than the one the mirror fetched from the origin server. If the
mirror is malicious, it can, for example, trick the user into installing
a backdoored software update. (We saw an attack based on mirrors
in Section 1.3.1.)

To protect against a malicious mirror, we can add some authen-
tication on the file that the mirror hosts. Say that the origin server
publishes a large software update f . The origin server will send the
file f to its mirrors and the origin server itself will serve the hash
digest d ← H(f) to anyone who asks for it. A user who wants to
fetch the update can download d from the origin server directly—this
will be fast since the digest is tiny. Then, the client can fetch the up-
date itself from a (potentially untrustworthy) mirror. When the client
receives a file f̂ from the mirror, it can check that d = H(f̂) to ensure
that f̂ is the true software update. If H is collision resistant, then if
the hash value H(f̂) matches the origin server’s digest d, the files are
almost certainly identical.

Subresource Integrity. If a program fetches a file from some content
delivery network, it can store the hash of that file locally and use
it to verify that the contents of the file did not change since the
application was developed.

Outsourced File Storage. If you want to store your files on a cloud
provider, you want to be sure that the cloud provider does not mali-
ciously modify the files without you noticing. To make sure of this,
you can store H(files) locally, which takes very little storage space.
Then, when you redownload your files locally, you can recompute the
hash to verify that they were not tampered with.

3.2 Defining collision resistance (slightly more formally)

An adversary’s goal in breaking a collision resistant hash function
is to find a collision—a pair of values m0, m1 ∈ {0, 1}∗ such that
m0 ̸= m1 and H(m0) = H(m1).

Definition 3.2.1 (Collision Resistance). A function H : {0, 1}∗ →
{0, 1}λ is collision-resistant if for all “efficient” adversaries A, we

6.1600 foundations of computer security 31

have that:

Pr[H(m0) = H(m1), m0 ̸= m1 : (m0, m1)← A()] ≤ “negligible”

In words, this means that the probability of finding a collision is so
small that no efficient adversary could hope to do it.

There are two ways of thinking about the terms “efficient” and
“negligible” that we use in this definition—one mindset we use in
practice and the other mindset we use in theory.

• In theory. . .

– All of our cryptographic constructions are parameterized by an
integer λ ∈ {1, 2, 3, . . . } that we call the security parameter. So
instead of a single collision-resistant hash function H, we have a
family of functions {H1, H2, H3, . . . }, where the function Hλ has
λ-bit output.

– An “efficient” algorithm is a randomized algorithm that runs in
time polynomial in λ.

– A “negligible” function is one that grows slower than the in-
verse of every polynomial—a function that is O(1

λc) for all
constants c ∈N.

• In practice. . .

– We use a fixed hash function H with a fixed-length output,
which might be as 256 or 512 bits.

– An “efficient” adversary is one that runs in time ≤ 2128.

– A “negligible” probability is some very small constant, like one
smaller than 2−128.

3.2.1 Understanding which attacks are feasible

Typically, we think of an attack that runs in more than 2128 time as
infeasible and an event that happens with probability less than 2−128

is one that will never happen. These seemingly magic constants come
from empirical considerations:

230 operations/second on a laptop
258 ops/sec on Fugaku supercomputer
268 hashes/second on the Bitcoin network (as of Fall 2022)
292 hashes/yr on the Bitcoin network

2114 hashes required to use enough energy to boil the ocean
2140 hashes required to use one year of the sun’s energy

See Lenstra, Kleinjung, and Thomé for an entertaining discussion
of these constants.1 1 Arjen K Lenstra, Thorsten Kleinjung,

and Emmanuel Thomé. “Universal
security”. In: Number Theory and
Cryptography. 2013.
For most cryptosystems, there is a
tradeoff between the attacker’s running
time and success probability. For
example, an attacker running in time T
can find a collision in a hash function
with n-bit output with probability
T2/2n. So, as the attack runs for more
time, it has a better chance of finding a
collision.

6.1600 foundations of computer security 32

2−1 fair coin lands heads

2−13 probability that a randomly sampled
MIT grad is a Nobel Prize winner

2−19 probability of being struck by lightning next year
2−28 probability of winning the Mega Millions jackpot

2−128 will essentially never happen

The takeaway is that if an attacker finds a collision with prob-
ability 2−128, we can be extremely sure that a collision will never
occur.

3.3 Constructing a collision-resistant hash function

The current standard for fast collision-resistant hashing is SHA256

(a.k.a. SHA2), which was designed by the NSA in 2001. The SHA2

hash functions are designed using the following common two-step
approach: We can also build collision-resistant

hash functions that are secure under
“nice” cryptographic assumptions,
such as the assumption that factoring
large numbers is hard. Unfortunately,
hash functions based on these nice
assumptions tend to be very slow and,
as a result, are almost never used in
practice.

1. Build a small collision-resistant hash function on a fixed-size
domain Hsmall : {0, 1}2λ → {0, 1}λ. This step is, to some degree,
“more art than science”. The standard practice is to design a hash
function that defeats all known collision-finding attacks. If no
known attack works well, we declare the candidate function to be
collision resistant.

2. Use Hsmall to construct H : {0, 1}∗ → {0, 1}λ. This can be done
very cleanly using the “Merkle-Damgård” approach described
below. This step requires no additional assumptions: we can prove
unconditionally that if Hsmall is collision resistant, then H is as
well.

Another way to build collision-resistant
hash functions is to use the so-called
“sponge” construction. It is similar to
the approach described here in that we
start with a small primitive, which we
assume secure in some sense, and then
we use the small primitive to build a
hash function on a large domain.

3.3.1 Merkle-Damgård

The Merkle-Damgård construction gives a way to construct a
collision-resistant hash function for all bitstrings (i.e., {0, 1}∗) from
a collision resistant hash function that maps 2λ-bit strings down to
λ-bit strings, sketched out in Figure 3.1.

0λ Hsmall

m1

Hsmall

m1

. . . Hsmall

mn

Hsmall

Msg length

Output

Figure 3.1: Sketch of the Merkle-
Damgård construction for a
collision-resistant hash func-
tion.

The Merkle-Damgård construction first splits the message into
λ-sized blocks [m1, . . . , mn] and successively hashes them together. In

6.1600 foundations of computer security 33

the following pseudocode, the function ToBlock converts an integer,
representing the length of the input message in blocks, into a λ-bit
string. Then the Merkle-Damgård construction is: (Here, we are

H(m1, . . . , mn): // Merkle-Damgård construction

• Let b← 0λ.
• For i = 1, . . . , n:

– Let b← Hsmall(b, mi).

• Let b← Hsmall(b,ToBlock(n)).
• Output b.

Figure 3.2: The Merkle-
Damgård construction of a
large-domain collision-resistant
hash function H from a small-
domain collision-resistant hash
function Hsmall.

assuming that the message is at most λ2λ bits long.) In practice, standard hash functions
have limits on the length of the mes-
sages that they can hash. For example,
SHA256 can hash messages of length
up to 264 − 1 bits.

We won’t prove it here, but we can use the fact that Hsmall is
collision-resistant to prove that H must also be collision-resistant. The
basic idea of the proof is to show that given a collision in H, we can
easily compute a collision in Hsmall.

Note: In the Merkle-Damgård construction of Fig. 3.2, we initialize
the variable b to the all-zeros string. The construction is collision-
resistant if we omit the all-zeros string and start by setting b ← m1

and then continue by hashing m2, m3, The construction is not
collision resistant if we omit the length block ToBlock(n) that we hash
in at the end.

3.3.2 The Birthday Paradox
If you sample 2λ/2 random 10λ-bit
strings and hash them with a hash
function that has λ-bit outputs, you will
find a collision among these inputs with
constant probability.

An important thing to understand when dealing with hash functions
is the “Birthday Paradox,” which states that given a hash function
with λ-bit output, you can always find a collision in time O(

√
2λ) =

O(2λ/2). So, if you want to force an attacker to use at least 2128 to
find a collision, you must use a hash function with at least 256 bits of
output.

3.3.3 Domain Separation

In many applications, we have a one-input CRHF (such as SHA256)
H : {0, 1}∗ → {0, 1}256 and we need to construct a two-input CRHF
H2(x, y).

Bad idea. An obvious solution to construct the two-input hash
function H2 is to concatenate the two values, so that H2(x, y) =

6.1600 foundations of computer security 34

H(x||y). However, this construction allows two different pairs of
messages to hash to the same value:

H2("key", "value") = H2("ke", "yvalue").

Both Amazon and Flickr had a bug arising from this—they concate-
nated all parameters before hashing, and had parameters such that
two different intents had the same concatenation.2 2 Thai Duong and Juliano Rizzo. Flickr’s

API Signature Forgery Vulnerability.
https://vnhacker.blogspot.com/

2009/09/flickrs- api- signature-

forgery.html. Sept. 2009.
3.3.4 Length-Extension

Recall the concept of Message Authentication Codes (MAC) from the
last lecture—a code that can be sent along with a message to verify
that the message was not changed. (We will see the formal definition
in Chapter 4.)

Bad idea. Poorly designed software uses MAC(k, m) = H(k∥m) as a
very simple construction of a MAC. However, this construction has
an easy attack—given MAC(k, m), it is easy to compute MAC(k, m∥m′)
without knowing the key k if H is a hash function built with the
Merkle-Damgård construction. To do this, the attacker hashes the
output of MAC(k, m) with two more blocks—a new message m′′ and
another length block. Now, we have computed MAC(k, m∥m′) where
m′ is the original length block plus some custom message without
knowing the key k.

This problem here is that we were using a hash function that was
only guaranteed to be collision resistant, but we assumed that it
had other properties (such as that it is guaranteed to be difficult to
compute the hash of an extension of the original message). Figure 3.3
sketches out the length-extension attack on the Merkle-Damgård
construction from Figure 3.1.

Hash of m1||m2|| . . . ||mn Hsmall

x

Hsmall

Extended length

Output

Figure 3.3: Sketch of the ex-
tension attack on the Merkle-
Damgård construction, starting
with a hash of m1||m2|| . . . ||mn

to compute the hash of
m1||m2|| . . . ||mn||ToBlock(n)||x.3.4 Applications: Merkle Trees

In many settings, an origin server has N files (e.g., Android app bi-
naries) and wants to serve these files from potentially untrustworthy
mirror servers (e.g., Akamai servers) distributed around the globe.

To do this, the origin server can put the N files at the leaves of
a binary tree. Then the server hashes together pairs of files, then
hashes each pair of hashes and so on until it eventually ends up with

https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html

6.1600 foundations of computer security 35

a single root hash h. The client fetches the root hash h from the origin
server directly.

Later on, the client can download any one of the N files from the
untrustworthy mirror server. The mirror can produce the file, along
with O(log N) hashes—the sibling nodes of each node on every path
from the file’s leaf to the root. The client can use the root hash h it
got from the origin server, along with the additional hashes from the
mirror server, to be convinced that the mirrored file it downloaded
was authentic.
TODO: Add diagram from lecture.

4
Message Authentication Codes

So far, we have talked about authenticating people and authenticating
files. In this section, we will discuss authenticating communication. If
we have two parties that are communicating over the network, we
want some way to guarantee to each party that the message they
received really came from the other party and was not tampered with
along the way.

At a first glance, this seems impossible. If there is some eavesdrop-
per Eve in between the two parties, they can just replace the message
with one of their own choosing and the other party will have no idea.
To make this possible, we need to relax the scenario a bit and add an
assumption—that the two parties share some secret key k.

With this shared key k between the two parties, our goal will be
to add some “tag” onto the message that validates its authenticity.
Necessarily, this tag will be a function of this shared key k. If this
were not the case, the eavesdropper would be able to compute a valid
tag herself—the secret k is the only information in this scenario that
Eve does not know.

4.1 Defining message authentication codes

Syntax. A message authentication code (MAC) over key space
K, message spaceM , and tag space T is an efficient algorithm
MAC : K×M→ T . In order for a MAC to be useful, it must be secure,
in the following sense. We first give the definition and then explain
why it is a useful one:

Definition 4.1.1 (MAC Security: Existentially unforgeability against
adaptive chosen message attacks). A MAC MAC over key space K
and message spaceM is secure (existentially unforgeable against
adaptive chosen message attacks) if any poly-time adversary A wins In practice, “a poly-time adversary”

means “any real-life adversary”. But
we need to place some mathematical
bound on real-life to make the proofs
work out.

the following game with at most negligible probability:

• The challenger samples a MAC key k←R K.

6.1600 foundations of computer security 38

• For i = 1, 2, . . . (polynomially many times)

– The adversary sends any message mi ∈ M to the challenger

– The challenger responds with MAC(k, mi).

• The adversary sends the challenger a message-tag pair (m∗, t∗).
• The adversary wins the game if MAC(k, m∗) = t∗ and m∗ /∈
{m1, m2, . . . , mn}.

A subtlety of this definition is that, even
if the MAC scheme is secure under
this definition, it is possible for an
adversary, given a valid message-tag
pair (m, t) to produce a second valid
message-tag pair (m, t′) on the same
message without knowing the secret
key.

4.1.1 Intuition for the security definition

To formulate our security notion, we need to define the adversary’s
goal and the adversary’s power.

The adversary’s goal in this definition is to compute a valid MAC
of any message m ∈ M of its choice. It’s not entirely obvious why
we care about the adversary producing a valid MAC on any message:
“If the adversary MACs a message that is jibberish, they are unlikely
to be able to do any harm with it,” you might think. But there will
certainly be applications that authenticate messages that violate
whatever definition of “non-jibberish” we define. So allowing the
adversary to forge a MAC tag on any message makes the definition
as broadly applicable as possible. This has some interesting implications—

importantly, the adversary can store
these messages along with their MAC
and replay them later.

As far as the adversary’s power goes: we, as usual in cryptography,
restrict the adversary to be efficient (i.e., to run in polynomial time).
But in the MAC security game we also allow the adversary to obtain
MAC tags on messages of its choice. This captures the reality that in
many systems, an adversary can trick an honest system into MACing
adversarial messages. For example, if an email-backup system MACs
every email that a user receives, an adversary may be able to obtain
MAC tags on messages of its choice by sending emails to the backup
system.

4.1.2 MACs require pseudorandomness

The fact that it is even possible to construct a MAC seems a bit
surprising—in effect, for a MAC to satisfy the definition, the tag has
to effectively be random. But the only “randomness” that we have is
the key k—to generate tags for arbitrarily many messages, we need
much more randomness than one key’s worth. This seems impossible.
How can we generate a large number of random-looking tags from
only a single short random key?

We get ourselves out of this conundrum by observing that the
adversary must be an efficient algorithm. So while we cannot generate
a large number of truly random bits from a short key, we can—under
appropriate and reasonable cryptographic assumptions—generate a

6.1600 foundations of computer security 39

large number of bits that look truly random from the perspective of
any efficient algorithm. We call these bits pseudorandom.

This surprising and powerful idea leads us to our next crypto-
graphic primitive. . .

4.2 Pseudorandom Functions

A pseudorandom function is defined over a keyspace K, and input
spacei X and output space Y . To be useful a pseudorandom function
must satisfy the following security definition:

Definition 4.2.1 (Pseudorandom Function, PRF). A function F :
K×X → Y is a pseudorandom function if all efficient algorithms A
win the following game with probability 1

2 + “negligible”:

• The challenger samples a random bit b← {0, 1} and a key k←R K.
• If b = 0, the challenger sets f (·) := F(k, ·).
• If b = 1, the challenger sets f (·)←R Funs[X ,Y]. Here, Funs is the set of all functions

from X to Y .• Then for i = 1, 2, . . . (polynomially many times):

– The adversary sends the challenger a values xi ∈ X .

– The challenger responds with yi ← f (xi) ∈ Y .

• The adversary outputs a guess b̂ at the bit b.
• The adversary wins if b = b̂.

First, the challenger will sample a random b ← {0, 1} and a key
k← K.

The adversary can trivially win this game with probability 1
2 by

just guessing the bit b at random. This definition asserts that no
efficient adversary can do much better than that.

If we have such a pseudorandom function F, we could easily
construct a MAC—we can just use the message as the input to the
pseudorandom function along with the key: MAC(k, m) := F(k, m).

4.2.1 Constructing pseudorandom functions from one-wayness

It is not at all obvious that pseudorandom functions should exist at
all! They seem like a very magical primitive indeed.

One surprising fact is that if there exists any function that is “hard
to invert,“ in a sense we will define, then pseudorandom functions
exist. For example, if you believe that factoring large numbers is
difficult (as many people do), then pseudorandom functions exist.

In particular the following definition captures the notion of a
function that is hard to invert:

6.1600 foundations of computer security 40

Definition 4.2.2 (One-Way Function). A function f : X → Y is a
one-way function if for all efficient adversaries A,

Pr[f (A(f (x))) = f (x) : x ←R X] ≤ “negligible”.

Having defined one-way functions, we now have the following
surprising and non-obvious result: Notice that if P = NP, one-way

functions do not exist, and therefore
psuedorandom functions do not exist.Theorem 4.2.3. Psueodorandom functions exist if and only if one-way

functions exist.1 1 J. Hastad et al. “A Pseudorandom
Generator from any One-way Function”.
In: SIAM Journal on Computing 28.4
(1999), pp. 1364–1396.

In practice, we assume that:

• the function f (x) := SHA256(x) is a one-way function where the
domain is the set of 256-bit strings,

• the function f (x) := AES(x, 0128) is a one-way function, where the
domain is the set of 128-bit strings, and

• the function f (x) := 2x mod p is a one-way function on domain
{1, . . . , p}, for a sufficiently large prime p.

4.2.2 Pseudorandom functions in practice

In practice, we use the Advanced Encryption Standard (AES) as
a pseudorandom function. The AES function on key length κ ∈
{128, 192, 256} has the type signature AES : {0, 1}κ × {0, 1}128 →
{0, 1}128. That is, it takes a 128-bit input and generates a 128-bit
output. We don’t have any mathematical

proof that AES is a pseudorandom
function. However, it has undergone a
tremendous amount of cryptanalysis
and the best attacks on AES are only
marginally better than the obvious
brute-force attacks.

4.3 From pseudorandom functions to MACs

MACs for short messages. Using AES as a pseudorandom function
on a 128-bit domain, we can build a MAC for 128-bit messages as
described above : MAC(k, m) := AESk(m). However, since AES takes
only 128 bits as input, using AES directly, we can only authenticate
128-bit messages.

Insecure ways to construct a MAC for long messages. A bad way to
construct a MAC for long messages from a pseudorandom function
F for 128-bit messages is just to chop our message m up into 128-bit
blocks m = (m1, m2, . . .) and MAC each block separately. Our tag,
then, would look something like (F(k, m1), F(k, m1)). However, there
is a problem! Given the tag t = (t1, t2) for a message m = (m1, m2),
we can easily generate a valid tag t′ = (t2, t1) for a different message
m′ = (m2, m1).

6.1600 foundations of computer security 41

Notice that we cannot use AES as
the pseudorandom function F in this
construction, since AES only takes a
128-bit input. In this case, we would
need a collision-resistant hash function
H : {0, 1}∗ → {0, 1}128, but it is always
possible to find collisions in hash
functions with 128-bit output in time
264. So such a MAC can never be secure
against attackers running in time 264.

MACs for long messages: The easy way. If we have a pseudorandom
function F with an input space of 256-bits, we can construct a MAC
on arbitrary-length messages using the “hash-and-sign” paradigm.
In particular, we use a collision-resistant hash function H : {0, 1}∗ →
{0, 1}256 (Definition 3.2.1) and we define the MAC on message space
{0, 1}∗ as:

MAC(k, m) := F(k, H(m)).

In practice, we typically do not construct MACs in this way be-
cause collision-resistant hash functions are typically more expensive
to compute (per bit of input) than pseudorandom functions, such as
AES.

4.3.1 MACs for long messages: Cipher-Block Chaining MAC
Applying the PRF to the last block us-

ing an independent random key is im-
portant. If we do not use a new key, an
adversary can mount a length-extension
attack. That is, if the adversary asks for
t = MAC(k, m1) and t′ = MAC(k, t),
t′ is also a valid key for the original
message with two zero blocks attached
MAC(k, m1∥0∥0). The chain of AES
applications becomes equivalent, since
zero blocks are equivalent to skipping
the XOR and adding AES applications.

A common and secure way to construct a MAC for long messages
from a MAC for short messages is to chain the output of each of these
calls to the pseudorandom function. Given our chopped message
(m1, m2, . . . , mn), we will generate t1 = F(k, m1) as before. When
generating t2, we will first XOR t1 into the input: t2 = F(k, m2 ⊕ t1).
This continues until the end of the message, at which point have a tag
tn. Finally, we apply the PRF with a different key k′ to the value tn and
output this tag t← F(k′, tn). This construction is called CBC-MAC or
CMAC.

m1

F(k, ·)

t1

m2

⊕

F(k, ·)

t2

m3

⊕

F(k, ·)

t3 F(k′, ·) t

Figure 4.1: The CBC-MAC
construction.

CBC-MAC is going out of favor for two reasons:

1. It is impossible to parallelize the MAC computation: the chaining
procedure is inherently sequential so you cannot speed it up, even
if you have a computer with many CPU cores.

2. Computing the MAC requires one PRF invocation per block of
the message. There are even faster MACs that require only one
PRF invocation per message total, plus a number of fast “non-
cryptographic” operations per message block. These MACs can be
faster than CBC-MAC on some processors. The GMAC construc-
tion we will see next is one example.

6.1600 foundations of computer security 42

4.3.2 A parallelizable MAC: Carter-Wegman MAC

We now describe a different way to authenticate long messages. This
MAC scheme is parallelizable and also requires only one single PRF
invocation per message authenticated (independent of the message
length). The construction is named the Carter-Wegman MAC, after
its inventors.2 Modern encryption schemes, including AES-GCM 2 Mark N Wegman and J Lawrence

Carter. “New hash functions and their
use in authentication and set equality”.
In: Journal of computer and system sciences
22.3 (1981).

(Section 9.2) use a Carter-Wegman-style MAC as a key ingredient.
For this construction, we will use the notation Zp to indicate the

set of integers modulo p with addition and multiplication modulo
p. So x + y ∈ Zp means that we add x and y as integers and reduce
the result modulo p. Typically, we will think of p as a prime—of 64

bits, for example. The construction uses a fixed a prime number p as
a parameter, where p ≈ 2n for security parameter n. So in practice, we take p ≈ 2128 for

128-bit security.

Universal hash function. Before we look at the construction of the
Carter-Wegman MAC, we first define an important building block:
the notion of a universal hash function, or UHF for short. A universal
hash function is keyed, and provides collision-resistance when the
adversary does not know the key. Specifically, we say that H is a
universal hash function if, when an adversary chooses two messages
m and m′ where m ̸= m′,

Pr[H(k, m) = H(k, m′)] ≤ negl.

Intuitively, a universal hash function is a weaker primitive than a
collision-resistant hash function: the adversary does not know the
precise hash function that will be applied to their messages, because
the adversary does not know what key will be used.

One simple and practical construction of a universal hash function
is based on polynomials. Given a long message m, break it up into
fixed-size chunks m0, m1, . . . , ml−1. Then, the hash of that message is In practice, these fixed-size chunks are

going to be 128 or 256 bits long.defined as:

H(k, m0||m1|| . . . ||ml−1) = (m0 +m1k+m2k2 + . . .+ml−1kl−1) mod p

We can give some intuition for why H is a universal hash function
(i.e., collision-resistant for a randomly chosen key). In order for a
pair of messages m and m′ to collide, it must mean that H(k, m) =

H(k, m′), which in turn means that H(k, m)− H(k, m′) = 0. Expanding
the definition of H as a polynomial, this means that

(m0 −m′0) + (m1 −m′1)k + (m2 −m′2)k
2 + . . . + (ml−1 −m′l−1)k

l−1 = 0

6.1600 foundations of computer security 43

which is another way of saying that k is a root of that degree-l − 1
polynomial. We know that there can be at most l − 1 roots of a degree-
l − 1 polynomial, but there are p ≈ 2n possible choices for k, so the
probability that our randomly-chosen k happens to be one of those
roots is l−1

p , which is negligible.

MAC construction. The MAC uses a pseudorandom function F : K×
Zp → Zp. The keyspace for the MAC is K, so the MAC key consists Here, the input space of the pseudoran-

dom function F is the set of integers in
{0, . . . , p− 1}. Given a pseudorandom
function on bitstrings, it is indeed pos-
sible to construct one that operates on
numbers in Zp like this by interpreting
each number as a bitstring.

of a key for the pseudorandom function. The message space for the
MAC isM = Z≤L

p , the set of vectors of integers of Zp elements of
length at most L where L≪ p. Here, assume that the message vector
has length at least 1.

One other difference is that this MAC construction is randomized.
So there are now two algorithms:

• MAC.Sign(k, m) → t, which takes as input a key k and message m
and outputs a MAC tag t, and

• MAC.Verify(k, m, t)→ {0, 1}, which takes as input a key k, message
m, tag t, and outputs an accept/reject bit.

The security definition here is essentially the same as for determin-
istic MACs, except that we use different algorithms to generate and
verify the MAC tags.

The Carter-Wegman MAC construction is then:

MAC.Sign(k, m ∈ Z≤L
p)→ t.

• Compute v← F(k, 0) ∈ Zp.
• Parse the message into chunks as (m1, . . . , mℓ)← m ∈ Zℓ

p.
• Compute M(v)← m1v + m2v2 + m3v3 · · ·+ mℓvℓ ∈ Zp. Essentially we are viewing the blocks

of the message m as coefficients of a
degree-t polynomial M(·). We then
evaluate this polynomial at the secret
point v determined by the MAC key.

TODO: HCG: Check the definition of the message polynomial M. Should there be

an additional vt+1 monomial?

• Sample a nonce r ←R Zp.
• Output t←

(
r, F(k, r) + M(v)

)
∈ Z2

p as the MAC tag.

MAC.Verify(k, m, t)→ {0, 1}.

• Compute v← F(k, 0) ∈ Zp.
• Parse the message into chunks as (m1, . . . , mℓ)← m ∈ Zℓ

p.
• Compute M(v)← m1v + m2v2 + m3v3 + · · ·+ mℓvℓ ∈ Zp.
• Parse the tag (r, z)← t ∈ Z2

p.
• Output “1” if and only if z− F(k, r) = M(v).

For a detailed treatment of Carter-
Wegman security see Boneh and
Shoup’s textbook, A Graduate Course in
Applied Cryptography, Section 7.4.

Security intuition. The security argument here goes as follows:

• First, we appeal to the PRF security property to argue that we can
replace the values F(kF, r) used to generate the tags with truly
random values.

6.1600 foundations of computer security 44

• Next, we show that as long as the MAC.Sign algorithm never
samples the same nonce r twice, the masking values F(k, r) are
independent random values that complete hide the values M(v).
So, the adversary learns no information on the secret point v by
making MAC queries.

• Now, say that the adversary finds a forged message-tag pair
(m∗, t∗). There are two cases:

– Either the forgery uses a fresh random nonce r∗ that did not
appear as the response to any of the adversary’s MAC queries.
In this case, the forgery is only valid with probability 1/p.

– Alternatively, the forger could use a random nonce r∗ that
is equal to the nonce r returned from one of the adversary’s
MAC queries. In this case, we have the following relations,
where message m polynomial M was the message the adversary
queried of the challenger:

F(k, r) = M(v)− z

F(k, r) = M∗(v)− z∗

0 =
(

M(v)−M∗(v)
)
+ (z− z∗).

Since m ̸= m∗, we know z ̸= z∗. So (M(·)−M∗(·)) + (z∗ − z)
is a non-zero polynomial of degree at most t. Since such a
polynomial can have at most ℓ ≤ L zeros in Zp, and since the
adversaries view is independent of the evaluation point v ∈ Zp,
the probability that the adversary’s forgery is valid is at most
ℓ/p.

In either case, the adversary’s probability of forging is O(L)/p =

poly(λ) · negl(λ) = negl(λ) on security parameter λ.

5
Digital Signatures

In the last section, our strategy for authentication depended on two
parties sharing a secret key. In that discussion, we completely left out
of the picture how these parties should exchange this secret key. Our
implication was that they went to some private room and exchanged
the key in secret, but in many cases this is not practical: if they could
whisper a key, why not just whisper the message?

Luckily, there is a way to get around this requirement for a shared
secret using public-key cryptography.1 1 Whitfield Diffie and Martin E Hellman.

“New Directions in Cryptography”. In:
Transactions on Information Theory 22.6
(1976).
The original Diffie-Hellman paper from
1976, which introduced public-key
cryptography, is a fascinating read.

5.1 Definitions

The basic idea of public-key cryptography, applied to authentication,
is that each party will generate two linked keys—a secret signing
key and a public verification key. The verification key will be good
enough to verify that a signature is valid, but not to generate new
signatures.

Definition 5.1.1 (Signature Scheme). A signature scheme is as-
sociated with a message spaceM and three efficient algorithms
(Gen,Sign,Ver). In theoretical papers, people will

write Gen(1λ) to indicate that the key-
generation algorithm takes as input a
length-λ string of ones. This is just a
hack to make the input given to Gen
λ bits long so that the Gen algorithm
can run in time polynomial in its
input length: poly(λ). If we express
λ in binary, then Gen(λ) gets a log2 λ-
bit input and can only run in time
poly(log λ). This distinction is really
unimportant, but if you see the 1λ

notation, you will now know what it
means.

• Gen(λ) → (sk, vk). The key-generation algorithm as input a
security parameter λ ∈ N and outputs a secret signing key sk and
public verification key vk. The algorithm Gen runs in time poly(λ).

• Sign(sk, m) → σ. The signing algorithm takes as input a secret key
sk and a message m ∈ M, and outputs a signature σ.

• Ver(vk, m, σ) → {0, 1}. The signature-verification algorithm takes
as input a public verification key vk, a message m ∈ M, and a
signature σ, and outputs {0, 1}, indicating acceptance or rejection.

For a signature scheme to be useful, a correct verifier must always
accept messages from an honest signer. Formally, we have:

6.1600 foundations of computer security 46

Definition 5.1.2 (Digital signatures: Correctness). A digital-signature
scheme (Gen,Sign,Ver) is correct if, for all messages m ∈ M:

Pr
[
Ver(vk, m,Sign(sk, m)) = 1 : (sk, vk)← Gen(λ)

]
= 1.

The standard security notion for digital signatures is very similar
to that for MACs (Definition 4.1.1). The only difference here is that
a digital-signature scheme splits the single secret MAC key into two
keys: a secret signing key and a public verification key. Otherwise the
definition is essentially identical.

Definition 5.1.3 (Digital signatures: Security – existential unforge-
ability under chosen message attack). A digital-signature scheme
(Gen,Sign,Ver) is secure if all efficient adversaries win the following
security game with only negligible probability:

• The challenger runs (sk, vk) ← Gen(λ) and sends vk to the adver-
sary.

• For i = 1, 2, . . . (polynomially many times)

– The adversary sends a message mi ∈ M to the challenger.

– The challenger replies with σi ← Sign(sk, mi).

• The adversary outputs a message-signature pair (m∗, σ∗).
• The adversary wins if Ver(vk, m∗, σ∗) = 1 and m∗ ̸∈ {m1, m2, . . . }.

Notice that this security definition does not guarantee that an
attacker cannot forge a new signature on a message that it has al-
ready seen a signature of. Namely, given a valid message-signature
pair (m, σ) an adversary may be able to produce additional valid
message-signature pairs on the same message: (m, σ′), (m, σ′′),

In some applications, we want to prohibit an attacker from find-
ing any new message-signature pair. We call this security notion
“strong existential unforgeability under chosen message attack.” The
definition is the same as in Definition 5.1.3 except that we require
the adversary to find a valid-message signature pair (m∗, σ∗) such
that (m∗, σ∗) ̸∈ {(m1, σ1), (m2, σ2), . . . }. Standard digital-signature
schemes, such as the elliptic-curve digital signature algorithm (EC-
DSA) or the RSA algorithm with full-domain hashing (RSA-FDH),
are believed to have this strong security property.

5.2 Constructing a Signature Scheme

In the following sections, we will show how to construct a digital-
signature scheme from any one-way function (Definition 4.2.2).

We will generate a signature scheme that is secure, but that has
relatively large signatures and public keys: to achieve security against

6.1600 foundations of computer security 47

attackers running in time 2λ, this signature scheme has signatures
of O(λ2) bits. Widely used modern digital signature schemes (e.g.,
EC-DSA) have signatures of O(λ) bits. One benefit of the signature scheme

that we present here is that—unlike
EC-DSA, RSA, DSA, and other widely
used signature schemes—this one is
plausibly secure even against quantum
adversaries. There is ongoing work
to standardize signature schemes
secure against quantum adversaries;
see https://csrc.nist.gov/projects/

pqc-dig-sig

We will construct this scheme in three stages:

1. Construct a signature scheme for signing a single bit.

2. Construct a one-time secure signature scheme for signing a fixed
length messages. With this scheme, an attacker who sees two
signatures under the same signing key can forge signatures. In
addition, the secret signing key for this scheme will be larger than
the size of the message being signed.

3. Construct a one-time secure scheme for arbitrary-length messages.
Here, we construct a one-time signature scheme whose secret
signing key is independent of the length of the signed message.

4. Construct a many-time secure scheme (i.e., a fully secure one under
Definition 5.1.3) for arbitrary-length messages. This last scheme is a
fully secure and fully functional digital-signature scheme.

5.3 Constructing a Signature Scheme for Signing a Single Bit

This signature scheme is not useful on its own, and is given only as a
step towards the final construction. It uses as a building block a one-
way function f : X → Y . Recall that f a one-way function if it is easy
to compute but hard to invert; namely there is an efficient algorithm
that given x ∈ X outputs f (x), and at the same time any efficient
algorithm given y = f (x) for a random x ← X , finds an inverse
x′ ∈ X such that f (x′) = f (x) with only negligible probability.

• Gen()→ (sk, vk). Choose two random elements x0, x1 from X and In this construction, we leave the
security parameter λ implicit. To be
fully formal, Gen would take λ an input.
The one-way function f and its domain
X would both depend on λ. So we
would write fλ and Xλ.

let (y0, y1) = (f (x0), f (x1)). Output sk = (x0, x1) and vk = (y0, y1).

• Sign(sk, b)→ σ. Parse sk = (x0, x1) and output σ = xb,

• Ver(vk, b, σ) → {0, 1}. Parse vk = (y0, y1) and output 1 if and only
if f (σ) = yb. (Otherwise, the signing routine rejects.)

5.4 One-time-secure Signatures (Lamport Signatures)

In this section we give a very simple and elegant construction of
a one-time-secure digital signature scheme, due to Lamport.2 The 2 Leslie Lamport. Constructing Digital

Signatures from a One Way Function.
Tech. rep. Oct. 1979.

construction is a straightforward generalization of the signature
scheme constructed above: Each message is signed bit-by-bit, where
each bit is signed using a fresh and independently generated secret
key.

https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig

6.1600 foundations of computer security 48

Before giving the construction, we define one-time security for
digital-signature schemes. This signature scheme is not generally
useful on its own, but is useful as a building block.

Definition 5.4.1 (Digital signatures: One-Time Security). A digital-
signature scheme (Gen,Sign,Ver) over message spaceM is one-time
secure if all efficient adversaries win the following game with negligi-
ble probability:

• The challenger generates (sk, vk) ← Gen(λ) and sends vk to the
adversary.

• The adversary sends the challenger single message m ∈ M.
• The challenger responds with σ = Sign(sk, m).
• The adversary outputs (m∗, σ∗).
• The adversary wins the game if Ver(vk, m∗, σ∗) = 1 and m∗ ̸= m.

Lamport signatures. We now construct a one-time secure signature
scheme for messages in {0, 1}n, for some fixed message length n ∈N.
To do this, we will define the following algorithms, which make use
of a one-way function f : X → Y :

• Gen()→ (sk, vk). Choose 2n random elements from X , the domain
of the one-way function f . Arrange these values in to a 2× n matrix,
which forms the secret signing key sk. The public verification key
just consists of the 2n images of these values under the one-way
function f :

sk←
(

x10 . . . xn0

x11 . . . xn1

)
, vk←

(
f (x10) . . . f (xn0)

f (x11) . . . f (xn1)

)
.

• Sign(sk, m) → σ outputs (x1m1 , . . . xnmn), where m1 . . . mn are the
individual bits of the length-n message m ∈ {0, 1}n.

• Ver(vk, m, σ) → {0, 1} parses the the message into bits m =

m1 . . . mn ∈ {0, 1}n and the signature σ into its individual symbols
σ = (x∗1 , . . . x∗n) ∈ X n. The signing routine accepts if, for all
i ∈ {1, . . . , n}:

f (x∗i) = vki,mi . (5.1)

In other words, the routine accepts if applying the one-way func-
tion f to each symbol of the signature matches the corresponding
value in the verification key. (Otherwise, the signing routine re-
jects.)

This signature scheme has relatively large keys: the verification
key, in particular consists of 2n values, where each is of length Ω(λ)

bits. So the total length is roughly 2nλ bits—much longer than the
n-bit message being signed.

6.1600 foundations of computer security 49

In addition, notice that an adversary who sees signatures on even
two messages can forge signatures on messages of its choice. In
particular:

• The adversary first asks for a signature on the message m0 = 0n. It
receives σ0 = (x10, . . . , xn0).

• The adversary then then asks for a signature on the message
m1 = 1n. It receives σ1 = (x11, . . . , xn1).

• At this point, the adversary has the entire secret signing key!

However, we will show that this scheme is indeed one-time secure.

Claim. The Lamport signature scheme is one-time secure under the assump-
tion that f is a one-way function.

Remember that if P = NP, one-way
functions, and also digital signature
schemes, do not exist. So any proof of
security of a digital-signature scheme
will require some sort of cryptographic
assumption.

In cryptography, we generally prove these security claims by
reduction: we will show that if there exists an efficient adversary A
that breaks the security of our scheme, then we can construct an
efficient adversary B that breaks one of our assumptions. If we do
this, we have reached a contradiction to one of our assumptions, so
the first adversary cannot exist.

Proof of Claim. Suppose there exists an adversary A that wins the
one-time-security game of Definition 5.4.1 with non-negligible prob-
ability ϵ. That is, the adversary can produces (m∗, σ∗) such that
Ver(vk, m∗, σ∗) = 1 and m ̸= m∗ given only σ = Sign(sk, m). We can
then construct an adversary B that can use A to invert the one-way
function. Lamport’s construction shows that if

one-way functions exist, then so do
digital signatures. Can you show that
if digital signatures exist, then so do
one-way functions?

In particular, our adversary B will use algorithm A as a subroutine
to invert the one-way function. We will show that if A wins in the
one-time signature security game often, then algorithm B will invert
the one-way function often, which is a contradiction.

Assume our one-way function is of the form f : X → Y and that
the Lamport signature scheme is on n-bit messages. The one-way-
function adversary B operates as follows:

• The adversary B is given a point y ∈ Y and its task is to produce a
preimage of y under f .

• The adversary B generates a signing keypair as follows:

– It runs the key-generation algorithm for the Lamport signature
scheme (sk, vk)← Gen().

– The adversary chooses a random value i∗ ←R {1, . . . , n} and a
random bit β∗ ←R {0, 1}.

– The adversary sets vki∗ ,β∗ ← y. That is, it inserts the one-way-
function point it must invert into a random location in the
verification key.

6.1600 foundations of computer security 50

• The adversary then sends the verification key vk to the Lamport-
signature adversary A.

• The adversary A asks for the signature on a message m =

m1m2 . . . mn ∈ {0, 1}n.
• If mi∗ = β∗, then algorithm B cannot produce a valid signature on

the message m and it outputs FAIL.
• Otherwise, the algorithm B returns the signature σ = (sk1,m1 , . . . , skn,mn) ∈
X n to algorithm A.

• Algorithm A then produces a forged message-signature pair
(m∗, σ∗), where m ̸= m∗.

• Algorithm B parses m∗ = m∗1 . . . m∗n ∈ {0, 1}n and σ∗ = σ∗1 . . . σ∗n ∈
X n. Then:

– If mi∗ = mi, algorithm B outputs FAIL.
– Otherwise, algorithm B outputs x ← σ∗i∗ ∈ X .

First, notice that whenever (m∗, σ∗) is a valid message-signature
pair and whenever algorithm B does not output FAIL, algorithm B
outputs a preimage x ∈ X of point y ∈ Y under the one-way function
f . That is because, by the verification relation (5.1) for Lamport
signatures,

f (x) = f (σ∗i∗) = vki∗ ,m∗i∗
= vki∗ ,1−mi = vki∗ ,β∗ = y.

Now, we must show that algorithm B does not output FAIL too
often. Since algorithm B chooses the values i∗ and β∗ at random, and
since the adversary A behavior is independent of these values, we can
say:

• the probability of the first failure event is 1/2, since there are two
possible choices of mi∗ and only one of these is bad, and

• the probability of the second failure event is at most 1/n, since
m and m∗ must differ in at least one of n bits, and there is a 1/n
probability that this differing bit is at index i∗.

The events that A breaks the signature scheme and that either
of these failures occur are all independent. Then if A breaks the one-
way function with probability ϵ, our one-way-function adversary B
inverts the one-way function with probability

ϵone-way = ϵ · 1
2
· 1

n
.

The probability of either bad is at most 1/2 + 1/n, by the union
bound. Therefore if algorithm A breaks one-time security of Lam-
port’s scheme with probability ϵ, If ϵ is non-negligible, then ϵone-way =

ϵ/2n is also non-negligible, and we have a contradiction.

6.1600 foundations of computer security 51

5.5 A one-time signature scheme for arbitrary-length messages

In the Lamport signature scheme (Section 5.4), the length of the
keys scales with the size of the message being signed. To adapt our
scheme from above into a scheme that works on arbitrary-length
messages without the key growing arbitrarily large, we will use a
strategy called hash-and-sign. In essence, the signing algorithm will Essentially all signature schemes used

in practice use this hash-and-sign
construction.

pass the message through a hash function to generate a fixed-size
digest before applying a signature scheme that works only on fixed-
length messages.

This paradigm is called “hash and sign,” and is very common. In
practice, hashing is computationally cheap operation while signing
turns out to be computationally relatively expensive. So it is common
to hash a message before signing it in order to reduce the size of the
message that must be signed.

The following claim gives the general construction:

Claim (Hash-and-sign paradigm). Given a collision-resistant hash
function h : {0, 1}∗ → {0, 1}n and a signature scheme (Gen,Sign,Ver) for
message spaceM = {0, 1}n (such as the one in Section 5.4), there exists a
signature scheme (Gen′,Sign′,Ver′) forM′ = {0, 1}∗ as follows:

• Gen′ := Gen. The key-generation algorithm is unchanged.

• Sign′(sk, m) := Sign(sk, h(m)). We hash the message using the hash
function h before passing the hashed message to the original signing
function.

• Ver′(vk, m, σ) := Ver(vk, h(m), σ). We use the original Ver to check that
the tag matches hash of the original message.

Security Intuition. Suppose that there exists an efficiency adversary
that breaks (Gen′,Sign′,Ver′). In particular, given ((m1, σ1, . . . , (mt, σt)),
the adversary is able to construct a valid message-signature pair
(m∗, σ∗) such that m∗ /∈ {m1, . . . , mt}. There are then two cases:

1. h(m∗) ∈ {h(m1), . . . , h(mt)}. If this is the case, there is some i ∈ [t]
such that h(m∗) = h(mi). However, h is collision-resistant as in the
definition, so this is a contradiction!

2. h(m∗) /∈ {h(m1), . . . , h(mt)}. Since the message that we pass
to the underlying signature scheme is h(m), this means that
the adversary has found a valid signature for h(m) under the
original scheme (Gen,Sign,Ver) after seeing only signatures of
h(m1) ̸= h(m), . . . , h(mt) ̸= h(mt). This breaks the security of the
underlying signature scheme, which is a contradiction!

6.1600 foundations of computer security 52

Application to Lamport. We can apply the hash-and-sign paradigm
to the Lamport signature scheme from Section 5.4. We can fix our
input to the Lamport scheme at, for example, 256 bits, and then
run messages through a hash function that outputs 256 bits before
passing them to the Lamport scheme. This gives a one-time-secure
signature scheme for messages of arbitrary length.

Recall that we faced a similar problem
in our MAC construction. Why not use
hash and MAC there? The reason is
that we used AES as our PRF, which
takes input of {0, 1}128. As explained
by the birthday paradox, it is possible
to find a collision in an output space of
size 2128 in only time 264! This does not
provide sufficient security for practical
use, as it would be quite practical to
find collisions. If we had a version of
AES that outputted 256 bits, we could
indeed apply hash and sign.

Another reason to not use hash and
MAC is that MACs can be faster to
compute than collision-resistant hash
functions.

Security implications of hash and sign. In practice, hash-and-sign can
actually increase the security of our signature scheme, in a certain
sense. As shown in case 2 above, it is absolutely crucial that the hash
function used is collision-resistant: if not, an adversary can find
messages that cause collisions, and then a signature for one message
will also be a valid signature for the other. However, in practice we
often think of hash functions like SHA256 as behaving like random
oracles. That is, for a hash function h : {0, 1}∗ → {0, 1}λ and a string
x ∈ {0, 1}∗ we think of the value h(x) as being an independently
sampled and uniformly random value from the co-domain of the
hash function, {0, 1}λ. (Of course, a real-world hash function is never
actually a random oracle. A random oracle from h : {0, 1}∗ → {0, 1}λ

would take infinitely many bits to describe, while real-world hash
functions have finite size (and polynomial-size descriptions).)

Recall that the standard security definition for digital signatures
(Definition 5.1.3) allows the attacker to request signatures on mes-
sages of its choice. If we pass a message through a hash function
before signing it using an underlying signature scheme scheme, how-
ever, we effectively randomize the message—the adversary can no
longer control the input to the underlying signature scheme. This
allows us to define another meaningful definition of security:

Definition 5.5.1 (Digital signatures: security against random message
attacks). Any efficient adversary given the public verification key
and a list of random message-signature pairs ((m1, σ1), . . . , (mt, σt))

cannot generate a forged message-signature pair (m∗, σ∗) such that
Ver(vk, m∗, σ∗) = 1 and m∗ /∈ {m1, . . . , mt}.

Note that this definition is not good enough on its own—an adver-
sary often does have the ability to generate signatures for messages
of his choice. However, paired with a hash function modeled as a
random oracle, this definition becomes very useful—if the inputs are
passed through the hash function before they are passed to the signa-
ture scheme, they become effectively random. We can even relax the
definition further without losing practicality: by the same logic, with
hash function in front of the signature scheme, what the adversary
needs to sign is really not a message of their choise, but is the hash of
a message of their choice—effectively a random value.

6.1600 foundations of computer security 53

Definition 5.5.2 (Digital signatures: random security against random
message attacks). Any efficient adversary given vk and a list of
random message-signature pairs ((m1, σ1), . . . , (mt, σt)) and random
m∗ /∈ {m1, . . . , mt} cannot generate σ∗ such that Ver(vk, m∗, σ∗) = 1.

It is possible to formally argue that given a signature scheme
satisfying Definition 5.5.2 and a random oracle, we can construct a
scheme satisfying existential unforgeability under chosen message
attacks.

5.6 From one-time security to many-time security

After applying the hash-and-sign strategy above to our Lamport
scheme, we have a signature scheme that is one-time secure for mes-
sages of arbitrary length. In order for the scheme to be useful and
satisfy our security definition, we need to be able to sign polynomi-
ally many messages with a single key pair. To do this, we will use
a construction very similar to the Merkle tree construction we have
seen before.

Informally, we will build up a binary tree of Lamport keys of
depth 256. The signing key in each of the 2256 leaf nodes will be
used to actually sign messages; we will use a random leaf node
to sign a message, so the fact that there are 2256 of them means
that the probability of accidentally choosing the same leaf twice is
negligible (2−128). The signing key in an intermediate nodes (and in
the root) will be used to sign the (public) verification keys of the two
corresponding child nodes in the tree. Fig. 5.1 shows a sketch of this
tree.

skε, σε = Sign0(skε, vk0||vk1))

sk0, σ0 = Sign0(sk0, vk00||vk01)

sk00, σ00

.

sk01, σ01 = Sign0(sk01, vk010||vk011)

.

sk1, σ1

sk10, σ10

.

sk11, σ11

.

Figure 5.1: Sketch of the tree
of Lamport signature keys
used for the many-time secure
signature construction.

Importantly, every signing key in the tree will be used to sign only
one message ever: the key at non-leaf nodes will only ever sign the
pair of its children, and the key at leaf nodes will only ever be used
to sign a single message.

The signature, in this scheme, will consist of the signatures and
verification keys along the path from the root to the chosen leaf node.
The signature will also include information about which child node

6.1600 foundations of computer security 54

was chosen.
This tree, of course, is impractically large, but we can solve that

problem by lazily constructing it using a pseudorandom function.
That is, instead of actually building up all of the leaves of the tree, we
will build up the tree (i.e., generate the signing keys, verification keys,
and signatures) on-demand, and furthermore, we will build it in a
deterministic way using the pseudorandom function, so that we don’t
have to remember what parts we might have already computed in the
past.

To make the construction more precise, we will assume that we are
given:
• a pseudorandom function f with keyspace K, and
• a one-time secure signature scheme (Gen0,Sign0,Ver0).
We will need the ability to run the (non-deterministic) Gen0 algorithm
on specific randomness, so as to make it deterministic. For a PRF key
k ∈ K and string s, we will write Gen

F(k,s)
0 () to indicate the process

of running the key-generation algorithm Gen0 using randomness
derived from the output of the PRF F(k, s). We will assume the use
of SHA256 (with a 256-bit digest length) as a collision-resistant hash
function. Using these building blocks, we will construct a many-
time secure signature scheme (Gen,Sign,Ver) for arbitrary-length
messages (i.e., on message space {0, 1}∗), where all of the algorithms
are efficient (poly(·) running time).

Our construction is as follows:

• Gen()→ (sk, vk):

– Sample a fresh PRF key k←R K.

– Set (skϵ, vkϵ)← Gen
F(k,“”)
0 ().

– Output (sk, vk)← (k, vkϵ).

• Signt(k, m)→ σ:

– Choose a random 256-bit value r = (r1 . . . r256) ∈ {0, 1}256).

– Compute (skr, vkr)← Gen
F(k,r)
0 ()

– Compute σr ← Sign0(skr, SHA256(m)).

– Compute σε, vk0, vk1, σr1 , vkr10, vkr11, σr1r2 , . . ., σr1r2 ...r255 ,
vkr1r2 ...r2550, vkr1r2 ...r2551 as shown in Fig. 5.1.

– Output σ← (r, σε, vk0, vk1, σr1 , vkr10, vkr11, . . . , σr).

• Vert(vkϵ, m, σ)→ {0, 1}:

– Parse (r, σε, vk0, vk1, σr1 , vkr10, vkr11, . . . , σr)← σ.

6.1600 foundations of computer security 55

– Output “1” if and only if

* Ver0(vkr, σr, SHA256(m)) = 1 and

* Ver0(vkx, σx, vkx0||vkx1) = 1 for every prefix x of r (from ε

to r1r2 . . . r255).

5.7 Choosing Signature Schemes

The signature scheme we presented in Section 5.6 is not particularly
efficient in terms of signature size.

Algorithm vk size σ size signatures/sec verifications/sec
SPHINCS+-128 32 B 8000 B 5 750

RSA 2048 256 B 256 B 2,000 50,000

ECDSA256 32 B 64 B 42,000 14,000

Table 5.1: Statistics about vari-
ous signature schemes used in
practice

Many deployed systems today use the ECDSA256 signature
scheme. Legacy application still use RSA signatures, though be-
cause of their relatively large public-key and signature sizes, few new
applications use these schemes. Hashing is much, much faster than

signing—the commonly used SHA256

hashing algorithm can compute around
10,000,000 hashes per second. This is
one reason the hash-and-sign paradigm
is so useful.

6
RSA Signatures

In this chapter, we will discuss the RSA digital-signature scheme. The
RSA paper1 was tremendously influential because it gave the first 1 Ronald L. Rivest, Adi Shamir, and

Leonard Adleman. “A method for
obtaining digital signatures and public-
key cryptosystems”. In: Communications
of the ACM 21.2 (1978), pp. 120–126.

constructions of digital signatures and public-key encryption. (We
will talk about public-key encryption in detail later on.)

The RSA cryptosystem is going out of style for a few reasons: gen-
erating RSA keys is relatively expensive and the keys are relatively
large (4096 bits for RSA versus 256 bits for more modern elliptic-
curve-based cryptosystems). In addition, a large-scale quantum
computer could—in theory, at least—break RSA-style cryptosystems.

The RSA cryptosystem is worth studying for a few reasons:

• RSA’s security is related to the problem of factoring large inte-
gers, which is (arguably) the most natural “hard” computational
problem out there.

• RSA gives the only known instantiation of a trapdoor one-way
permutation, which we will define shortly.

• RSA has a number of esoteric properties that are useful for ad-
vanced cryptographic constructions. For example, it gives a
“group of unknown order.” See Boneh-Shoup, Chapter 10.9 for
details.

• RSA signatures are used on the vast majority of public-key certifi-
cates today.2 2 As of today, around 94% of certificates

in the Certificate Transparency logs
use RSA signatures: https://ct.
cloudflare.com/.

The most commonly used type of RSA signatures (“PKCS #1 v1.5”)
is more complicated—and no more secure—than the construction
we describe here, but that construction is still used for historical
reasons.

6.1 Trapdoor one-way permutations

RSA implements a trapdoor one-way function. Informally, a trapdoor
one-way function is a function that is easy to compute in the forward

https://toc.cryptobook.us/book.pdf#page=436
https://ct.cloudflare.com/
https://ct.cloudflare.com/

6.1600 foundations of computer security 58

OWF Trapdoor OWS/OWP

easy easy

-- F(x) - F(pk,x)88. 8

· ⑧- hard
hard I

easy with
Secret Key Sk

OWF Trapdoor OWS/OWP

easy easy

-- F(x) - F(pk,x)88. 8

· ⑧- hard
hard I

easy with
Secret Key Sk

Figure 6.1: A one-way function
(at left) is hard to invert on
random inputs. A trapdoor one-
way function/permutation (at
right) is a function keyed by a
public key. The function is easy
to invert given the secret key
and is hard to invert otherwise.

direction but that is hard to invert except to someone knowing a
secret key. So it is like a one-way function with a “trapdoor” that
allows efficient inversion.

RSA actually implements a trapdoor one-way permutation—that is,
it maps an input space onto itself with no collisions.

6.1.1 Definition

Formally, a trapdoor one-way permutation over input space X is a
triple of efficient algorithms: If we wanted to be completely formal,

the input space would be parameter-
ized by the security parameter λ. So
we would have a family of input spaces
{Xλ}λ∈N—one for each choice of λ.
This way the input space can grow
with λ.

• Gen(1λ) → (sk, pk). The key-generation algorithm takes as input
the security parameter λ ∈ N, expressed as a unary string, and
outputs a secret key and a public key.

• F(pk, x)→ y. The evaluation algorithm F takes as input the public In the RSA construction, the input
space X depends on the public key, but
we elide that technical detail here.

key pk and an input x ∈ X , and outputs a value y ∈ X .

• I(sk, y) → x′. The inversion algorithm I takes as input the secret
key sk and a point y ∈ X , and outputs its inverse x ∈ X .

Correctness. Informally, we want that for keypairs (sk, pk) output by
Gen, we have that F(pk, ·) and I(sk, ·) are inverses of each other. More
formally, for all λ ∈N, (sk, pk)← Gen(1λ), and x ∈ X , we require:

I(sk, F(pk, x)) = x.

Security. Security requires that F(pk, ·) is hard to invert (in the sense
of a one-way function) on a randomly sampled input in the input
space X , even when the adversary is given the public key pk. That
is, for all efficient adversaries A, there exists a negligible function
negl(·) such that

Pr

[
A(pk, F(pk, x)) = x :

(sk, pk)← Gen(1λ)

x ←R X

]
≤ negl(λ).

6.1600 foundations of computer security 59

When we use the RSA cryptosystem, we make the assumption that
the RSA function is hard to invert given only the public key:

Definition 6.1.1 (RSA Assumption). The RSA function (Gen, F, I) is a
trapdoor one-way permutation.

IMPORTANT: Just as a one-way function is only hard to invert on
a randomly sampled input, a trapdoor one-way function is only hard
to invert on a randomly sampled input. Many of the cryptographic
failures of RSA come from assuming that the RSA one-way function
is hard to invert on non-random inputs.

6.1.2 Digital signatures from trapdoor one-way permutations

This construction is called “full-domain hash.”3 The construction 3 Mihir Bellare and Phillip Rogaway.
“Random oracles are practical: A
paradigm for designing efficient
protocols”. In: ACM Conference on
Computer and Communications Security.
1993.

makes use of a hash function H and resulting signature scheme is
secure, provided that we model the hash function H as a “random
oracle.”

In other words, to argue security, it is not sufficient to show that H
is, for example, collision resistant. Instead, we can only prove security
provided that we pretend that H is a truly random function—i.e., in
the random-oracle model. When we instantiate the hash function H
with some concrete cryptographic hash function, such as SHA256, we
hope that the resulting signature scheme is still secure. In practice,
this approach works quite well.

One way to think about it is that if a signature scheme is secure in
the random-oracle model, then the concrete signature scheme is in
some sense secure against attacks that do not exploit the peculiarities
of the hash function.

In the construction, we use:

• a trapdoor one-way permutation (Gen, F, I), and

• a hash function H : {0, 1}∗ → X , which we model as a random
oracle in the security analysis.

Construction. We construct a digital-signature scheme (Gen,Sign,Ver)
as follows:

• Gen – Just run the key-generation algorithm for the trapdoor one-
way permutation.

• Sign(sk, m) → σ. Hash the message down to an element h of the
input space X of the trapdoor one-way permutation using the
hash function H. Then invert the trapdoor one-way permutation at
that point:

6.1600 foundations of computer security 60

– Compute h← H(m).

– Output σ← I(sk, h).

• Ver(pk, m, σ)→ {0, 1}.

– Compute h′ ← H(m).

– Accept if F(pk, σ) = h′.

Notice that the use of a hash function here is critical to security,
since (in the random oracle) it means that forging a signature is as
hard as inverting F on a random point in its co-domain. Without the
hash function, forging a signature is only as hard as inverting F on an
attacker-chosen point in its co-domain, which could be easy.

Correctness. For all λ ∈ N, (sk, pk) ← Gen(1λ), and m ∈ {0, 1}∗, we
have:

Ver(pk, m,Sign(sk, m)) = 1{F(pk, I(sk, H(m))) = H(m)}
= 1{I(sk, F(pk, I(sk, H(m)))) = I(sk, H(m))}

and by correctness of the trapdoor one-way permutation:

= 1{I(sk, H(m)) = I(sk, H(m))} = 1.

Security. The intuition here is that if the adversary cannot invert F, it
cannot find the preimage of H(m) under F for any message on which
it has not seen a signature. See Boneh-Shoup Chapter 13.3 for the full
security analysis.

6.2 The RSA construction: Forward direction

The algorithms for key-generation and for evaluating the RSA permu-
tation in the forward direction are not too complicated.

In what follows, we present RSA with public exponent e = 5.
The same construction works with many other choices of e, just
by replacing all of the “5”s below with some other small prime: 3,
7, 13, etc. A popular choice of the public exponent e in practice is
e = 216 + 1. The complexity of computing the RSA function in the
forward direction scales with the size of e, so we prefer small choices
of e.

• Gen(1λ)→ (sk, pk). In practice, we usually take the
bitlength of primes to be λ = 1024
or λ = 2048.– Sample two random λ-bit primes p and q such that p ≡ q ≡ 4

(mod 5). Standard RSA implementations require
the weaker condition that the public
exponent e shares no prime factors with
p − 1 and q − 1. Using the stronger
condition here simplifies the inversion
algorithm.

– Set N ← p · q.

https://toc.cryptobook.us/book.pdf#page=550

6.1600 foundations of computer security 61

– Output sk← (p, q), and pk = N.

• F(pk = N, x)→ y.

– The input space for the RSA function is
X = Z∗N—the set of elements in {0, 1, 2, . . . , N − 1} relatively
prime to N.

– Output y← x5 mod N.

Remark 6.2.1. The key-generation algorithm relies on us being able
to sample large random primes. One perhaps surprising fact is
that there are many many large primes. In particular, if you pick a
random λ-bit number, the probability that it is prime is roughly 1/λ. For more on this, look up the Prime

Number Theorem.We can sample a random λ-bit prime by just picking random
integers in the range [2λ, 2λ+1) until we find a prime. We can test for
primality in ≈ λ4 time using the Miller-Rabin primality test. We also
need that there are infinitely many primes congruent to 4 mod 5, but
fortunately there are. Generating RSA keys is expensive—it can take
a few seconds even on a modern machine.

Notice that computing the RSA function in the forward direction is
relatively fast: it just requires three multiplications modulo a 2048-bit
number N. That is, to compute x5 mod N, we compute:

(x2)2 · x = x5 mod N.

Before describing the RSA inversion algorithm, we discuss why
the RSA trapdoor one-way permutation should be hard to invert
without the secret key.

6.2.1 Why should the RSA function be hard to invert?

To invert the RSA function, the attacker’s is effectively given a value
y ←R ZN and must find a value x such that x5 = y mod N. Or, put
another way, the attacker’s task is essentially the following:

• Given: A polynomial p(X) := X5 − y ∈ ZN [X], for y←R ZN .

• Find: A value x ∈ ZN such that p(x) = 0 ∈ ZN .

So the attacker must find the root of a polynomial modulo a
composite integer N.

The premise of RSA-style cryptosystems is that we only know of
essentially two ways to find roots of polynomials modulo N:

• Factor N into primes and find a root modulo each of the primes.
(We will say more on this in a moment.) Since the best algorithms

for factoring run in time roughly 2
3
√

log N = 2
3√λ, this approach is

infeasible at present without knowing the factorization of N. In Appendix A we present a factoring
algorithm that runs in sub-exponential

time 2
√

log N log log N .

6.1600 foundations of computer security 62

• Find a root over the integers and reduce it modulo N. For exam-
Actually, it suffices to find a root
over the rational numbers, but the
distinction isn’t important here.

ple, it is easy to find a root of polynomials such as:

X + 4 = 3 mod N,

X + 2Y = 5 mod N,

X2 = 9 mod N, and

X2 − 3x + 2 = (X− 2)(X− 1) = 3 mod N.

When y ←R ZN , the probability that y is a perfect 5-th power, and There are many clever attacks for
solving polynomial equations modulo
composites that work in certain special
cases, but for most purposes these are
the two known attacks.

thus that there is an integral root to X5 − y, is 5
√

N/N ≈ 2−4λ/5,
which is negligible in the security parameter λ. So solving this
equation over the integers is a dead end.

Is inverting the RSA function as hard as factoring the modulus? No
one knows—the question has been open since the invention of
RSA. We do know that finding roots of certain polynomial equa-
tions, such as p(X) := X2 − y mod N for random y ←R ZN is as
hard as factoring the modulus N. But for RSA-type polynomials,
the answer is unclear.

6.3 The RSA construction: Inverse direction

To understand how the inversion algorithm works, we will need
some number-theoretic tools.

6.3.1 Tools from number theory

For a natural number N, let ϕ(N) denote the number of integers in
ZN = {1, 2, 3, . . . , N} that are relatively prime to N. When p is prime Two natural numbers are relatively prime

if they share no prime factors.ϕ(p) = p− 1. The function ϕ(·) is called Euler’s totient function.
When N = pq is the product of two distinct primes, ϕ(N) =

(p − 1)(q − 1). That is so because all numbers in ZN are relatively
prime to N except N and the multiples of p and q:

p, 2p, 3p, . . . , (q− 1)p, q, 2q, 3q, . . . , (p− 1)q.

So there are N − (q− 1)− (p− 1)− 1 = (p− 1)(q− 1) numbers in
ZN relatively prime to N.

Theorem 6.3.1 (Euler’s Theorem). Let N be a natural number. Then for all
a ∈ Z∗N ,

aϕ(N) = 1 mod N.

6.1600 foundations of computer security 63

Proof. Consider the sets Z∗N and {ax mod N | x ∈ Z∗N}. These sets
are equal, so the product of the elements in the two sets is equal. Let
X ← ∏x∈Z∗N

x mod N. Then

X = aϕ(N)X mod N ⇒ 1 = aϕ(N) mod N.

Lemma 6.3.2. Let p and q be distinct primes congruent to 4 modulo 5.
Define the integer d = ϕ(N)−4

5 + 1. Then 5d ≡ 1 mod ϕ(N).

Proof. Observe that

p ≡ 4 mod 5 ⇒ ϕ(N)− 4 ≡ 0 mod 5,

so ϕ(N)−4
5 is an integer and thus d is well defined. Then 5d = ϕ(N)−

4 + 5 = 1 mod ϕ(N).

6.3.2 Inverting the RSA function

With the number theory out of the way, we can now describe how
to invert the RSA function. All we have to do is to show how to
compute a fifth root of y mod N.

• I(sk, y)→ x.

– The secret key sk consists of the prime factors p, q of N. Recall
that ϕ(N) = (p− 1)(q− 1).

– Compute the integer d← ϕ(N)−4
5 + 1, as in Lemma 6.3.2. We sometimes call d the private exponent

in RSA.
– Return yd mod N.

It is not obvious why the inversion algorithm is correct. Say that
y = x5 mod N. Then:

yd = (x5)d mod N

= x5d mod N

= xk·ϕ(N)+1 mod N, for some k ∈ Z, by Lemma 6.3.2

= x · (xϕ(N))k mod N

= x mod N, by Theorem 6.3.1.

We could write 5d = kϕ(N) + 1 because from Lemma 6.3.2, we know
that 5d ≡ 1 mod ϕ(N).

6.1600 foundations of computer security 64

Using other public exponents. For our RSA-inversion algorithm to
work, we need only to compute the multiplicative inverse e modulo
ϕ(N). That is, we need to compute an integers d such that ed ≡
1 mod ϕ(N). Such an inverse always exists when e and ϕ(N) =

(p− 1)(q− 1) are relatively prime. RSA implementations typically
use the extended Euclidean algorithm to compute the multiplicative
inverse of e modulo ϕ(N). That algorithm is more general, but the
one we used in Lemma 6.3.2 is simpler and is self-contained.

Inverting RSA is easy on a negligible fraction of points. Recall the RSA
is If the preimage under the RSA function of a point y is very very
small, then If x < N1/5, then computing x given y = x5 mod N is
easy.

Is inverting RSA as hard as factoring the modulus N? The inversion
algorithm we showed here requires knowing the prime factors of the
modulus N. Inverting RSA is thus no harder than factoring N.

Is inverting RSA as hard as factoring N? In particular, if we have
an efficient algorithm A that inverts RSA, can we use A to factor the
modulus N? No one knows!

Most cryptographers, I would guess, believe that inverting the
RSA function is as hard as factoring. But for all we know, it could
be that computing fifth roots modulo N is easier than factoring the
modulus.

7
Public-key Infrastructure

In the last chapter, we discussed digital signatures, which allow us
to authenticate messages without a shared secret. For example, if I
have the public signature-verification key of the university dean, I can
verify that signed emails from the dean really came from her and not
from someone pretending to be her. But to verify the signature on
the dean’s message, I need to know her signature-verification key vk.
How can I (the recipient) obtain this verification key without a secure
channel to the dean (the sender)?

Unfortunately, there are no perfect solutions to this problem. In
this section, we will discuss some of the approaches that we use in
practice.

7.1 Public-key infrastructure

The goal of a public-key infrastructure is to facilitate the mapping
of human-intelligible names to signature-verification keys. Ex-
amples of human-intelligible names that we map to keys are: email
addresses, domain names, legal entities, phone numbers, and user-
names (e.g., within a company).

We can think of the public-key infrastructure as implementing the
following (grossly simplified) API:

IsKeyFor(vk, name)→ {0, 1}.

That is, given a verification key vk and a name name, the public-key
infrastructure gives a way to check whether this mapping is valid.

We now discuss some ways to implement this API.

7.2 Option 1: Use verification keys as names

One option is to just refer to everyone by the bytes of their signature-
verification key. This way, there is no need to do a messy name-to-
verification-key translation at all.

6.1600 foundations of computer security 66

This is not practical for humans generally: it would be difficult to
remember your friends’ names if you had to call them by random 32-
byte strings! However, some digital services such as Bitcoin indeed
use verification keys as identities: when you want to transfer Bitcoin
to someone, you send the coins to an account identified by their
public key. The public key is name of that account.

Using keys as names has a two major problems:

• Verification keys are hard to remember. Things like email ad-
dresses, domain names, kerberos usernames, phone numbers, and
so on, are much easier for humans to remember.

• There is no way to update the name-to-key mapping. If you lose
the secret key associated with your name/account, there is no way
to “update” the key to a new value. In practice, people lose their
secret keys all the time, so supporting key updates is critical in
most systems.

7.3 Trust on first use (TOFU)

Another strategy is to avoid having any global mapping from names
to verification keys. Instead, a client can just accept the first verifica-
tion key that it sees associated with a given name. The secure shell
system (SSH) uses TOFU for key management by default.

In particular, the key-validation logic looks like this:

keymap← {}.

IsKeyFor(vk, name) :
• If keymap[name] is undefined:

– Set keymap[name]← vk.
– Return true..

• Else: Return keymap[name] == vk.

That is, the client will accept the first verification key it sees associ-
ated with a particular name. Later on, the client will only accept the
same verification key for that name.

TOFU is very simple to implement and provides a meaningful
security guarantees. There are two drawbacks:

• If the first key that client receives for a particular name is incorrect/attacker-
generated, the attacker can forge signatures under that name.

• It is not clear with TOFU how to handle key updates. In most
systems that use TOFU, whenever the sender’s key changes, the
system notifies the user and allows them to accept or reject the

6.1600 foundations of computer security 67

new key. The burden is then on the user to figure out whether the
sender really did change their signing keypair, or whether there is
an attack in progress.

7.4 Certificates

Another option is to rely on a few parties to manage the mapping of
names to public keys. These entities are called Certificate Authorities
(CAs). Your operating system and web browser typically come
bundled with a set of roughly 100 public signature-verification keys,
owned by each of 100 CAs.

Whenever the owner of website example.com, for example, gen-
erates a new public key vkexample.com, the website owner can ask
a certificate authority to certify that vkexample.com really belongs to
example.com. The certificate authority does this by signing the pair
(example.com, vkexample.com) using its own signing keypair vkCA to
generate a signature σCA. This signed attestation (example.com,
vkexample.com, σCA) is called a certificate. In practice the structure of certificates

is much more complicated than we are
showing here, and include all sorts of
additional metadata. But the basic idea
is the same as we describe here.

When a client connects to example.com, the server at example.com
will supply the client with the certificate (example.com, vkexample.com,
σCA). As long as this certificate was signed by a CA that the client
trusts (i.e., a CA for which the client has a verification key), the client
can validate the certificate and conclude that the verification key
vkexample.com really belongs to example.com.

In pseudocode the logic for verifying certificates looks like this:

caKeys← {vkVerisign, vkLet’s Encrypt, . . . }.

IsKeyFor((vk, σ), name) :
• For each vkCA in caKeys:

– If Ver(vkCA, (name, vk), σ) = 1: Return true.
• Return false.

A very nice feature of certificate-based public-key infrastructure
is that the client does not need to communicate with the CA to
validate a name-to-key mapping. The client only needs to perform
one signature-verification check. In order to use TLS on a website you

own, you need to convince one of the
certificate authorities to give you a
certificate—i.e., to sign your (name, vk)
pair. To do so, the CA will have some
protocol to follow—typically, you will
send your (name, vk) pair to the CA,
who will then ask you to verify that
you own the name somehow. In the
case of web certificates, the CA may
verify ownership by requiring you to
upload a file file to your server, to add a
new DNS record with a random value,
or something similar. Once the CA is
convinced that you own the domain,
the CA will reply with a certificate: a
signature over the tuple (name, vk). This
(name, vk, σCA).

Certificates in practice works quite well:

• The client only needs to store ≈ 100 CA verification keys, and yet
the client can validate the name-to-key mappings for millions of
websites.

• A client can choose which CAs to trust (though in practice, clients
typically delegate this decision to software vendors).

• The client never needs to interact with the CA.

6.1600 foundations of computer security 68

However, certificates still have some drawbacks:

• If an attacker compromises any CA, they can generate certificates
for any domain.

• Certificate authorities often perform quite minimal validation of
domain ownership.

• If a server’s private key gets stolen, there is no great plan for
revoking or updating a name-to-key mapping.

7.4.1 Revocation

In many cases, a CA will want to delete or change a name-to-key
mapping. This process is called certificate revocation. There are several
possible reasons for this:

• The owner of a verification key may have their corresponding
secret key be lost or stolen.

• A company may want to rotate keys, for example to update to a
new cryptographic algorithm.

• A website may go out of business and another entity buys their
domain name.

• Software bugs may lead a user to generate an insecure keypair that
they later want to revoke.1 1 Scott Yilek et al. “When private keys

are public: Results from the 2008

Debian OpenSSL vulnerability”. In:
SIGCOMM. 2009; Matus Nemec et al.
“The Return of Coppersmith’s Attack:
Practical Factorization of Widely Used
RSA Moduli”. In: CCS. 2017.

In a scheme that uses certificates, this seems like a hard problem:
since there is no interaction with the CA to verify a certificate, there
is no way for a CA to “take back” a certificate. There are again no
excellent solutions to this, but there are a few strategies used in
practice.

Expiration Dates One pragmatic way to handle revocation is to add
an expiration date to each generated certificate—if this expiration
date has passed, the client will reject the certificate. This way, a
server will need to re-authenticate to the CA that they own the name
that they claim to own periodically. So, for example, an attacker
that steals a website’s secret key will only be able to use it until
the certificate expires. In practice, certificates used on the Internet
typically expiration dates between 90 days and 1-2 years.

Software Updates Another solution is for the browser (or client,
more generally) to maintain a list of revoked certificates. On every
connection, the browser will check whether the provided certificate
is in this local revocation list and refuse it if so. Since browsers
today check for updates very frequently, this strategy can respond
to a stolen secret key quickly. However, there is a large storage cost

6.1600 foundations of computer security 69

since now every browser needs to store this (potentially large) list of
revoked certificates.

CA Revocation List To avoid depending on browser manufacturers
to update this revocation list, another strategy is to ask the CA for
it directly. One way to do this is similar to the above: periodically
query the CA to download its updated revocation list and check
that each certificate is not in this list. This method has fallen out of
favor, in part because clients (e.g., behind corporate firewalls) cannot
connect directly to the CAs to download these revocation lists.

Part II

Transport Security

8
Introduction to Encryption

So far, we have explored methods for authenticating data—verifying
that it has not been modified in transit. However, the integrity-
protection mechanisms we have discussed provide no confidentiality: a
network eavesdropper can still view everything that we send over the
network.

In this chapter, we will discuss encryption, which allow two parties
to exchange messages over an insecure network while hiding the
contents of their communications.

We will cover encryption in a sequence of steps:

• First, we will construct an encryption scheme with a weak form of
security for fixed-length messages for settings in which the sender
and recipient have a shared secret key.

• Next, we will show how to extend this scheme to support variable-
length messages.

• Then, we will show how to improve the scheme to have a strong
form of security.

• Finally, we will show how to implement encryption in settings in
which the sender and recipient have no shared secrets.

At the conclusion of this part, we will discuss how deployed sys-
tems use encryption, and we will think about some problems that
encryption does not solve.

8.1 Background

The need for encryption The internet is a massive network of wifi
access points, routers, switches, undersea cables, DNS servers, and
much more. There are many, many devices for a potential adversary
to compromise and many vantage points from which an attacker

6.1600 foundations of computer security 74

can observe network traffic. Every single hop your packets take is a
potential point of compromise.

To make matters worse, most standard network protocols provide
no authentication or encryption: in Ethernet, IP, DNS, email, HTTP, and
others, an adversary is free to modify and read the traffic we send
and receive. Protecting confidentiality typically requires augmenting
these standard network protocols with some form of authentication
and encryption.

Systems using encryption Encryption shows up in a large number of
deployed systems. A few examples are:

• Messaging apps, such as WhatsApp, Signal, and iMessage, en-
crypt traffic between app users so that the server cannot easily
read it.

• Network protocols, such as SSH and HTTPS use encryption to
protect traffic between a service’s clients and servers.

• File-storage systems use encryption to protect data at rest. So if
a thief steals your laptop, they will not easily be able to read the
encrypted files on your hard disk.

8.2 Encryption Scheme Syntax

Encryption schemes are defined with respect to a key space K, a
message spaceM, and a ciphertext space C. For now, think of K =

M = {0, 1}n and C = {0, 1}2n, for a security parameter n. An Remember that in practice, we will
often take the size of the keyspace |K|
to be at least 2128 to prevent brute-force
key-guessing attacks.

encryption scheme then consists of two algorithms:

• Enc : K×M→ C

• Dec : K× C →M As we will see later on, the decryption
algorithm Dec can sometimes output
“FAIL” or ⊥.The definition of correctness for an encryption scheme just states

that if you encrypt a message m with a key k, and then you decrypt
the resulting ciphertext with the same key k, you end up with the
same message m that you started with:

Definition 8.2.1 (Encryption Scheme, Correctness). An encryption
scheme is correct if, for all keys k ∈ K and all messages m ∈ M,
Dec(k,Enc(k, m)) = m.

Defining security for encryption scheme is tricky business. Many
of the most obvious security definitions are insufficient:

• Bad definition: “An encryption scheme is secure if it is infeasible for
an attacker to recover the plaintext message given only a ciphertext. This

6.1600 foundations of computer security 75

definition admits encryption schemes in which the ciphertext leaks
half of the plaintext bits.

• Bad definition: “An encryption scheme is secure if it is infeasible
for an attacker to recover any bit of the plaintext message given only a
ciphertext. This definition admits encryption schemes in which the
ciphertext leaks the parity of the plaintext bits.

The starting-point (weak) security definition we will use is called
indistinguishability under adaptive chosen plaintext attack (IND-CPA).
Intuitively, a scheme is CPA-secure if an attacker cannot tell which of
two chosen messages are encrypted, even after seeing encryptions of
many attacker-chosen messages.

Definition 8.2.2 (Encryption Scheme, CPA Security (weak)). Formally,
an encryption scheme (Enc,Dec) over message spaceM and key
space K is CPA-secure if all efficient adversaries win the following
game with probability at most 1

2 + “negligible:”

• The challenger samples b←R {0, 1} and k←R K.
• Polynomially many times: // Chosen-plaintext queries

– The adversary sends the challenger a message mi ∈ M

– The challenger replies with ci ← Enc(k, mi).

• The adversary then sends two messages m∗0 , m∗1 ∈ M to the
challenger. (We require

∣∣m∗0∣∣ = ∣∣m∗1∣∣.) Standard encryption systems do not
hide the length of the message being
encrypted. So, if the message spaceM
contains messages of different lengths,
our security definition requires the
adversary to distinguish the encryption
of two messages of the same length.

• The challenger replies with c∗ ← Enc(k, m∗b).
• The adversary outputs a value b′ ∈ {0, 1}. The adversary wins if

b = b′.

One potentially surprising consequence of the CPA-security defini-
tion for encryption schemes is:

For an encryption scheme to be secure in any meaningful sense,
the encryption algorithm must be randomized.

In contrast, secure MACs can be—and
typically are—deterministic!If the encryption algorithm is deterministic (i.e., not randomized),

an attacker can win the CPA security game in Definition 8.2.2 with
probability 1. To do so:

• The attacker first asks for encryption of a message m0 and receives
a ciphertext c0.

• Then, the attacker attacker choose a message m1 ̸= m0 and sends
(m∗0 , m∗1) = (m0, m1) to the challenger and receives the challenge
ciphertext c∗.

• If c∗ = c0, the attacker outputs 0. Otherwise, the attacker outputs
1.

6.1600 foundations of computer security 76

Deterministic encryption schemes are not only broken in theory,
they are also broken in practice. For example, if you encrypt the
pixels of an image using a deterministic encryption scheme, the
encrypted image essentially reveals the plaintext image.

Why CPA security is a “weak” form of security There are two reasons
why CPA security is a weak or insufficient definition of security for
an encryption scheme:

• First, the CPA security definition guarantees nothing about mes-
sage integrity: an attacker can modify the ciphertext and poten-
tially change the meaning of the encrypted message in a mean-
ingful way (even if the attacker does not know the encrypted
message!).

• Second, the CPA security definition guarantees nothing in the
event that the adversary can obtain decryptions of ciphertexts of
its choosing. In practice, attackers can often obtain decryptions of
chosen ciphertexts. for example, in a system where a client sends
encrypted messages to a server and the server does something
in response, an attacker can send encrypted queries to the server
and observe its behavior to learn some function of the decrypted
contents of the message. Later on, we will expand our definition to
include these chosen ciphertext attacks.

8.3 One-time Pad

The one-time pad is perhaps the simplest encryption scheme. Its
keyspace, message space, and ciphertext space are all the set of n-bit
strings. The algorithms are then:

• Enc(k, m)→ c. Compute c← (k⊕m).

• Dec(k, c)→ m. Compute m′ ← (k⊕ c).

The encryption scheme is correct since Dec(k,Enc(k, m)) = k ⊕
(k⊕m) = m. A less obvious fact is that it is also one-time secure: if an
attacker sees only one message with encrypted a one-time-pad key k,
it learns nothing about the underlying plaintext. The one-time pad is actually one-

time secure in a very strong sense: it
protects confidentiality even against a
computationally unbounded attacker—
one that can perform arbitrary amounts
of computation.

The “two-time pad” attack The one-time pad is insecure if the same
key k is every used to encrypt two messages. In particular, if two
ciphertexts are ever computed using the same key, we have:

c1 = k⊕m1

c2 = k⊕m2

c1 ⊕ c2 = (k⊕m1)⊕ (k⊕m2) = m1 ⊕m2.

6.1600 foundations of computer security 77

The attacker then learns the XOR of the two encrypted messages,
which is often enough to leak all sorts of sensitive information about
the plaintext. For example, if the attacker knows some bits of m1, it
can learn some bits of m2.

Why the one-time pad is useful The one-time pad encryption scheme
feels in some sense useless: if a secure channel exists through which
Alice and Bob can exchange an n-bit secret key, they may as well
use that channel to exchange the message itself! There is some merit
still in the one-time pad: it is possible to exchange the key ahead of
time, and then send encrypted messages later on. Diplomats indeed
used the one-time pad in this way throughout the 20th century. They
would exchange huge books of keying material (random strings) and
then use these keys to communicate securely over long distances.

In practice, it is much more convenient to be able to exchange a
short key and then use it to encrypt many long messages.

8.4 A Weak Encryption Scheme

What we effectively need is a way to generate many bits of random-
looking keys (i.e., keys for the one-time pad encryption scheme) from
a single short random string.

To generate this, we can use a pseudorandom function! In If you forget what a pseudorandom
function is, refer back to Defini-
tion 4.2.1.

particular, we would like a pseudorandom function of the form
F : {0, 1}n × {0, 1}n → {0, 1}n. In practice, we will use AES or another

block cipher as a pseudorandom
function, so we will have n = 128 or so.

Using such a pseudorandom function, we can construct a new
encryption scheme that replaces the truly random keys with pseu-
dorandom keys generated from the pseudorandom function. The
keyspace and message space for this encryption space are {0, 1}n and
the ciphertext space is {0, 1}2n. The algorithms are:

• Enc(k, m)→ c:

– Sample a random value r ←R {0, 1}n. We call this the “nonce.”

– Compute a one-time key k ← F(k, r) using the pseudorandom
function.

– Use this key to compute the ciphertext using the one-time pad:
output c← (r, k⊕m) ∈ {0, 1}2n.

• Dec(k, c):

– Parse the ciphertext c into (r, c′).

– Compute m← c′ ⊕ F(k, r).
While this encryption scheme is CPA-
secure, it provides no message integrity.
For any string ∆ ∈ {0, 1}n, an attacker
can modify a ciphetext (r, c′) to (r, c′ ⊕
∆). This ciphertexts now decrypts to
the original message XORd with the
attacker-chosen string ∆.

Correctness holds by construction. The security argument goes in
three steps:

6.1600 foundations of computer security 78

• First, we argue that if n is large enough, the probability that the
encryption algorithm ever chooses the same r value twice is negli-
gible. By the Birthday Paradox, after encrypt-

ing T messages, the probability of a
repeated r value is O(T2/2n), which is
negligible in the key length n.

• Second, we argue that as long as the encryption algorithm never
chooses the same r value twice, we can replace the values F(k, r)
with truly random strings. By the security of the pseudorandom
function, the adversary will not notice this change.

• At this point, we can appeal to the security of the one-time pad
scheme to argue that the adversary has no chance of winning the
security game (Definition 8.2.2).

For security to hold, it is crucial that the probability that the en-
cryption algorithm uses the same encryption nonce r twice be negligi-
bly small. If the encryption algorithm ever selects the same random
nonce r twice, the pad F(k, r) will be identical in two ciphertexts. An
attacker can then apply the two-time-pad attack to recover the XOR
of the two messages.

By the Birthday Paradox, if we sample the nonce from a space of
size 2128, we can expect a collision in 128-bit random values once
around 264 have been generated. Therefore, any single encryption-
key must be used for≪ 264 messages. Cryptographic standards
typically limit the number of bytes that users can encrypt with the
same key to prevent these sorts of problems.

8.5 Encrypting longer messages: Counter mode

The CPA-secure encryption scheme of Section 8.4 only allowed
encrypting messages of a fixed length. We now show how to use
counter-mode encryption to extend this scheme to support messages
of arbitrary length. That is, we will construct an encryption scheme
Enc : K× {0, 1}∗ → {0, 1}∗ for messages of any length. In practice, encryption schemes place

some (large) bound on the length of
encrypted messages. For example,
the AES-GCM cipher has a maximum
message limit of just under 64 GiB.

Counter-mode encryption works much as the CPA-secure encryp-
tion scheme we have already seen in Section 8.4, except that we split
the message into blocks and encrypt each block separately.

We will use the function ToString : {0, . . . , 2n − 1} → {0, 1}n, which
converts an integer in {0, . . . , 2n − 1} to an n-bit string in the natural
way.

The encryption scheme uses a pseudorandom function F : K ×
{0, 1}n → {0, 1}n. The secret encryption key is a key k ∈ K for the
pseudorandom function. To encrypt a message, we choose a fresh
random value r ←R {0, . . . , 2n − 1} and XOR the ith block of the
message with the value F(k,ToString(r + i mod 2n)).

• Enc(k, m) :

6.1600 foundations of computer security 79

– Split the message m into blocks of n bits: (m1, m2, m3, . . . , mℓ).
The last message block mℓ may be shorter than n bits.

– Sample a random nonce r ←R {0, . . . , 2n − 1}. The nonce is sometimes called an
“initialization vector” or “IV.”

– For i = 1, . . . , ℓ: Compute ci ← mi ⊕ F(k,ToString(r + i mod 2n)).
(If the last message block mℓ is less than n bits long, truncate the
last ciphertext block cℓ to the length of mℓ.)

– Output the ciphertext c =
(
r, c1, . . . , cℓ).

• Dec(k, c) :

– Parse the ciphertext c as (r, c1, . . . , cℓ), where all values but the
last are exactly n bits long.

– For i = 1, . . . , ℓ: Compute mi ← ci ⊕ F(k,ToString(r + i mod 2n)).
(Truncate mℓ to the length of cℓ.)

– Output the message m = (m1∥ . . . ∥mℓ).

As long as the space of random values r is large enough to ensure
that the encryption routine never evaluates the pseudorandom
function F(k, ·) on the same input twice, this scheme will be CPA
secure.

You may notice that this encryption scheme reveals the length
of the encrypted message to the attacker! This indeed is a potential
risk, but in some sense it is required: if we were to hide the length
of the message, we would need to set some maximum message
length and pad it up to this length. If we did this, encrypting a single
word would necessarily result in a ciphertext equal in length to the
ciphertext of encrypting a movie! This would greatly decrease the
practicality of our encryption scheme. For applications where hiding
the length is especially important, the messages can be padded to
ensure they are all the same length before they are passed to the
encryption scheme.

9
Authenticated Encryption

We have just constructed an encryption scheme with weak (CPA) se-
curity: one that provided security given that the adversary could see
encryptions of messages of her choice. The “gold standard” security
notion for encryption schemes allows the attacker to receive both
encryptions of messages of its choice and decryptions of ciphertexts
of its choice. Our security notion then says that even an attacker with
this power should not be able to distinguish which of two chosen
plaintext message a given ciphertexts encrypts. This new and strong
notion of security for encryption schemes is called security against
adaoptive chosen-ciphertext attacks.

Motivation: Chosen-ciphertext security It is not clear why chosen-
ciphertext security is the right security notion to consider. In real-
life applications, why would we ever allow an attacker to obtain
decryptions of ciphertexts of its choosing? It turns out that, in many
settings, attackers can indeed trick honest parties into decrypting
adversarially ciphertexts and revealing their contents.

As a simple example, imagine a server that receives encrypted
requests from the network, decrypts them, and either:

• returns an error if the decrypted request is malformed, or

• silently processes the request otherwise.

In this case, an attacker can send ciphertexts to the server and learn
information about their decryptions by noticing whether or not the
server returned an error message. If the server returns an error when the

decrypted message is illformed, we
often call it a padding oracle. Many many
real-world protocols using non-chosen-
ciphertext-secure encryption schemes
fall victim to this sort of attack.

CPA-secure encryption schemes provide no security guarantees in
this setting. Even if the server leaks a single bit to the attacker about
the decrypted value (such as whether the decrypted ciphertext is a
well-formed request or not), the attacker could potentially learn the
entire secret key!

As a concrete application-level example, consider what could
happen if SSH (the secure shell protocol) used the counter-mode

6.1600 foundations of computer security 82

encryption scheme, as described in the previous lecture, without
any authentication. A user might send the command echo secret >

secret-file to write their secret string, secret, to their own private
file secret-file. The encryption of this command, sent over the
network, would be the XOR of the command and the PRF-generated
pseudorandom bytes. Suppose that the adversary knows the user
is running this command, but doesn’t know the contents of the 6-
byte secret string. Consider what happens if the adversary XORs the
encrypted message with the hexadecimal bytes 00 00 00 00 00 00

00 00 00 00 00 00 00 00 5c 11 0e 02 4a 04 58 04 05 05 06. The
leading zeroes mean that the first part of the command, echo secret

> , will remain unchanged. When the server decrypts the latter part
of the command (originally secret-file), however, it will obtain
the XOR of secret-file and the bytes that the adversary XOR’ed in,
which happens to turn into the string /tmp/public. As a result, if the
server now runs this command, the user’s secret data will be written
to a file /tmp/public, which might be available to an adversary that
also has an account on that same server and can look at files in /tmp.

Chosen-ciphertext security guarantees that such attacks are ineffec-
tive.

9.1 Defining Authenticated Encryption

Authenticated-encryption schemes simultaneously provide message
integrity (as a MAC does) and confidentiality (as CPA-secure encryp-
tion does). Additionally, authenticated-encryption schemes remain
secure even when an attacker can see encryptions and decrypts of
ciphertexts of her choice. Perhaps unsurprisingly, the standard way
to construct an authenticated-encryption scheme is to combine a
CPA-secure encryption scheme with a MAC in a careful way.

We now formally define our strong security notion: indistinguisha-
bility under chosen ciphertext attacks, also known as IND-CCA2 security
or CCA security.

Definition 9.1.1 (CCA security for encryption (strong)). An encryption
scheme is secure against adaptive chosen-ciphertext attacks if every
efficient adversary wins the following game with probability at most
1
2 + “negligible”:

• The challenger samples b←R {0, 1} and k←R K.
• The adversary can make either of the following queries to the

challenger repeatedly:

– Chosen-plaintext queries

* The adversary sends the challenger a message mi ∈ M

6.1600 foundations of computer security 83

* The challenger replies with cmi ← Enc(k, mi).

– Chosen-ciphertext queries

* The adversary sends the challenger a ciphertext cj /∈ {cm0 , . . . , cmi}
* The challenger replies with mcj ← Dec(k, cj).

• The adversary then sends two messages (m∗0 , m∗1) ∈ M2 to the
challenger, where

∣∣m∗0∣∣ = ∣∣m∗1∣∣.
• The challenger replies with c∗ ← Enc(k, m∗b).
• The adversary can make more chosen-plaintext queries and more

chosen-ciphertext queries. (The adversary may not make a chosen-
ciphertext query on the challenge ciphertext c∗.)

• The adversary outputs a value b′ ∈ {0, 1}.
• The adversary wins if b = b′.

9.1.1 Encrypt then MAC

We typically achieve CCA security using the “encrypt-then-MAC”
construction:

• First, encrypt the message using a CPA-secure encryption scheme
on key kEnc.

• Next, MAC the ciphertext using a secure MAC scheme and an
independent key kMAC. As we discuss below, it is possible to

derive both keys kEnc and kMAC from
a single key k using a pseudorandom
function.

• Output the ciphertext and the MAC tag.

The decryption routine first checks the MAC tag, then decrypts the
ciphertext.

Using independent keys (kEnc, kMAC) is important in encrypt-then-
MAC, as in many other cryptographic constructions. For example,
a CPA-secure encryption scheme using n-bit keys can reveal the
low order n/2 bits of its secret key in the ciphertext. And a secure
MAC scheme using n-bit keys can reveal the high-order n/2 bits of
its secret key in each MAC tag. Used independently, the encryption
scheme and the MAC scheme are both secure. Used together with
the same key k, the attacker learns all n bits of the key n and can
break both primitives!

So, in general, you should always use independent keys for dif-
ferent primitives. To reduce the amount of keying material parties
need to store, it is actually sufficient to store a single secret key k for
a pseudorandom function F and derive all subsequent keys from the
pseudorandom strings F(k, 0), F(k, 1),

Theorem 9.1.2 (Informal). The Encrypt-then-MAC construction yields a
CCA-secure encryption scheme, provided that: the underlying encryption
scheme is CPA-secure and the underlying MAC scheme is secure (existen-
tially unforgeable against adaptive chosen message attacks).

6.1600 foundations of computer security 84

Reminder: You should never need to
implement authenticated-encryption
schemes yourself. Instead use an off-
the-shelf implementation that does
the hard work for you. AES-GCM is
one popular and widely implemented
authenticated encryption scheme

Warning! Only use encrypt-then-MAC There are a number of
bad ways to combine encryption and MACs to attempt to build
authenticated-encryption schemes. MAC-then-encrypt is one way.
Encrypt-and-MAC (i.e., MAC the message instead of the ciphertext)
is another. Neither of these constructions is necessarily CCA-secure
when used with a CPA-secure encryption scheme and a secure MAC
scheme. So the only flavor of authenticated encryption you should
use is encrypt-then-MAC.

9.2 AES-GCM (Galois Counter Mode)

One of the most widely used authenticated-encryption constructions
is AES-GCM. It follows the encrypt-then-MAC paradigm. It uses
AES as a pseudorandom function for counter-mode encryption
(Section 8.5). It uses a Carter-Wegman-style MAC (Section 4.3.2) as
the MAC scheme.

There are a few optimizations that AES-GCM uses beyond what
we have described:

• AES-GCM derives both the encryption and MAC keys from a
single short key using a pseudorandom function.

• AES-GCM implements a fast form of the Carter-Wegman MAC
that does not need arithmetic modulo a big prime p, as the scheme
described in Section 4.3.2 does. Instead, of defining the MAC us-
ing Zp (integers mod a 128-bit prime p), GCM works with 128-bit
strings. The GCM mode of operation replaces addition modulo
p with XOR of 128-bit strings and it replaces multiplication mod-
ulo p with a somewhat complicated operation on 128-bit strings. If you are interested, to implement

the multiplication operation: think of
both 128-bit strings as polynomials
with 128 coefficients in Z2 = {0, 1}.
Multiply the polynomials, reducing
the coefficients modulo 2. Then reduce
the resulting polynomial modulo some
fixed polynomial of degree-128. Then
interpret the result as a 128-bit string.

(Formally, the scheme works over the field F2128 of order 2128.) This
gives a big performance boost with no loss in security.

10
Key Exchange and Public-key Encryption

So far, we have talked about encryption systems that require the
sender and recipient to share a secret key. In this chapter, we discuss
how the sender and recipient can agree on a shared secret even if
they only ever communicate over an open (insecure) network.

10.1 Key exchange

A key-agreement scheme over keyspace K is defined by efficient
functions (Gen,Derive):

• Gen() → (sk, pk). The Gen algorithm generates a secret key and a
public key for one party. Formally, Gen also takes as input the

security parameter.• Derive(skA, pkB) → k. The Derive algorithm takes as input one
party’s secret key skA and the other party’s public key pkB and
outputs a shared key k ∈ K.

Given this syntax, let us see how two parties can use a key-
agreement scheme (Gen,Derive) to agree on a shared secret:

1. Alice runs (skA, pkA)← Gen() and sends pkA to Bob.
2. Bob runs (skB, pkB)← Gen() and sends pkB to Alice.
3. Alice and Bob both then compute a key k ∈ K as:

• Alice computes k← Derive(skA, pkB).

• Bob computes k← Derive(skB, pkA).

Correctness. Correctness for a key-agreement scheme just says that
the two parties should always agree on the same shared secret:

Definition 10.1.1 (Key Agreement Correctness). We say that a
key-agreement scheme is correct if for all (skA, pkA) ← Gen() and
(skB, pkB)← Gen(), it holds that:

Derive(skA, pkB) = Derive(skB, pkA).

6.1600 foundations of computer security 86

Security. The standard notion of security for a key-agreement
scheme only considers passive attacks: we consider adversaries that
can view the network traffic but cannot modify it. In practice, we
can combine key-agreement schemes with authentication schemes
(e.g., digital signatures) to prevent active attacks by in-network adver-
saries.

Our security definition for key agreement says that even if an
adversary sees both parties’ public keys, it should not be able to
distinguish the shared secret from random. That is, the following
probability distributions Dreal and Drandom should be computation-
ally indistinguishable: When we say that two distributions

are computationally indistinguishable,
we mean that if we give the adversary
a sample from one or the other, it
can guess which sample it got with
probability at most 1/2 + “negligible”.

Dreal :=

(pkA, pkB, k) :

(skA, pkA)←R Gen()

(skB, pkB)←R Gen()

k←R Derive(skA, pkB)

Drandom :=

(pkA, pkB, k) :

(_, pkA)←R Gen()

(_, pkB)←R Gen()

k←R K

10.2 Diffie-Hellman key exchange

We now give a simple and beautiful key-exchange protocol, due to
Diffie and Hellman. So far, we have been able to construct

our cryptographic entities from con-
structs like a PRF, which meant that
we could use “unstructured” algo-
rithms like AES to compute them. We
so far only know how to construct
key-exchange schemes from more struc-
tured problems (e.g., based on number
theory).

The version we will see uses large primes p and q a public parame-
ters, along with a number g ∈ Z∗p, called the “generator.” (Warning:
The parameters p, q, and g must have some particular relation. So
do not attempt to pick these parameters yourself.) Typically, we will
have p ≈ q ≈ 22048.

For a prime p, the notation Z∗p just
denotes the non-zero integers modulo
p. So when we write ab ∈ Z∗p, we mean
a · b mod p.

The keyspace of the Diffie-Hellman scheme is K = Z∗p and the
algorithms are as follows:

• Gen()→ (sk, pk).

– Sample sk←R {1, . . . , q}.
– Set pk← gsk ∈ Z∗p.
– Output (sk, pk).

• Derive(skA, pkB)→ k.

– We have skA ∈ {1, . . . , q} and pkB ∈ Z∗p.
– Output k← (pkB)

skA ∈ Z∗p.

Before we argue correctness and security, let us consider the
computational efficiency of the scheme:

Efficiency. In order for the algorithm to be useful, Alice and Bob
must be able to compute gx ∈ Z∗p efficiently, for x ∈ {1, . . . , q ≈

6.1600 foundations of computer security 87

22048}. However, trying to compute gx where x is 2048 bits long
naively would certainly not be efficient: it would require x ≈ 22048

multiplications! However, we can compute this exponentiation much
more efficiently using the following strategy:

• Compute powers of g. Write ℓ ← ⌈log2 p⌉. Then compute
(g, g2, g4, g8, g16, . . . , g2ℓ), where all of these are in Z∗p. It is pos-

sible to compute g2i
with a single multiplication modulo p as

g2i
= (g2(i−1)

)2 ∈ Z∗p. So this step takes only ℓ = 2048 multiplica-
tions. In many applications, the generator

g is fixed in advance. In this case, the
implementation can precompute and
store these powers of g.

• Compute exponentiation. Write the bits of the exponent as x =

x0 · · · xℓ−1. Then compute:

gx = g∑ℓ−1
i=0 xi2i

=
ℓ−1

∏
i=0

xi(g2i
) ∈ Z∗p

This step again takes only ℓ multiplications.

Correctness. Correctness holds since gxy = gyx ∈ Z∗p for all x, y ∈ Z:

Derive(skA, pkB) = (pkB)
skA = (pkA)

skB = Derive(skB, pkA).

Security. To argue security, we must rely on a new computational
assumption: essentially we just assume that the key-agreement
scheme is secure.

Definition 10.2.1 (Decision Diffie-Hellman (DDH) assumption). The
decision Diffie-Hellman assumption states that, for a suitable choice of
p, q, and g, the following distributions are computationally indistin-
guishable: To make the statement fully formal, we

need to let p, q, and g grow with the
security parameter.Dreal := {(g, gx, gy, gxy) ∈ (Z∗p)

4 : x, y ←R {1, . . . , q}}

Dideal := {(g, gx, gy, gz) ∈ (Z∗p)
4 : x, y, z←R {1, . . . , q}}

In practice, we typically first run Diffie-Hellman key agreement,
have the two parties run the shared secret that they get through a
cryptographic hash function, and then use the hashed value as an
encryption key. If we model the hash function as a random oracle, se-
curity can rely on a slightly weaker assumption—the “computational”
Diffie-Hellman (CDH) assumption. The CDH assumption asserts,
informally, that given (g, gx, gy), it is infeasible to compute gxy. More
formally, we have:

Definition 10.2.2 (Computational Diffie-Hellman (CDH) assumption).
The computational Diffie-Hellman assumption states that, for a suitable
choice of p, q, and g, and for all adversaries A:

Pr[A(g, gx, gy) = gxy : x, y,←R {1, . . . , q}] ≤ “negligible.”

6.1600 foundations of computer security 88

10.3 The discrete-log problem

The DDH assumption (Definition 10.2.1) is no harder than the follow-
ing problem, which asserts that computing x given (g, gx) ∈ (Z∗p)

2 is
computationally infeasible:

Definition 10.3.1 (Discrete-log assumption). The discrete-log assumption
states that, for p, q, and g, and for all efficient adversaries A:

Pr[A(g, gx) = x : x ←R {1, . . . , q}] ≤ “negligible”.

Given an algorithm for the discrete-log problem, we can use it
to solve the DDH problem. Given a DDH challenge (g, gx, gy, gz),
compute the discrete log of gx and test whether gz = (gy)x. For
certain choices of p, q, and g, the best known algorithm for the DDH
problem is to first solve the discrete-log problem in Z∗p.

How hard it to solve the discrete-log problem then?

1. The most basic attack is to enumerate all p possible values of x
and check whether the corresponding gx matches. This will take
time p ≈ 22048.

2. There is a slightly more clever algorithm, called “Baby Step Giant
Step,” that is able to compute x in time

√
p.

3. In Z∗p, a much better attack is the Number Field Sieve. This algo-
rithm is able to compute x in (roughly) time exp((log p)1/3(log log p)2/3)—
sub-exponential time! The existence of this attack is the reason we An attack that runs in time

√
p runs in

time 2
1
2 log p. In contrast, the Number

Field Sieve runs in time roughly 2
3
√

log p.
This is much much much faster than
the
√

p-time algorithms, since the
exponent grows much more slowly.

require p to be 2048 bits long to get 128-bit security.

10.4 Generalizations of Diffie-Hellman

We have described the Diffie-Hellman protocol in terms of Z∗p—
multiplication of integers modulo p. In particular, the protocol uses
a set of elements (here, Z∗p) and a binary operation on elements (here,
multiplication modulo p). There is a natural generalization of the
Diffie-Hellman protocol that works with other sets of elements and
binary operations that operate on them. More precisely, we can define Diffie-

Hellman key exchange with respect
to any finite cyclic group—a concept
from abstract algebra. A cyclic group
just consists of a set of elements and
a binary operation on elements. The set
and operation need to satisfy certain
mathematical properties—associativity,
etc.

Given a group G, we can then define
a discrete-log assumption on G and
whenever discrete-log is hard on G, we
can use G to construct cryptosystems.

The most widely used version of the Diffie-Hellman protocol
today uses elliptic-curve groups. The set of elements in an elliptic-
curve group is a set of points (x, y) ∈ Z2 in two-dimensional space,
where 0 ≤ x, y ≤ p for some prime p ≈ 2256. The binary operation
on elements is some geometric operation on two points that yields
a third point. Even though the underlying objects are now points
instead of integers modulo p, the Diffie-Hellman protocol looks
exactly the same in this setting.

6.1600 foundations of computer security 89

The appeal of elliptic-curve cryptosystems is that the best known
discrete-log algorithm on certain elliptic-curve groups is Baby Step
Giant Step, which runs in

√
p time. So, we can use elliptic-curve

groups of size 2256 and the Diffie-Hellman public keys take only
≈ 256 bits to represent. In contrast, when working in Z∗p, we need
to work modulo a prime p ≈ 22048 to defeat the Number Field Sieve
attack, so Diffie-Hellman public keys in this setting take ≈ 2048 bits
to represent.

10.5 Defining Public-Key Encryption

The definition for a public-key encryption scheme will be similar to
the definitions we saw for symmetric-key encryption:

Definition 10.5.1 (Public-Key Encryption Scheme). A public-key
encryption scheme over message spaceM consists of three efficient
algorithms (Gen,Enc,Dec):
• Gen()→ (sk, pk): Generates a keypair with secret key sk and public

key pk.
• Enc(pk, m) → c: Uses public key pk to encrypts a message m ∈ M

to a ciphertext c.
• Dec(sk, c) → m: Uses secret key sk to decrypt ciphertext c into

message m ∈ M.

Definition 10.5.2 (Public-Key Encryption - Correctness). For all
keypairs (sk, pk)← Gen() and for all messages m ∈ M, it holds that

Dec(sk,Enc(pk, m)) = m.
The literature sometimes calls security
against chosen-plaintext attacks (“CPA
security”) semantic security.

Definition 10.5.3 (Public-Key Encryption - Security against cho-
sen-plaintext attacks (Weak)). A public-key encryption scheme
(Gen,Enc,Dec) is secure against chosen-plaintext attacks if all efficient
adversaries A win the following game with probability ≤ 1

2 + negl:
• The challenger generates (sk, pk) ← Gen() and b ←R {0, 1} and

sends the public key pk to A.
• The adversary A sends m0, m1 ∈ M to the challenger, where
|m0| = |m1|.

• The challenger responds with Enc(pk, mb)

• The adversary outputs b′ and wins if b′ = b.

Note that since this is a public-key encryption scheme, the adver-
sary can use the public key to generate encryptions of any message
of their choice. As in the secret-key setting, here it is crucial that the
encryption algorithm be randomized—otherwise two encryptions
of the same message are identical and the attacker can break CPA
security.

6.1600 foundations of computer security 90

For symmetric-key encryption, we also defined a stronger notion
of security that we called security against chosen-ciphertext attacks
(CCA security). We can extend this definition of CCA security to the
public-key setting.

This security definition asserts that the attacker should not be able
to distinguish the encryption c∗ of two messages of its choice, even if
the attacker can obtain decryptions of any ciphertext except c∗. This
is a very strong notion of security (since the security definition gives
the attacker a lot of power) and it is the notion of security that we
typically demand in practice.

Definition 10.5.4 (Public-Key Encryption - Security against cho-
sen-ciphertext attacks (Strong)). A public-key encryption scheme
(Gen,Enc,Dec) is secure against chosen-ciphertext attacks if all efficient
adversaries A win the following game with probability ≤ 1

2 + negl:
• The challenger generates (sk, pk) ← Gen() and b ←R {0, 1} and

sends the public key pk to the adversary A.
• The adversary may make polynomially many decryption queries:

– The adversary A sends ciphertext c to the challenger.
– The challenger responds with m← Dec(sk, c)

• At some point, the adversary sends a pair of messages m0, m1 ∈ M
to the challenger, where |m0| = |m1|.

• The challenger returns c∗ ← Enc(pk, mb).
• The adversary can continue to make decryption queries, provided

that it never asks the challenger to decrypt the ciphertext c∗.
• The adversary outputs b′ and wins if b′ = b.

10.6 ElGamal Encryption Scheme

In public-key encryption, we want a sender to be able to encrypt
a message to a recipient. The goal of public-key encryption is to
perform encryption without a shared secret key.

ElGamal’s encryption scheme essentially uses Diffie-Hellman
key exchange to allow the sender and recipient to agree on a shared
secret key k, and then has the sender encrypt her message with a
symmetric-key cryptosystem under key k. ElGamal’s scheme was not the first

public-key encryption scheme. The
first scheme, RSA, was much more
complicated despite Diffie-Hellman
already having been published.

Definition 10.6.1 (Hashed ElGamal Encryption). Let p, q, and g be
integers of the sort we use for Diffie-Hellman key exchange (Sec-
tion 10.2). In particular, p ≈ q ≈ 22048 and g ∈ Z∗p. In practice, we typically use elliptic-

curve groups to instantiate ElGamal
encryption, instead of Z∗p. But the
general principle is exactly the same.

Let H : Z∗p → {0, 1}∗ be a hash function (modelled as a random
oracle). Let (Enc′,Dec′) be a symmetric-key authenticated-encryption
scheme. Then define:
• Gen()→ (sk, pk):

– Choose a← {1, . . . , q}.

6.1600 foundations of computer security 91

– Compute A← ga ∈ Z∗p.
– Output (sk, pk)← (a, A).

• Enc(pk, m)→ c:

– Choose r ← {1, . . . , q}.
– Compute R← gr ∈ Z∗p.
– Compute k← H(pkr ∈ Z∗p).
– Output c← (R,Enc′(k, m).

• Dec(sk, c)→ m:

– Parse (R, c′)← c.
– Compute k← H(Ra ∈ Z∗p).
– Output m← Dec′(k, c′).

10.6.1 Performance

The performance of this scheme is limited by the exponentiations—
the symmetric encryption scheme is quite fast (gigabytes per sec-
ond), but a single exponentiation can take a millisecond on modern
processors. For encryption, this scheme requires two exponentia-
tions (gr and pkr). Decryption requires one exponentiation (Rsk). To
speed up the encryption routine, we can precompute powers of g:
g2, g4, g8, g16, . . . , which saves a factor of two in exponentiations. Hashed ElGamal encryption is one of

the most common public-key encryp-
tion schemes used today.

10.6.2 Security

If we model the hash function H as a random oracle, we can prove
security of ElGamal encryption from (a) the computational Diffie-
Hellman assumption (Definition 10.2.2) and (b) the CCA security of
the underlying authenticated-encryption scheme (Enc′,Dec′).

11
Encryption in Practice

So far, we have established several constructions that allow us to
hide the contents of transmissions: we created chosen-plaintext- and
chosen-ciphertext-secure encryption schemes that worked with and
without a shared key. We will now discuss a few practical appli-
cations of transport encryption, and why it is often difficult to get
right.

11.1 File Encryption

Perhaps the most straightforward use of encryption is file encryption.

Example: WhatsApp Encrypted Backup. WhatsApp allows the app’s
users to back up their messages and contacts to the cloud. This way,
a user can recover her messages if she loses or breaks her phone.
To hide the user’s data from WhatsApp’s cloud servers, WhatsApp
uses encrypted backup. To achieve this, the user’s device generates
a 128-bit AES key k at the time of backup and encrypt the message
data (photos, messages, etc.) using AES-GCM(k, ·) before sending the
ciphertext to the server. In order to allow you to restore your backup
on a new phone, the app allows you to export 64 decimal digits that
encode the AES key used. When restoring your backup, you will
enter these digits and your phone will fetch the ciphertext from the
server and use these digits to reconstruct the key and decrypt your
messages. See this document for details on

how WhatsApp encrypts backups.
(The document also describes a more
complicated backup scheme that uses
passwords for encryption.)

This is a fairly simple application of file security. However, file
encryption can be much more tricky: many applications require or
desire features beyond simple encryption and decryption.

11.1.1 Case Study: PDF v1.5 Encryption

One instance of this desire for extra features that ended up going
wrong was a previous version of the PDF standard, PDF v1.5.1 This 1 Jens Müller et al. “Practical decryption

exfiltration: Breaking pdf encryption”.
In: ACM CCS. 2019.

https://scontent.fphl1-1.fna.fbcdn.net/v/t39.8562-6/241394876_546674233234181_8907137889500301879_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=ANW9FNYPigIAX93N8Oj&_nc_ht=scontent.fphl1-1.fna&oh=00_AT9IVosU4uWqddd5woEO4eUWw3mbd76IgvwjcqDApb3p9A&oe=63565D66

6.1600 foundations of computer security 94

standard provided several features:
1. It is possible to password-encrypt some or all of the document.

(The encryption scheme does not matter, but think of it as a
secure authenticated-encryption scheme.) For example, a PDF
could have an unencrypted title page and have the rest of the
pages be encrypted.

2. A PDF document can contain a form that the PDF reader
submits to a server via HTTP.

3. A form in a PDF document can reference other parts of a
document.

4. The PDF reader may submit a form when an event happens:
when the PDF is opened, closed, decrypted, etc.
Each of these features individually seems innocuous. However,

when combined, there is a clever attack that allows an attacker to
learn the contents of the encrypted portion of a PDF.

The attack works against a PDF document with an unecrypted
(public) title page and an encrypted (secret) body. We assume that the
attacker can modify the PDF file on its way to the victim.

To mount the attacker, the attacker intercepts the PDF on the way
to the victim and replaces the title page with an “evil” title page. The
evil title page:

• contains an invisible PDF form,
• reads the contents of the decrypted pages into a PDF form ele-

ment, on the event that decryption of the PDF body succeeds, and
then

• submits the form via HTTP to evil.com

So when the victim recipient enters her password into the PDF
reader to decrypt the document, the evil title page is exfiltrates the
decrypted content to evil.com via a PDF form.

What went wrong? The core issue here was that the unencrypted
contents of the document were not authenticated. That is, an attacker
could modify the unencrypted pages of the document without detec-
tion. A better design would have been to either use a MAC over all
pages of the document or to use a primitive called “Authenticated
Encryption with Associated Data” to authenticate the encrypted data
together with the unencrypted data.

One downside of MACing the entire document is that, before
rendering even a single page of the PDF, the reader would have to
compute a MAC over the entire PDF. If the PDF consists of many
thousands of pages, this could be expensive. Using a more sophis-
ticated cryptographic construction: per-page MACs, plus MACs on
the document metadata, etc., we might be able to construct a scheme

6.1600 foundations of computer security 95

that protects document integrity while allowing partial document
rendering. But the design of such a scheme would have to carefully
defend document integrity against the sort of attacks we describe
here.

11.2 Stream Encryption: Transport Layer Security (TLS)

The standard Internet data transfer protocols—TCP and UDP—
provide no integrity or confidentiality whatsoever. To protect the
data that we send over the network, we use the transport-layer security
(TLS) protocol. The TLS protocol runs on top of TCP and aims to
provide an encrypted “tunnel” between a client and server. HTTPS is simply HTTP run over TLS.

While designing a stream-encryption protocol may seem straight-
forward at first glance, the task is much more subtle than it would
seem. However, as is often the case in security, features and practical
requirements make the situation much more complex.

11.2.1 Downgrade Attack

We now give one example of a downgrade attack—the sort of subtle
security issue that can arise in protocol design.

The current version of TLS is TLS 1.3. An older version of the TLS
standard, called SSLv3, is vulnerable to devastating attacks that allow
an attacker to recover the plaintext traffic. However, for backwards
compatibility, many TLS clients and servers still supported SSLv3

until quite recently.
When a TLS client connects to a TLS server, the two parties first ex-

change some messages to decide which version of the TLS protocol to
use. In particular, the client will try to connect to the server using the
latest version of TLS it supports. The server will respond back with
either a confirmation (if the server supports the client’s proposed
TLS version) or with garbage (if not). If garbage, the client will try to
connect to the server with an older version of TLS.

An important point is that none of these negotiation messages are
authenticated—the client and server cannot start using authentication
(MACs, signatures, etc.) until they agree on which version of TLS
to use! So, an active in-network attacker can simply replace all of
the server responses in this protocol-negotiation phase with garbage
until the client downgrades all the way to SSLv3. Once the client and
server agree to use SSLv3, believing that this is their best available
option, the attacker can then monitor and decrypt their traffic using
known attacks on SSLv3.

The best defense against this attack is for both parties to disable
support for SSLv3 completely.

6.1600 foundations of computer security 96

11.2.2 TLS Structure

TLS consists of two main phases:
1. Handshake: In this phase, the client and server use a key-

exchange protocol to agree on a shared key to use to encrypt
their application-layer traffic. This step uses public-key cryp-
tography, since the client and server initially have no shared
secret.

2. Record protocol: This phase is where the actual application-
layer communication happens. This phases uses the secret key
that the client and server agreed upon in the handshake phase
for authentication and encryption.

11.2.3 TLS Handshake Properties

In our definitions of public-key encryption, we had only two (rela-
tively simple) properties: correctness and security. The TLS hand-
shake, however, has a much more complicated set of goals:
• Correctness: Both parties agree on the same session key at the

conclusion of the handshake.
• Security: adversary “learns nothing” about the secret key that the

parties agree upon at the conclusion of the handshake.
• Peer authentication: At the end of the handshake, each party

believes that they are talking to the other party.
• Downgrade protection: The parties agree on the same version of

TLS that they would agree on absent an in-network attacker.
• Forward secrecy with respect to key compromise: if an attacker

steals the secrets stored on the client or the server, the attacker
cannot decrypt past traffic. To provide forward secrecy, modern

cryptographic protocols use long-term
secrets only for signing—not for en-
cryption. These protocols use ephemeral
(one-time-use) cryptographic keys for
key exchange and encryption. Protocol
participants delete these ephemeral
keys on connection teardown and/or
they rotate these keys often.

This way, if an attacker compromises
a party’s secret key, the attacker can
only sign messages on behalf of that
party; the attacker cannot use the secret
to decrypt past messages.

• Protection against key-compromise impersonation: If an attacker
steals a client’s secret key, the attacker should not be able to imper-
sonate other servers to the client.

• Protection of endpoint identities: The public keys of the two
parties should never flow over the wire in the clear. For example, if
a client is connecting to a website that uses a content-distribution
network, such as Akamai or Cloudflare, an attacker should not be
able to tell which website the client is connecting to—only that it is
hosted on Akamai or Cloudflare.

11.2.4 TLS Handshake

The TLS handshake is very carefully designed to achieve these prop-
erties. A grossly simplified version looks something like the follow-
ing:
1. At the start of the handshake, the TLS client holds the public

6.1600 foundations of computer security 97

pkCA of a certificate authority. The TLS server (for example,
MIT) holds its secret signing key skMIT and a public-key
certificate certMIT binding its public key pkMIT to its domain
mit.edu.

2. Client Hello: The client sends the following values to the
server:
• a random nonce,
• list of supported ciphersuites, and A ciphersuite contains all of the crypto-

graphic parameters needed to perform
key exchange, hashing, authentica-
tion, and encryption. For example,
one possible ciphersuite for TLS 1.2 is
ECDHE-RSA-AES256-GCM-SHA384. This
indicates use of ephemeral elliptic-curve
Diffie-Hellman key exchange (DHE)
with RSA signatures (RSA), 256-bit AES
encryption in GCM mode (AES256-GCM),
and SHA2-384 as the hash function
(SHA384).

• an ephemeral Diffie-Hellman public key. (The client con-
structs this Diffie-Hellman public key using its preferred
ciphersuite. If the server does not support the ciphersuite
the client picked, the client will have to re-run this step
using a different ciphersuite.)

3. Server Hello: The server sends several values to the client,
choosing a ciphersuite to use and completing the Diffie-
Hellman key exchange. That is, the server sends:
• a random nonce,
• a ciphersuite to use,
• and an ephemeral Diffie-Hellman public key

4. Both partices compute a shared session key k using Diffie-
Hellman key agreement on the ephemeral keys they ex-
changed.

5. Under encryption using the keys derived from the session
key k, the server sends the certificate for mit.edu as well as
a signature over all messages sent so far, using its long-term
secret key skMIT. The client then checks that:
• the certificate has been signed by one of the client’s trusted

CAs, and
• the signature from the server matches their own record of

the messages.
6. Finally, the client and server run the TLS Record Protocol to

exchange encrypted and authenticated application data.
This simplified toy version of the TLS handshake does not provide

many of the features that the real TLS handshake provides. But it
should give you a flavor of what the real handshake looks like.

11.3 Properties that TLS does not provide

Authenticated End-of-File TLS does not provide any end-of-file
authentication, or “clean closure.” To explain what this means by
example:

A popular tool to install the toolchain for the trendy systems
programming language Rust is rustup. To use the tool and install
the Rust toolchain, the recommanded method is to run the command

6.1600 foundations of computer security 98

“curl https://sh.rustup.rs | sh.” This downloads a shell script
from the internet over HTTPS and immediately runs it using the shell
sh.

Imagine that the contents of the downloaded script create a tem-
porary directory, copy things into it, install some things, and fi-
nally delete the temporary directory with something like rm -r

/tmp/install. An in-network attacker, who knows the structure of
the rustup install script, could drop all of the packets in the stream
immediately after the characters rm -r /. Eventually, the TLS connec-
tion will timeout, an shell will run the command rm -r /, deleting
the user’s entire file system.

To protect against this, script writers try to design their scripts
such that if the stream is cut off in the middle of a download, nothing
happens. For example, the install script might consist of a single
function definition that is called at the very end of the function.

Plaintext Length Obfuscation As we have discussed, encryption
reveals exactly the length of the plaintext. If there is data that is not
encrypted that is then included inside the encrypted data as well, this
can cause a vulnerability—see the CRIME attack.

12
Open Questions in Encryption

So far, we have established what may seem like a comprehensive
set of tools to transmit data over the network: we have schemes
for verifying the integrity of data and for hiding the contents of a
transmission from an adversary, both with and without a shared key.

Transport-layer security (TLS) effectively builds and “encrypted
pipe” between a client and a server. Through the encrypted pipe that
TLS provides, we can run any of our favorite TCP-based protocols—
HTTP, SMTP, POP, IMAP, etc.—and can thus hide our data from
an in-network attacker. And yet, the security guarantees that TLS
provides fall short of the strongest possible security notions we could
desire.

If we were to imagine the best possible security we could ask for
regarding network traffic, it might look (imprecisely) something like
the following:

An attacker who controls many parties (clients and servers) as well as
the network should “learn nothing” about who the client is talking to
and what she is saying.

Unfortunately, the protocols we have for secure communication
today fall far short of this goal. In this section, we describe some
of the shortcomings of today’s transport-security tools and some
imperfect solutions.

12.1 Problem: Encryption does not hide
the source and destination of a packet

In order to send IP packets over the internet, the Internet’s routing
system relies on routers in the network knowing the source and desti-
nation IP addresses of each packet: these are included, unencrypted,
in the packet header. (In some ways, the “pipe” analogy fits here:

6.1600 foundations of computer security 100

anyone can see where the pipe starts and where it ends.)

Solution Attempt: Tor The Tor system aims to allow a client to con-
nect to a server over the Internet while hiding—from certain types of
adversaries—which server the client is connecting to. For example, a
Tor client should be able to browse the web without anyone learning
which websites the client is visiting.

Tor’s strategy is to bounce traffic around the Internet and hope
that no real-world attacker can gather enough information to figure
out which client is communicate with which server. Tor provides no
precise security guarantees, and there are scores of research papers
demonstrating various weaknesses in Tor’s security plan. At the
same time, Tor is publicly available, is well supported, is widely used,
and seems to provide some meaningful privacy benefits in practice. It is difficult to evaluate the security

of a tool like Tor, since real-world
attackers will not necessarily reveal
that they can break the tool’s security
guarantees. So using a tool like Tor
requires taking a leap of faith.

Tor works by nesting several of these encrypted pipes: when
opening a connection, the Tor client will first select three relays from
the Tor network (A, B, C). The Tor client will then:

1. Open an encrypted tunnel to the first relay A (the “guard”).

2. Through that tunnel, open an encrypted tunnel to the second
relay B.

3. Through that tunnel-inside-a-tunnel, open an encrypted tunnel to
the third relay C (the “exit”).

The client will then send its application-layer traffic through this
tunnel-inside-a-tunnel-inside-a-tunnel. So each byte of application
data will be encrypted first for relay C, then for relay B, then for
relay A. When the client sends this ciphertext over the circuit from
relay A to B to C to the real destination, relay A will first strip off its
layer of encryption then forward the inner packet to relay B. Relay B
will do the same, stripping off a layer of encryption and forwarding
the packet to relay C. Finally, relay C will strip off the last layer of
encryption and be left with a normal IP packet that it can then send
to the destination server. As the response makes it back through the
network, each relay node will add a layer of encryption. The end
result of this is that no single relay can see the source and destination
IP addresses.

However, the security that Tor provides is imperfect. First, if an
attacker controls the guard node (relay A) and the exit node (relay
C), the attacker can correlate the timing of when a packet enters the
guard node and when a packet exits the exit node. Using this timing
an attacker can make a guess at the route traffic is taking through
the Tor network. Even without controlling relay nodes, if an attacker
controls certain key points in the Internet (e.g., Internet exchange

6.1600 foundations of computer security 101

points or undersea fiber links) it may be able to perform this sort of
traffic analysis even without controlling relays.

12.2 Problem: Attacker sees packet sizes and timings

As we discussed, practical encryption schemes necessarily reveal the
length of the ciphertext. In the context of the Internet, this means that
an attacker can learn the size of each TCP packet that a client sends,
along with timing information. (Here the “encrypted pipe” analogy
for TLS breaks down: an attacker can see how much traffic flows
through the encrypted pipe and when.)

Even without seeing the destination and source of packets sent
to and from a client’s machine, an attacker can learn significant
amounts about the client’s traffic. Some examples are:

• Watching a movie: Video traffic has a distinct traffic pattern. By
monitoring, for example, the length of time that a client spends
watching a movie, a network attacker learn with fairly high accu-
racy which movie the client is watching.

• Using ssh: Different commands will have different traffic patterns.
An attacker may be able to infer what type of commands a client is
running by inspecting traffic patterns.

• Downloading a file: The bitlength of a downloaded file can uniquely
identify the file in many cases.

• Browsing the web: sizes leak individual pages.

Example: New York Times The New York Times homepage nytimes.com/

downloads 1.56 MB of content, along with 76 total assets (images,
CSS, JavaScript). The webpage to submit a sensitive tip, nytimes.com/tips,
downloads 41.92 KB and only 15 assets. By counting the number of
HTTPS requests that a client makes over an encrypted connection
to nytimes.com, an attacker can easily distinguish whether a client
is visiting the homepage or the tips page, even if the attacker cannot
decrypt even a single bit of the HTTPS traffic itself.

Attempts at a solution There are several common ways that people
attempt to protect against this sort of traffic analysis. None of these
solutions works well.

1. Random Noise: To try to hide the length of the packets it sends, a
client can add a randomly chosen number of bytes of dummy data
to the end of each packet. The hope is that by randomizing packet

6.1600 foundations of computer security 102

lengths, the client prevents the attacker from performing the traffic
analysis.

Unfortunately, a patient attacker can use averaging to effectively
eliminate the effect of the random noise. That is, if the attacker can
trick the client into sending the same message a few times (as is
often possible), the attacker can average the noised packet lengths
to get a good estimate of the true length.

2. Padding: Another option is to just pad every packet (or webpage
or encrypted message, etc.) to match the largest packet that the
client will ever send. For example, whenever the client visits a
page on nytimes.com, the client could download 50MB of page
content and 100 fixed-size assets, even if the true page is tiny.
This is somewhat secure, but incredibly costly and therefore not
practical outside of very specific circumstances.

12.3 A Promising Direction: Metadata Privacy for Messaging

Messaging apps like WhatsApp and iMessage are end-to-end en-
crypted, but still may leak who you are talking to. This problem is
more tractable due to the circumstances of messaging:

• Messages are approximately fixed length.

• Some latency is OK.

• Total daily traffic per user is small.

• Each user talks to few messaging partners.

Because of these constraints, it may be feasible to use techniques
like padding to greatly reduce the amount of data that messaging
metadata reveals and to do so in a way that provides strong formal
guarantees about security. But still, no widely used messaging app
provides any sort of metadata-privacy guarantees.

12.4 Problem: Endpoint Compromise

Say that we have a perfect scheme for transport security—one that
hides all data and metadata. Such a scheme is still not enough to
protect our data if an adversary can compromise the communication
endpoints.

For example, in many applications, a client sends some sensitive
data to a server (e.g., its Google search queries). The server is free to
lose it in a breach, sell it, or turn it over to law enforcement agencies,

6.1600 foundations of computer security 103

etc. Later on, we will discuss how to protect against server compro-
mise using software-engineering techniques. Here, we will give one
example of how cryptography can protect user data even against a
compromised server.

12.4.1 Private Information Retrieval

In many applications, a client must read a record from a database
stored at a server. The client might like to perform such a database
query without the server learning which record it accessed. A concrete application of this is Google

search—in order to give you search
results, Google necessarily learns what
you are searching. With a PIR scheme,
it would be possible for Google to look
up search results without learning what
you are searching for!

In a private information retrieval scheme:

• the server holds a public database of n bits: x1, x2, . . . , xn ∈ {0, 1},
and

• the client holds a secret index i ∈ {1, . . . , n}.

The client and server interact. At the end of the interaction we want
the following properties to hold:

• Correctness: The client outputs xi ∈ {0, 1}.
• Security: The server “learns nothing” about the client’s secret index

i. In particular, we demand that the message that the client sends
to the server is a CPA-secure encryption of its index i.

Naïve private information retrieval. The simple scheme for private in-
formation retrieval is to have the server send all n bits of the database
to the client. When the database is large, as it is for Google search,
this would be an infeasible amount of communication. A surprising
fact is that there are simple private-information-retrieval protocols
that involve much less than n bits of client-server communication.

12.4.2 A non-trivial private-information-retrieval scheme.

To achieve this, we need a new tool called additively homomorphic
encryption.

Additively homomorphic encryption A secret-key additively homo-
morphic encryption scheme is a CPA-secure secret-key encryption
scheme (Enc,Dec) over key space K and message space inM = Zp

with the added property that for all keys k ∈ K and all messages
m, m̂ ∈ M,

Enc(k, m) ⋆ Enc(k, m̂) = Enc(k, m + m̂),

where “⋆” is some fixed binary operation on ciphertexts.
In English: given two encrypted messages m and m̂, encrypted

under an additively homomorphic encryption scheme, anyone can
compute the encryption of m + m̂. Being able to add encrypted

6.1600 foundations of computer security 104

messages also allows multiplying encrypted messages by public
constants, since m + m = 2m and 2m + 2m = 4m and so on. Once we
can add and multiply by constants, and we can compute a matrix-
vector product of an encrypted vector and a public matrix.

It is possible to construct an additively homomorphic encryption
scheme from the DDH assumption, with only a slight tweak to
ElGamal encryption.

PIR Construction We can use additively homomorphic encryption to
construct a private-information-retrieval scheme. To do so, the server
represents its its database (the xi values) as a

√
n×
√

n matrix D. The
client then tells the server which column j it would like by supply-
ing the encryption of a

√
n× 1 vector m with a 1 in the jth location.

The client sends this encryption (using a key only the client knows)
as Enc(k, m). The server computes the matrix product Enc(k, Dm),
which gives the jth column of the matrix, using additively homo-
morphic encryption and returns the response to the client, where the
client can find the bit they are interested in in the column.

This allows a client to retrieve a bit from a server’s database
without the server learning anything about the desired bit, and to
do so at the communication cost of only 2

√
n ciphertext. The server

computation cost is high—the server necessarily touches every bit
of the database—but at least it shows that making private queries is
feasible in theory.

Part III

Platform Security

13
Architecting a secure system

So far, we have been focusing on security for network communica-
tion. We have established many tools to achieve this, from message
authentication codes to public-key encryption.

Ultimately, however, applications need to make use of these tools.
And for our network security tools to provide meaningful security,
the applications themselves must be reasonably secure.

In discussing platform and application security, there are two
classes of problem that we want to defend against.

1. Mistakes of various types.

• Buggy systems: including hardware and software bugs

• User mistakes: phishing, misconfiguration

2. Malicious people or components.

• Malicious components: malware, supply-chain attacks

• Malicious users: what if the adversary gets the admin’s password?

• Attacker gets access to the system: insider attacks, the adversary
guesses credentials,

In computer security, we tend to treat mistakes/bugs and mali-
cious software/components in the same way. We do that because
(1) it’s often difficult to specify what it means for a component to be
“non-maliciously buggy” and (2) an attacker can often leverage what
seems like a benign bug into full-fledged misbehavior.

Thus, a theme that will be present throughout this section is
that we will consider mistakes to be malicious: if we are prepared
to handle malicious components, we will similarly be prepared to
handle our own buggy code. If we are prepared to limit damage of a
malicious user with the admin password, we will also be limiting the
damage that a mistake-making admin can cause.

6.1600 foundations of computer security 108

This multitude of threats makes designing secure applications
quite difficult. To make progress, we will seek to design systems that
limit damage when things go wrong.

When we design for security, we have essentially three goals:

1. Defend against known attacks.

2. Defend against unknown attacks.

3. Limiting damage. In the cryptography part of this course, systems
are either security or insecure. In systems security, things are
much more gray. Attacks we care about often are outside of our
threat model—even when this happens, we’d like to somehow
contain the damage.

13.1 Isolation

One of the most effective strategies to limit damage is to split a sys-
tem into isolated components. If one of these components becomes
compromised, it should not be able to compromise the other compo-
nents. For example, if you run code in one virtual machine, it should
not be able to tamper with data in another virtual machine. When choosing what mechanism to use

to isolate various components, we think
a lot about the performance overhead of
an isolation mechanism. The challenge
of building a good isolation mechanism
is ensuring strong isolation without
slowing down the isolation components
too much (or taking up too much extra
memory).

These components will typically run on top of some host that
enforces isolation. Importantly, this host must be correct! If there
are bugs in the host, malicious code in a component may be able
to exploit a bug to escape its isolation. The success of an isolation
mechanism depends on the correctness and configuration of the host.

Examples Host
Docker Container Operation System (e.g. Linux)

Browser tabs Browser
Language-Level (JavaScript, Wasm) Language Runtime

Process Linux kernel
Virtual machines (VMs) VM Monitor

Physical (“air gap”) Physics

Table 13.1: Some common types
of isolation

In order for these isolated components to be useful, they will need
to be able to talk to each other in some form. For example, a client
component must be able to make requests to a database component,
but we would like to limit the power of the client to do damage. For
this, we would like to achieve controlled sharing.

13.1.1 Controlled Sharing

For an isolation mechanism to be useful, it additionally needs to have
some way to interact with other isolated components. For example,

6.1600 foundations of computer security 109

some JavaScript code isolated in a browser tab still needs some
means by which to make requests over the network.

When a host decide whether to allow a request from a particular
component, it typically needs to do three things with each request: Since all three of these actions start with

the letters “Au,” we sometimes call this
the gold standard for controlled sharing.• Authenticate: Associate the request with some principal. A prin-

cipal could be a user name, an “origin” in the web context (e.g.,
google.com), a program, or some other entity in the system.

• Authorize: Decide whether that principal is allowed to make the
request.

• Audit: Keep track of requests that each principal makes. Auditing
is about limiting damage: often a host will mistakenly allow
requests it shouldn’t; audit logs make it easier to discover such
mistakes and to clean up afterwards.

It is crucial that an isolation mechanism perform these three
checks on every single request—a single hold in the isolation bound-
ary is often enough to completely break any benefits isolation that
would have provided.

13.2 Authentication

Since we already had an entire module on authentication using
signatures, MACs, passwords, and so on, we will not discuss authen-
tication further here.

13.3 Authorization Policies

In order to authorize requests, we need some sense of permissions—a
mapping from objects to principals that can access them. We call these
permissions the authorization policy.

Storing policies. We can think of an authorization policy as a gigantic
matrix with one row per object and one column per principal. For
example, in a file system, we could have one row per file, and one
column per user in the system. The entry in column i and row j lists
the actions that user i can perform on file j: read, write, execute, etc.
A common way of storing this gigantic matrix, for example in AFS, is
via an access control list for each object.

Setting policies. There are many approaches to setting authorization
policies. As always in computer systems, there is no one perfect
solution:

6.1600 foundations of computer security 110

• Discretionary access control: “Owner” of each object sets the
policy. This approach is useful in file systems—each file has an
owner and the owner can determine who has access to the file. A
problem is that if an attacker hijacks the owner’s account (or just
one application that the owner runs), the attacker can tamper with
the policy for all of the user’s files. In addition, it may be difficult
for non-expert users to set policies.

• Mandatory access control: Administrator sets policy. This ap-
proach often is useful in a large organization, when administrators
have opinions about which user should have access to which files
or systems. A classic example of this is for systems that handle
classified data in government systems. Normal users of the system
cannot give unprivileged users access to a classified files.

One limitation of this approach is that it is very coarse grained:
administrators may not know exactly who should have access to
what.

Systems in practice often use some combination of both of these
strategies. Role-based access control tries to hit some

midpoint between discretionary and
mandatory access control. In these
systems, there is a centrally defined set
of “roles.” In a university, these could
be “Students,” “Faculty,” and “Staff.”
The security administrator assigns users
to roles. Then application developers
determine which roles have access to
the application.

Common issues are:

• It is difficult to keep policies up to date as the set of users evolves.
Expiring permissions is one strategy.

• Users will complain if they do not have enough permissions, but
they will never complain if they have too many permissions. As a
result, users often end up with more access than they need from a
security standpoint.

13.4 Auditing

We have relatively little to say about this. The most important thing
to remember about auditing is that a system should store the audit
logs in a container that is separate from the container holding appli-
cation logic. That is important because if the attacker compromises
the application, it should be difficult for the attacker to compromise
the logs as well.

13.5 Delegation and Chained Requests

Users often interact with systems indirectly. For example, when
accessing Gmail, a user’s browser first sends a request to the Gmail
server asking for new messages. The Gmail server then sends a
request to the database to fetch the message data.

6.1600 foundations of computer security 111

For the first request, it is fairly clear that the principal should
be Alice: the request is coming from Alice’s browser, and therefore
should have been initiated by Alice directly. Alice will send some
credential to the server, and the server can use this credential to
verify that it is really Alice on the other end. For the second request,
however, it is not as clear who the request should be from.

One option is to have the request come from Alice. This protects
against compromise of the Gmail server—the adversary cannot see
all user data. Systems like SSH and AFS follow a strategy like this.
Another option is for the principal of this second request to be the
Gmail server itself. This helps with isolation among services access
the same database: if the Google calendar code is buggy and gets
compromised, the first plan would allow an adversary to view Alice’s
gmail data even is the gmail service was perfectly secure. However, it
does not protect other users from a buggy Gmail service.

Compound Principal: “B for A.” To achieve something stronger,
we can create a new type of compound principal that combines a
service or device with a user. For example, this server-to-database
request could carry a principal of “Gmail Server for Alice”. This
provides protection against both gmail server compromise and
against compromise of other services.

However, it is not as clear how to actually implement this. One
option is to continue to have Alice send her credential to the server
directly. However, then the server can totally impersonate Alice and
we gain little protection. What we would really like is for Alice to
give permission to the Gmail server to fetch her emails, but not to do
anything else. This is called delegation.

Delegation with cryptography. In interacting with the Gmail server B,
we may like for Alice (A) to give B permission to authenticate as “B
for A” and to do so for only 60 seconds into the future. To achieve
this, A can sign a message that outlines the permission it would like
to give to B. This signature becomes the proof of authorization. As an
example:

Sign(sk− A, “A delegates to B”, start = now, end = now + 60)

Google indeed uses a strategy like this. They have a global DoS-
resilient HTTP front-end that performs initial authentication. This
frontend is then responsible for generating these scoped delegation
signatures for each operation that the user would like to do and
sending them along to the individual services. These signatures are
then used for all following operations.

6.1600 foundations of computer security 112

Capabilities. We may want more fine-grained access control. For
example, on Android, the Gmail app may like to delegate permission
to a PDF viewer to view an attachment. However, if all the attach-
ments are stored in some common database, we would like to avoid
giving the PDF viewer access to view everything in the database. To
achieve this, Android (and systems more generally) use a plan called
cababilities.

A similar strategy can be seen, for example, in cloud file sharing:
when you share a file in google drive, it generates a long random link
that allows anyone with access to that link to view that file (and no
others). This link itself becomes a capability—it allows anyone that
posesses it to perform some related action.

14
Isolation

In many settings when building systems, it is useful to isolate differ-
ent components of a computer system. For example, cloud providers
such as Amazon Web Services’ EC2 run multiple virtual machines,
your phone runs several apps, and your browser runs many sites
together. If one of these virtual machines (or apps or websites) is
malicious or buggy, these platforms would like to protect the buggy
component from interfering with the execution of other code in the
system. We often refer to separate isolated components as running in
separate isolation domains.

Ideally, we could have each isolation domain run on separate
physical computer. If this were the case, (modulo physical side-
channel attacks) one domain would clearly not be able to touch
another’s state. Unfortunately, the cost of this physical “air gap”
isolation is far too high for most practical applications. Computer systems for high-stakes

applications (e.g., classified government
data) do in fact use this type of “air
gap” isolation.

So, when creating isolation methods, we aim to make it appear as
if each domain is running on a separate computer but to do so all on
the same computer.

14.1 Defining Isolation

In order to define isolation, we will think about two key properties:
integrity and confidentiality.

14.1.1 (Weak) Integrity

One property that we would like an isolation scheme to provide is
integrity: one domain cannot modifying the state of another domain.
To formalize this, let’s consider two domains running on a single
host, an adversary domain A and a victim domain V. We would like
to guarantee that A cannot change the execution of V. We can define
something in terms of the state of each domain, SA and SV . For any
pair of starting states (SA, SV), after running A, we would like the

6.1600 foundations of computer security 114

new pair of states to be (S′A, SV):

(SA, SV)
runA−−−→ (S′A, SV)

14.1.2 (Weak) Confidentiality

We would also like confidentiality: an adversarial domain should not
be able to read a data from any other domain. We can formalize this
by considering two worlds, each with a different victim state. After
running A in each of these worlds, we would like the resulting S′A
to be identical. That is, for all pairs of victim states S1

V , S2
V , running

(SA, S1
V) results in the same adversarial state as running (SA, S2

V):

(SA, S1
V)

runA−−−→ (S′A,−)

(SA, S2
V)

runA−−−→ (S′A,−)

This definition of confidentiality is often called “non-leakage”.

14.1.3 Non-interference: Strong confidentiality and integrity

In our definitions of confidentiality and integrity so far, only the
adversary domain runs. In a real system, both the adversary and
the victim domain will run concurrently. Ideally, we would like to
ensure that our confidentiality and integrity properties hold under
interleaved execution of the adversary and victim.

To achieve this stronger notion of security, we can include an inter-
leaving of A and V in one world—we would like for the resulting S′A
to be identical whether or not V runs.

(SA, SV)
run A,V−−−−−−→

A,V,V,A,A
(S′A,−)

(SA, SV)
run only A−−−−−−→
A,A,...,A

(S′A,−)

This definition is often called non-interference. We can similarly
strengthen our definition of integrity by requiring that S′V is identical
after running V whether or not A is run.

(SA, SV)
run A,V−−−−−−→

A,V,V,A,A
(−, S′V)

(SA, SV)
run only V−−−−−−→
A,A,...,A

(−, S′V)

14.1.4 Non-interference is difficult to achieve

To achieve a non-interference style of isolation, an adversarial process
A must not be able to determine whether there is a victim V process

6.1600 foundations of computer security 115

running alongside it concurrently. The challenge, though, is that
whenever the adversary and victim share limited resources—such as
CPU, RAM, network bandwidth, hard disk space, etc.—it is almost
always possible for the adversary to determine whether there is a
victim process running concurrently. The information leakage across isolation

boundaries as a results of resource
contention is one type of side channel
or covert channel. There is a vast liter-
ature on how to construct and exploit
various types of side channels that
leak information from a victim to an
adversary.

Example: Memory Allocation. A real system will have some bound on
the amount of memory available to it. After this memory is used, the
system will be unable to allocate any additional memory. Consider
a system with 16GB of memory and a victim process that allocates
memory based on the value of some secret:

int secret;

malloc(secret);

An adversary could repeatedly try to allocate memory until the
system tells them they cannot. By keeping track of the amount of
memory they were able to allocate, the adversary can learn the secret:
if the adversary is able to allocate 15GB, the adversary will know that
the secret is 227, as the victim must have allocated 1GB.

Example: Execution Time. Consider another victim that runs some
computation that takes a variable amount of time to finish depending
on the value of a secret. By keeping track of how long the adversary
takes to finish, the adversary can learn how much execution time
the victim running on the same system takes to finish. Using this
information, the adversary may be able to learn information about
the secret. This type of information transfer are often called “timing
channels”, and can be quite tricky to work with.

There are effectively three ways to deal with the fact that non-
interference is generally impossible to achieve with shared limited
resources:

• Strictly partition resources to prevent contention. Each isolation
domain could run on a separate physical machine, or we can
provision the resources on a machine are partitioned in such a
way that there is never contention for resources between isolation
domains.

• Prevent isolation domains from detecting resource contention.
Another (more practical) approach is to restrict the types of pro-
grams that can runs in such a way that prevents the programs
in the system from detecting contention in shared resources. For
example, if all programs in an isolated system are deterministic
functions with no access to the outside world—no system calls, no
networking, etc.—then programs may not be able to detect resource

6.1600 foundations of computer security 116

contention when it exists. In most implementations of isolation
(e.g., virtual machines in a cloud environment), isolation domains
absolutely need access to the outside world, so this approach is
rarely useful.

• Give up on non-interference. Most isolation mechanisms opt for
this solution. Rather than trying to achieve strict non-interference,
we aim for some “good enough” notion of isolation. Linux, for ex-
ample, does not attempt to achieve strict non-interference between
processes running on the same physical machine.

14.2 Implementing Isolation

In principle, implementing isolation in a system involves three main
steps:

1. identify the state for each domain,

2. identify operations that access state, and

3. ensure that state-modifying operations can only read/write the
state within an isolation domain.

The challenge is performance. An isolation mechanism will have
to perform checks to ensure that components in one isolate cannot
influence another. The game in isolation is to provide strong isolation
at the minimum possible cost.

We will start by considering simpler isolation mechanisms and
then look at more sophisticated ones.

14.2.1 Emulation

One simple way to implement isolation is to have an interpreter that
executes isolated programs (e.g., x86 programs). The interpreter
inspects each opcode in the program one at a time, and then imple-
ments the operations on the isolated state that the opcode indicates.
While processing each opcode, the interpreter enforces checks on the
isolated program to ensure that it can only modify its local state.

Some JavaScript engines (“runtimes”) in web browsers use em-
ulation for isolation. The Python interpreter is another example of
emulation-based isolation. The runtime for these languages is de-
signed such that the code can access only memory that belongs to the
domain.

Benefits Emulation can be simple to implement and provides “good
enough” isolation for many applications.

6.1600 foundations of computer security 117

Downsides Emulation can be slow: to execute each logical opcode
in the emulated program, the emulator may have to run a large num-
ber of physical instructions. Emulation can be inflexible: emulated
programs may not be able to take advantage of special-purpose hard-
ware, unless the emulator explicitly grants access to these devices to
emulated programs.

14.2.2 Time Multiplexing

Another effective isolation strategy is to only allow the code from one
isolation domain to run on the hardware at once. When the isolation
mechanism switches from one isolation domain to another, it writes
the state of the hardware (e.g., registers, RAM) to storage, clears the
state of the hardware (e.g., zeros the contents of memory), and loads
the next program to run into the machine.

For example, gaming consoles implement this form of isolation:
one game runs at a time and has almost full control of the hardware
during this time. The state of the running game cannot tamper with
the state of a non-running game.

The security of this isolation scheme requires the isolation mech-
anism to protect the stored state of each isolation domain, and to
somehow protect the code that switches between them.

Benefits Time multiplexing is relatively simple to implement, and it
can give programs in each isolation domain almost full control of the
hardware (e.g., graphics hardware in game consoles)..

Downsides There can be a high cost of switching execution between
between isolation domains. Since the isolation mechanism clears the
state of the hardware during context switches, storing and restoring
the state can be costly.

14.2.3 Translation (Naming)

Translation is another common isolation mechanism in computer
systems. In a system using translation for isolation, an isolated pro-
gram may not access hardware resources (such as memory or files)
directly. Isolated programs can only access resources via pointers
controlled by the isolation mechanism. By construction, each process
in an isolation domain can only name resources inside of its isolated
context.

The canonical example of naming/translation for isolation is
virtual memory. In a system using virtual memory, the isolated do-
mains cannot read/write physical memory directly—they can only
read/write to virtual memory addresses..

6.1600 foundations of computer security 118

To prevent one isolated program from accessing another’s memory,
the isolation mechanism ensures that the valid virtual addresses in
each domain point to a separate portion of physical memory. Modern
CPUs have special support for implementing virtual memory to
make the virtual-address translation as fast as possible.

Other examples of naming/translation isolation in computer sys-
tems are: file descriptors in Linux and virtual LANs in networking.

14.2.4 Example: Isolation in Virtual Machines

When we run several virtual machines on one physical machine,
we want each virtual machine to run as if it had its own physical
CPU, memory, and devices, but we want to run all of these virtual
machines on a single physical machine. For performance, we would
like to run instructions from the VM directly on the host CPU—but
we need to make sure, for example, that the VM does not access
memory belonging to another VM. To achieve isolation and good
performance, systems today use several effective techniques.

Here is how a virtual-machine monitor handles the three questions
that an isolation mechanism must answer:

1. What is the isolation domain’s state? A few important pieces are:

• the contents of memory,

• the values in the CPU registers,

• the data on disk.

2. What operations can a program perform on isolated state?
Virtual-machine monitors need to handle:

• CPU instructions that modify register states ,

• CPU instructions that modify memory, and

• operations to read and write devices.

3. How does the virtual-machine monitor ensure isolation?

• To handle updates to the register state, the monitor uses time
multiplexing: one virtual machine runs on the CPU at a time and
controls the CPU’s registers.

• To handle accesses to memory, the monitor uses naming/transla-
tion via virtual memory.

• To handle device operations, the monitor uses emulation. When
a virtual machine executes instructions that would cause device
I/O, the CPU jumps into some dedicated code in the monitor
that emulates these device operations. This is slow, but since
device I/O is usually costly anyways, the overhead is isolation
is tolerable.

6.1600 foundations of computer security 119

14.2.5 Software interposition

A final isolation technique that we will discuss is software interposition.
Say that an isolated program wants to run the following code:

var a = b[c];

var f =;

f();

When using software isolation, a compiler can insert checks into
this isolated program to make sure that the memory access b[c] does
not access out-of-bounds memory:

if c >= b.size: error;

load b+c -> a (***)

After inserting these checks, the isolated code can run directly on
hardware, since the checks ensure that the isolated code cannot touch
any state outside of its isolated context.

A central challenge of using software interposition is handling
function calls. When calling the function f in the code snippet above,
the hardware might execute an instruction like:

jump *f

which would execute the code at the location stored in memory
location *f.

If an isolated program can set the value in *f to the location (***)

in the snippet above, the isolated program can skip the safety checks
on the memory accesses.

15
Software Trust

The central question of this chapter is:

How do we know whether a system is running the software that we expect it
to be running?

This question comes up both when we are interacting with a machine
in person (e.g., typing a passcode into our phone) or across a network
(e.g., when sending sensitive data to a far-away server). A separate question, which we will

discuss in future chapters is: How do
we ensure that the software itself is
“good” or “bug-free?”Threats to software integrity. There are a number of threats that might

cause a machine to be running unexpected software:
• Malware. An adversary may install bad software onto the laptop,

such as a keylogger.
• User error. A user may inadvertently install malware onto a

machine. A classic way to trick users into in-
stalling malware is to show them a
warning (e.g., on a webpage) that says
“Your computer is infected. Please
download and install this anti-virus
software.”

• Software supply-chain problems. An adversary may inject mal-
ware into a real app’s libraries, by tricking or coercing a developer.

• Malicious updates. An adversary may trick the software update
process, converting a real piece of software into a malicious one.

The software supply chain. There are many steps that take place
between the development of a piece of software and its use:
1. Developers write code. Their code may use many third-party

libraries.
2. Compilers build and package the application.
3. The software vendor distributes binaries over the network.
4. Users download new software.
5. Users download software updates.
6. Users launch applications on their devices.
7. Running applications interact with remote servers running

code.

6.1600 foundations of computer security 122

15.1 Library Imports

15.1.1 Example: Python Imports

In Python, importing a library requires downloading a library using
the pip package manager:

pip install requests

After that a user can import the package into their code like this:

import requests

Behind the scenes, the PyPi service maintains a database that maps
package names (e.g., requests) to a piece of code. When you type
pip install requests, the pip program fetches the code from the
PyPi repository and installs it on your machine.

Benefits Benefits of this approach are:

• The centralized service makes it easy for users to identify pack-
ages.

• It is relatively easily for users to discover and download software
updates.

• Developers do not need to run their own code-distribution service.

Downsides Downsides of this approach are:

• The centralized update service is a single point of failure: if an
attacker is able to change the code in PyPi, it can infect a large
number of machines at once.

• The end user has no idea who actually produced the library code.
The user only is able to specify the package name.

• In Python, the naming scheme is ambiguous: if there is a public
package and a private package both with the name requests, it’s
not clear when a user imports requests, which one the user wants
to import.

15.1.2 Example: Go Library Imports

The Go programming language takes a slightly different approach
to package management. In the Go programming language, a user
imports a library/package by specifying the URL of the package’s Git
repository. For example, an import might look like this:

import "github.com/grpc/grpc-go"

6.1600 foundations of computer security 123

When compiling the code, the developer’s PC will contact the
server at the given URL over HTTPS (verifying the server certificate
via TLS) and download the software bundle. On the other end,
when a library developer wants to update their library, they do so
by interacting with the hosting server via HTTPS and whatever
authentication the server has set up—credentials, maybe two-factor
authentication, etc.

This has some good features: the server name is explicit so there
is no ambiguity about packages and the decentralized nature of spec-
ifying individual URLs avoids the necessity for a central server that
attracts attacks. However, this requires trusting the server hosting the
library to secure the update process and distribute software honestly.

15.1.3 More Explicit Trust: Code Signing

In each of these approaches, if an attacker can cause the user to
download a bad package without compromising the package devel-
oper. In particular, if the attacker can compromise Github, it can
cause Github to distribute malware to end users.

To prevent this attack, a library developer could sign their software
using their private key and include the signature with their soft-
ware package. To verify that a package is authentic, the application
developer’s PC can check that the signature is valid.

Of course, with any signature-based plan the mechanism for pub-
lic key distribution is crucially important. In the software distribution
case, the only reasonable plan is likely a Trust-on-First-Use based one
which accepts the first public key it sees but verifies that future soft-
ware updates use that same key. This protects against an adversary
taking control of, for example, the application’s Github repository af-
ter the end user installs the softare once. However, key management
is hard, so this is not widely used in practice.

15.2 Building Binaries

In order to run software on our computer, it is necessary to convert
the source code (which is, at least in principle, manually auditable)
into a binary that is much more difficult to audit. Since compiling
software is computation-heavy, most application developers typically
compile their software and distribute the binary to their users. If The XCodeGhost attack is an example

of how an attacker can insert a back-
door in a build system and exploit it to
distribute malware.

an attacker compromises the build server (or is able to backdoor the
compiler), then the attacker can cause users to execute bad code, even
if the attacker does not compromise the application developer itself.

6.1600 foundations of computer security 124

Reproducible Builds. One promising approach to the problem of en-
suring that a binary is the faithful compilation of a piece of software
is called “reproducible builds.”

If a build process is reproducible, the function that turns a set
of source-code files into a binary is a deterministic function: if two
different people compile the same set of source-code files, they will
get exactly the same binary—the two will be bit-for-bit identical. This
allows anyone to audit a build: to check that a build server did its
job correctly. In addition, having multiple independent parties build
the same piece of software (and sign the result) can give an end user
some assurance that the build server behaved correctly.

Implementing reproducible builds is not trivial. Traditional com-
pilers introduced many sources of non-determinism—not necessarily
for any particular reason, just for convenience. Creating reproducible
builds requires eliminating all of these sources of non-determinism,
even across multiple versions of the compiler.

As of today, the Go programming language now supports repro-
ducible builds.

15.2.1 Juggling multiple versions of a library

Once a binary exists, the next step of the process is to distribute that
software to user devices. Typically, there are many different versions
of a piece of software around. When a user wants to install a piece of
software, they typically need to specify which version of the software
they want.

For example, in Python a user can specify a version of a package
that they would like to install when they run pip install. If an
attacker compromises the PyPi server, it can serve up any code it
wants to a user asking for a particular version of a library.

In contrast, in the Go programming language, when a users im-
ports a package, the go get software will store a hash of the down-
loaded code in a file called go.sum. If an attacker later compromises This is an example of “trust on first use”

in the context of code installation.the server serving the package (e.g., Github), the go get command
will refuse to install the package unless its code matches the stored
hash value.

15.3 Installing & Updating Software

Once a software developer finishes writing an application, it builds
and distributes it. When a user installs an application—e.g., by down-
loading it from a website or fetching it using a package manager—
how does the user know that it got the authentic version of the
software? As usual in systems design, there are many possible strate-

6.1600 foundations of computer security 125

gies.

Application Developer Signs Package (Android Apps). One possible
option is to have application developers sign the software that they
produce. When application developers distribute their software, they
attach a their signature to it. This way, it does not matter how a user
obtains the software—a user can download an application bundle
from any server and know that it came from the developer who owns
the corresponding secret key.

When a user first installs a piece of software they need to some-
how obtain the software developer’s public key. Public-key distribu-
tion, as always, is messy: trust on first use is a common strategy.

Once the user has the software developer’s public key, the user
can easily verify that future updates to the software came from the
same developer. (To do this, the user can just check signatures on the
updates using the app-developer’s public key.)

An important caveat is that signatures do not guarantee freshness:
once signed, a package is always valid.

Repository Signs Packages. For systems with a central repository,
another plan is for the repository to sign packages. This again allows
the user to fetch the signed packages from untrustworthy sources—
from a content-distribution network, for example.

In addition to signing the packages, the repository typically signs
a timestamped manifest of the latest package versions. This allows
a user to check that they are not only getting the right software but
also that they are getting the most up-to-date software.

Many Linux package managers, such as apt, pacman, and rpm, use
signatures to integrity-protect packages.

Third-Party Validator Signs Packages. Yet another option that does not
require a single central repository is to have a trusted validator sign
packages. This involves sending the source code and package to a
third party, who will then perform some inspection of the package
and, if it deems a package to be worthy, provide some signature over
that package that verifies that the validator thinks the package is
trustworthy.

A number of software platforms use this strategy for protecting bi-
naries. On Android, there is no requirement to install apps from the
Google Play Store, but Google provides a service that inspects pack-
ages and attaches these signatures if the package passes. Similarly,
Windows uses a validation plan for its device drivers.

6.1600 foundations of computer security 126

Binary Transparency. One different plan to help involves an audit log
that keeps track of all published binaries.

This helps prevent in particular targeted attacks—for example, if
some adversary has a specific target in mind and compromised the
distribution of the Linux kernel, they would likely be immediately
noticed if they introduced a backdoor into Linux for the whole world.
However, if they were able to introduce a backdoor and distribute
that backdoored version only to their target, the adversary would be
much more likely to evade detection. If clients check their received
binary against the publicly available one before installing it, this
personalized attacks can be avoided—if the attacker wants to change
the binary for someone, they will need to change it for everyone.

15.4 Booting the System: Secure Boot

In order to actually run an application, we rely on large amounts
of software running on our computer, from the applications them-
selves to the operating system that supports them. If the operating
system itself is compromised, for example, the modified OS could
undermine all of the defenses we just discussed. “Secure Boot” is one
strategy for getting some partial protection against these attacks.

Devices using secure boot have a small amount of read-only
memory (ROM) that contain a small piece of code that runs on boot.
This boot-ROM code has a signature-verification key baked into it.
There is no way to change this key—it is a fixed part of the hardware
Booting then involves several steps:

1. On boot, the CPU will begin running the hardcoded Boot ROM
code, which has a signature-verification key vkROM hardcoded into
it.

2. the Boot ROM will load the code for another layer called the
boot loader. The boot ROM will then verify that the boot loader
code carries a correct signature that verifies under vkROM. If the
signature is valid, the boot ROM code will begin executing the
boot loader. The bootloader has another signature-verification key
(vkbootloader)) baked into it.

3. The boot loader will load the code for the operating system and
verify it using vkbootloader. If the signature is valid, the bootloader
will redirect control to the operating system.

This way, the system can verify that only boot loaders approved
by the hardware manufacturer can run on the machine. These boot
loaders then can verify that only trusted operating systems are
executed.

6.1600 foundations of computer security 127

Many systems use secure boot: iPhone, Android, chromebooks,
game consoles, and UEFI secure boot on PCs.

In some cases (e.g., UEFI secure boot) secure boot is a mechanism
to protect against malware that tampers with the operating-system
code. While the malware may be able to compromise the running
machine, after rebooting the machine, the user has some assurance
that it is running an uncompromised operating system.

In other cases (e.g., game consoles) secure boot is a mechanism to A number of researchers have used
PlayStation 3 consoles for brute-force
password-cracking and cryptanalysis
(e.g., factoring). Game consoles often
have a large number of CPU/GPU
cores, which make them appealing
hardware for applications that benefit
from massive parallelism.

prevent the device owner from installing a non-standard operating
system on the device. Game-console vendors often sell the console
hardware at a loss, and they make their money back by selling game
software. They have a strong incentive then to prevent users from
buying game consoles and using them for non-game purposes.

15.5 Secure attention key

When to approach a terminal and type your bank password into it,
how do you know that you are typing the password into the banking
app or into some other app (e.g., the flashlight app) on the machine?

A traditional approach to address this problem is a secure attention
key: there is a special button or combination of buttons that trap into
the operating-system kernel code—interrupting whatever application
that may be running.

Windows workstations, for example, required users to type the
keyboard combination CTRL-ALT-DEL to bring up a login prompt.
If a user entered this combination while an app was running, the
operating system would interrupt the application and open the
legitimate login screen.

Pressing the “Home” button on many smartphones has the same
effect.

16
Hardware Security

So far while discussing platform security, we have considered only
our software. However, software must run on some hardware, and
the security of this hardware is similarly vital—if an attacker can
undermine the security of our hardware, it does not matter how
strong our software security is. Luckily, hardware is typically much
more difficult to attack than software, but powerful attacks are still
possible.

As a running example for this chapter, consider the example of a
certificate authority that signs certificates given that some policy is
met. An equivalent example is a cryptocur-

rency wallet—transactions in the
cryptocurrency are authorized by a
signature over a transaction message.

This server will accept requests and respond with a signature
over that request if some policy is met. For example, an MIT CA
might enforce a policy like “I will sign only certificates for *.mit.edu
domains”. For this CA server, we can achieve some nice security
properties:

• We can prove the security of the signature scheme used under
concrete assumptions such as the hardness of discrete log.

• We can verify that the cryptography implementation faithfully
implements the signature algorithm on some ideal hardware
model.

In order to actually be used, however, we must first buy a computer,
load the code onto it, and run it (likely on a machine running other
software). This process is outside of the nice security properties
with achieved about our CA program. In cryptography and in soft-
ware, we are able to develop clean characterizations of the power of
the attacker. In cryptography, we assume that our adversaries are
bounded by probabilistic polynomial time. In software, we can model
our attacker as choosing arbitrary inputs to our software and accu-
rately capture an attacker’s power. Once we consider the hardware,
however, it becomes much more difficult to meaningfully define the
attacker’s power.

6.1600 foundations of computer security 130

When we consider the real hardware that the system is running on,
there are many attacks that we must consider.

16.1 Hardware Bug

Much of what we have discussed so far has been cryptography
schemes that rely on trusted parties knowing some randomness that
the adversary does not know. We have assumed that we have some
source of “true” randomness to use, for example, as a seed for a PRF.
When actually implementing cryptographic algorithms in a computer,
we need to actually materialize this “true” randomness. However, it
is not clear where this randomness should come from: computers
are designed specifically to behave as they are instructed by the
programs they run. Common solutions are to measure statistics about
the environment that should be hard for an adversary to predict. For
example, devices may use combinations of:
• Keypress timings
• Packet timings
• Clock
• Temperature sensor

All of these require “accumulating” randomness from the environ-
ment. A common hardware bug on embedded devices is to generate
keys when the randomness source has not accumulated enough ran-
dom measurements from the environment. For example, if a network
card generates a cryptographic key right after boot, this key may be
predictable if an attacker is able to accurately guess at the values of
the randomness source.

To help with this, many devices include specialized hardware
that uses some special circuit to generate randomness by measuring
randomness inherent to the universe.. Of course, developers must On Intel CPUs, this takes the form of

the RDRAND instructionthen use this randomness—a common error is to use insufficient
randomness, such as the time, instead of this hardware randomness.

16.2 Attacks without Physical Access

Perhaps the most concerning attacks are those that do not require
physical access to a machine.

16.2.1 Cache Timing Attacks

One major goal of operating systems is to provide isolation between
processes. Even if an attacker is able to run some software on the
same machine as our signing process, we would like to guarantee
that an attacker can not read, for example, the signing key used by

6.1600 foundations of computer security 131

our signing process. However, the attacker and victim code both run
on the same CPU, and the victim may leave traces of secrets in the
state of the CPU.

For example, consider that our signing process runs and, depend-
ing on some secret value, either loads the value at memory address
A or does not. If the victim loads this address,the CPU will copy Because of attacks like this and others,

it is important to write secure code such
that it does not branch on secret values.

the value into the cache to speed up future accesses to the value. An
attacker process that runs next can try to access this same memory
address and measure how long it takes to read the value. If the vic-
tim read that value, the access will be fast since it comes from the
cache, but if not, the data will have to come from the much slower
main memory. From the difference in this timing, the attacker can
learn about the victim’s access pattern, which may reveal data about
the victim’s secret. This may seem like an unlikely attack

since both the victim and attacker
must have access to the same memory
location, which process-level isolation
should prevent. However, operating
systems perform something called
deduplication that can be cleverly
taken advantage of to achieve this: if
the victim process uses OpenSSL, the
attacker process can also use OpenSSL.
The operating system will see that both
processes are linking the same library,
and may map a section of virtual
memory for each process to the same
physical memory.

16.2.2 Rowhammer

Data in a computers memory is stored in what is effectively a grid
of capacitors. These capacitors do not store values indefinitely, and
so their values must be refreshed every so often (commonly every 64

milliseconds). Reading a chunk of memory drains the corresponding
capacitors a bit, and they must then be rewritten. Memory is read
one row f this grid at a time. Reading a row drains the corresponding
capacitors, requiring them to be rewritten. This rewriting involves
voltage fluctuations, and since modern memory is so dense, these
voltage fluctuations can cause neighboring rows to discharge more
quickly that the refresh interval is equipped to handle. Surprisingly,
reading a single row repeatedly can cause bits in an adjacent row to
flip.

An attacker could take advantage of this by “hammering” a mem-
ory location, causing a bit to flip in memory that belongs to another
process or to the operating system. In some cases, this was enough to
allow the attacker to learn a secret or bypass isolation, etc.

16.3 Physical Attacks

If an attacker has physical access to a device, an entirely new class
of attacks becomes possible. They can measure the device, introduce
faults to the device, and more.

16.3.1 Probing Attacks

An attacker with physical access to a device can measure many
things about the device’s behavior that a remote attacker could not.
For example:

6.1600 foundations of computer security 132

• Place probes on the pins of a chip

• Measure power consumption of a chip and watch for patterns

• Measure optical emissions of a chip with an electron microscope

• Measure RF emissions from a chip

• Monitor the blinking light on an internet router

The information that an attacker can learn from attacks like this
may be limited, but even very slow information leakage can be
enough to leak a key in a relatively short amount of time. Protecting
against these types of attacks is difficult since the attacker can do
such a broad range of things. However, if we make certain assump-
tions about the attacker’s power, we can achieve principled solutions.

Defense against Probing Attacks. One assumption that may be reason-
able to make is that an attacker can probe at most t wires of a circuit.
By using techniques like secure multiparty communication, it is pos-
sible to build a circuit that implements something like a signature
scheme, but that does so without leaking anything about the secret
given this assumption.

16.3.2 Fault Attacks

An attacker can also introduce faults that the system was not de-
signed to handle. For example, they can point a heat gun or a laser
at the chip, hoping to cause some bit flips. If they are successful,
these bit flips may leak a secret key or corrupt a kernel data structure,
allowing the attacker to take over the system. Designers of satellite systems have to

think about similar attacks, but in their
case the attacker is the sun! Cosmic rays
carry enough energy to flip bits of CPU
registers or memory.

16.3.3 Supply Chain Attacks

When we buy an device, we assume that the hardware inside is not
working against us. However, there is a long chain of steps that hap-
pens before the device gets to us—it is built in the factory, packaged,
mailed across the world to a retailer, stored in a warehouse, packaged
and mailed again, and so on. An attacker that has control over any of
these steps could intercept the device on its way to you and modify it
somehow. For example, they could:

• Modify the randomness source to something predictable

• Preload keys that the attacker knows

• Add extra input/output interfaces

• Add or enable management interfaces

6.1600 foundations of computer security 133

There are no great solutions to defend against this—inspecting
the chips is impossible since they are so small, building a device
yourself is much too hard, and so on. One solution that can improve
the protection is to build a system out of n identical devices and use
a strategy like secure multiparty computation to protect against cases
where at most n − 1 of these devices is compromised by a supply
chain attacker.

17
Case Study: iOS Security

There are several things we might worry about when it comes to the
security of a smartphone, spanning software, platform, and hardware
security:
• Malicious apps that steal contacts, eavesdrop on calls, or steal you

credit card data
• Someone stealing a phone and extracting secret data
• A non-Apple operating system that is loaded on a phone (i.e.

Jailbreaking)
• Malicious chips installed in the factory, en route to the store, or

during repairs
• People selling fake phones as real iPhones

The iOS platform is a very well-designed integration of the topics
that have been covered in the platform security section and which
addresses many of these considerations effectively.

17.1 App Security

In any platform, there is a balance between the “openness” of the
platform—who is able to run software on it—and the access that
software has to sensitive data. Of course, the most secure platform
is one that doesn’t do anything at all: it is very closed and provides
no access to sensitive data. More practical systems have a different
balance:

• A typical laptop is very open—anyone can write software for
it—and every application is able to access the entire filesystem.

• The web is still very open, as any website can include JavaScript
code that will execute on your machine, but access to sensitive
data is tightly locked down via language sandboxing.

iOS improves its security story by locking this down: applica-
tions are given some (checked) access to sensitive data, but are very

6.1600 foundations of computer security 136

closed—applications must go through a review process and only
approved developers can write software for iOS. In addition to security policies, the

review process checks that applications
follow policies in place for business
reasons, such as the restriction that
digital purchases must go through
apples In-App Purchase mechanism.

iOS apps run in a sandbox that does not provide access to a shared
filesystem and that allows communication between apps only though
limited APIs provided by the operating system. If an application
wants to interact with data that is controlled by the operating system,
such as VPN configurations or health data, the application developer
must ask for access to special APIs and have that access approved as
part of the review process.

17.1.1 Things Can Still Go Wrong

Even with these checks and the sandboxing, malware can slip
through the gaps. As we discussed earlier, XCode Ghost was a
compromised version of the XCode compiler distributed via mirrors
behind China’s firewall that inserted malware into apps developed
by honest developers. This malware was not found in App Store
reviews, allowing apps that people expected to be honest to run arbi-
trary malicious code. Even with the sandbox, an app has quite a bit
of access to do potentially sensitive actions:
• Learn Country
• Learn Language
• Learn UUID, before recent privacy changes
• Read and modify clipboard contents, including copied passwords

or credit card numbers
• Open a URL that points to a phishing webpage

Despite this, isolation buys a lot of security. A malicious app that
makes it through review cannot access your text messages, browser
history, etc.

17.2 iOS Secure Boot

For security and business reasons, Apple would like to ensure that
an Apple-signed operating system is running on the phone. This
prevents a malicious actor from distributing a backdoored operating
system and convincing people to install it on their phone and against
malware that tries to persistently modify the operating system. It also
prevents users from installing a customized operating system on their
phone, bypassing the Apple restrictions on apps and other policies.

To achieve this, iOS uses a secure boot system as described in
the last chapter. Each phone ships with a Boot ROM that cannot be
changed that is burned with some public key for a secret key that
Apple knows. This boot ROM is responsible for verifying that this
secret key signed the code for a low-level bootloader and running

6.1600 foundations of computer security 137

that bootloader. This bootloader will then verify and check the
operating system kernel. This allows the bootloader and the kernel
to be updated as necessary, but places a root of trust in the boot
ROM that cannot be updated. If the bootloader is updated by anyone
besides Apple, however, the boot ROM’s signature check will fail and
the boot ROM will refuse to run the bootloader.

Many device owners that wanted to customize their devices
sought to modify the operating system to add new features. This
process generally is referred to as “jailbreaking”.

17.2.1 Checkra1n Jailbreak

One set of exploits that constituted a jailbreak was named checkra1n.
This took advantage of complex code in the unchangeable boot
ROM—the devices supported running code directly via USB, by-
passing the low-level bootloader and the OS kernel, which meant
that the boot ROM contained code to act as a USB peripheral. USB
code is quite complex, and as with most complex code, it had bugs.
checkra1n took advantage of these USB bugs to trick the phone into
executing arbitrary code.

Because the Boot ROM can never be updated, it was impossible
for Apple to fix these bugs: this jailbreak will work forever on the
devices that had the bug.

However, these bugs did not allow the jailbreak to bypass the
signature check entirely, so this exploit needed to be run on every
boot—if you tried to reboot your phone without running this, it
would no longer be jailbroken.

17.3 iOS protection for data at rest

If a phone is stolen, it would be nice if the theif could not learn any
sensitive information from the device. As with any time that we want
to hide data, encryption is the answer here—a simple solution is to
encrypt all data on the phone with 128-bit AES. However, this does
not tell the whole story: in order to decrypt the data, the key for
this encryption must be stored somewhere. We can’t store the key
in normal flash memory, since then anyone could use it to decrypt
the data. We also can’t use the only secret that the user knows, their
6-digit PIN, since it is much too short to be an AES key.

Even an approach like using a PRF based on the key to extend it
into key for AES will not be secure—6 digits is so short that it can
easily be brute-forced. Instead, recent iPhones use a special chip
called a “secure enclave” that holds the key and provides access to
it only if the user enters the correct PIN. Doing so allows the secure

6.1600 foundations of computer security 138

enclave to enforce strict guess limits that prevent brute-forcing the
PIN.

The secure enclave is essentially another processor that runs its
own operating system. It uses a similar secure boot system to prevent
tampering with the secure enclave’s operating system, but it also uses
measured boot to derive the secret encryption key from the contents
of the OS being run—if an attacker modifies the secure enclave’s
operating system, the encryption key will change and the attacker
will not be able to decrypt the phone data.

Importantly, the secure enclave has access to two things that the
main application processor does not. First, on the first boot: the
secure enclave generates a long-term secret unique ID and burns it
into internal fuses. The enclave also has access to a secure NVRAM
module that has a limited amount of secure storage with support for
real deletion. This secure storage contains the root encryption key In typical storage, deleting data does

not really delete the data—instead, it
marks it as deleted and indicates that
the operating system should overwrite
it in the future. However, if someone
inspects the storage directly, they are
likely to be able to recover the data
that was deleted. Apple’s “effacable
storage” that is used for the secure
enclave supports deleting data such that
it cannot be recovered.

itself, a hashed version of the user’s PIN salted with the UID, and a
guess counter that keeps track of how many incorrect guesses have
been made.

When put together, these elements enable the following process:
1. User enters a PIN
2. iOS passes the PIN to the secure enclave
3. The enclave enforces some delay after each guess
4. The enclave passes H(PIN, UID) to the secure storage. The communication between the secure

enclave and the secure storage is also
encrypted with a key burned into the
enclave and into the secure storage.
This prevents an attacker with a probe
on the wire from learning the data.

5. Secure storage uses included logic to check whether the
hashed PIN matches the stored hash.
• If correct, return the root AES key and zero the guess

counter
• If incorrect, increment the guess counter. If the guess

counter is too high, erase the key from the effacable stor-
age.

6. If the PIN was correct, the enclave passes the key returned
from the storage to the AES engine.

7. The application processor sends data to the AES engine to be
encrypted or decrypted. Note that the application processor

never sees the AES key—it is seen
only by the secure enclave and the
(hardware) AES engine.17.3.1 Biometric Unlock

For convenience, however, iPhones do not require entering a PIN on
every unlock. A PIN unlock is always required on the first unlock
after boot, but afterwards they allow unlocking with a Biometric such
as Face/Touch ID. The phone includes dedicated biometrics hard-
ware that is responsible for reporting the “hash” of the measured face
to the secure enclave. The secure enclave then checks this against the
stored one, and unlocks the device if there is a match.

6.1600 foundations of computer security 139

A possible attack, then, might look something like the following:
steal a phone that has been unlocked at least once and relocked
(almost always the case). Then, before it runs out of battery and shuts
down, replace the Face ID chip with a malicious one that always
reports the correct hash. Without protection against replacing the
biometric hardware, an attack like this would allow an attacker to
access all the data on your phone. To address this, iPhone include
yet another shared key between the secure enclave and the biometric
hardware: if the Face ID module is replaced, the keys will not match
and the phone will refuse to unlock.

Part IV

Software Security

18
Software Security

Software vulnerabilities are at the root of some of the most serious
security failures in real-world software. A huge number of security In terms of practical consequences on

deployed computer systems, software
issues are perhaps second only to
phishing attacks.

issues come from software-implementation bugs. A rule of thumb
to keep in mind is that, for reasonably carefully-written code, there
will be around one bug for every 1000 lines of code. Many of these
bugs may seem minor, but surprisingly, almost any kind of bug can
be used in a security exploit and lead to compromise—even bugs in
code that may not seem security-critical. One principle to remember A common strategy to exploit seem-

ingly benign software bugs is to string
together a number of benign bugs into
an exploit that does something very bad
from a security perspective.

is then:

“Any bug can be a security bug.”

Protecting the security of computer system thus requires eliminating
software bugs.

Many bugs can lead to security exploits, but some of the most
common types of exploited bugs include memory corruption bugs
(buffer overrun, use after free, etc.), encoding and decoding errors,
cryptographic implementation bugs, race conditions and resource-
consumption bugs.

18.1 Memory Corruption

Memory-corruption bugs show up in languages, such as C and C++,
that do not guarantee any sort of memory- or type-safety properites.
The two most common types of memory-corruption bugs are: (1)
buffer overflows and (2) use-after-free bugs.

18.1.1 Buffer overflow

As an example of a memory-corruption bug, consider the following C
code:

void f() {

char buf[128];

6.1600 foundations of computer security 144

gets(buf); // write bytes from stdin starting

// at &buf[0], followed by a ’\0’

}

This code allocates an array of 128 bytes and then uses gets to
read a string from standard input into the buffer. The gets rou-
tine will read the input from until it reaches the end of the string
(indicated in C with a zero byte), then it will write the correspond-
ing string into the buffer. Arrays in C have no length information
attached to them, so the gets code will happily accept an input
strength of any length—possibly much larger than 127 bytes.

So, what happens if the input is longer than 128 bytes? The gets

function simply writes until it finds a NULL character (‘\0‘) in the
input. So if the input string is too long, gets will simply write past
the end of the memory allocated for buf. If an attacker gives an input
that is longer than 128 bytes, the attacker will be able to write bytes
of its choice into the memory after buf.

In C, the buf array will be allocated on the call stack, which will be
laid out in memory like this:

... rest of stack ...

return address of f’s caller

buf[127]

...

buf[2]

buf[1]

buf[0]

You might think that the fact that this
problem is caused in part by having the
stack in C grow down, so that running
off the end of the buffer can cause the
attacker to overwrite the return address.
It turns out that similar attacks are
possible even on architectures in which
the stack grows up. The fundamental
problem is that the attacker can scribble
over data in the stack.

Once the f function ends execution, the program will jump to
the return address sitting after at the end of there buffer. So if an
attacker can write data past the end of the buf array, the attacker
can overwrite the return address of f on the stack and the attack
can cause the program to jump to and begin executing code at an
arbitrary location in memory.

One simple mitigation is to modify the compiler to refuse to
compile programs that use routines such as gets. We discuss other
mitigations below.

To avoid this kind of buffer overlow bug, we need to somehow
ensure that gets only writes within the bounds of the buffer.

Mitigation: Runtime checks Modern compilers can try to check in
real time whether a memory access goes past the end of the buffer

6.1600 foundations of computer security 145

and will crash the program if so. These defenses are imperfect but
prevent the most naive type of bug.

Mitigation: Bounds Checking Another mitigation is to ensure that the
input is not too large before reading it in. To do this, we can insert a
check before writing.

Consider the following slightly more complex code, which receives
n records that are each 16 bytes long and writes them into the buffer:

void f() {

char buf[256];

uint32_t n = get_input();

for (uint32_t i=0; i < n; i++) {

// read record i into

// buf[i*16] .. buf[i*16+15]

}

}

This code will write beyond the end of the buffer if n*16 is greater
than 256. We then may consider adding a check like the following:

#define sz 256

void f() {

char buf[sz];

uint32_t n = get_input();

if (n * 16 > sz) {

// input too long!

return

}

for (uint32_t i=0; i < n; i++) {

// read record i into buf[i*16] .. buf[i

*16+15]

}

}

However, consider an adversary that inputs data such that n =

2^30. If we were computing on paper, our check would work just
fine: 230 · 16 = 234, which is certainly greater than sz. However,
uint32_t is a 32-bit value and 234 will not fit into the 32 bits allocated
for that integer—the computation will overflow. It turns out that if
you try to compute n*16 in C when n is 230, the answer is zero! Thus,
our check will pass but our code will still write beyond the end of the
buffer.

To prevent this type of overflow, the program can explicitly check
for overflow—it’s tricky to do, but important when accepting user-
provided input.

6.1600 foundations of computer security 146

18.1.2 Use after free

Another common type of bug is a use-after-free bug, in which a
programmer frees a chunk of heap memory and then reads or writes
it after freeing it.

In C this happens when a programmer uses malloc to allocate
some memory, then calls free to free it, and then accesses it. An
example piece of code with this bug is here:

void f() {

char *req = malloc(1024);

int err = read(0, req, 1024);

if (err) free(req);

// ***
if (err) printf("Error %d: %s\n", err, req);

}

If some other thread in the program calls malloc when the code is
a point ***, the other thread of execution may use the array req for
something else. Then the printf line could print out some other
contents of memory—possibly exposing cryptographic keys or other
sensitive data.

These bugs are very difficult to track down since it is difficult for
a compiler to figure out which memory a piece of code should or
should not have access to. One way to defend against these bugs is to
use a programming language, such as Rust, that explicitly associates
a “lifetime” with each piece of memory and can prevent code from
accessing free’d memory.

18.2 Encoding Bugs

Another common source of security bugs comes from encoding and
decoding data from and to language data structures.

18.2.1 SQL Injection

Most web sites that we interact with consist of some application
code—for example, a Flask app—that communicates with a database
via SQL queries. For example, a phone-number-to-name lookup site
would likely use SQL queries that look like

’SELECT name FROM users WHERE phone = "6172536005"’.

When accepting a phone number, stored in variable phone, from a
user, the same query might look like:

/* WRONG!!! */

’SELECT name FROM users WHERE phone = "’ + phone + ’"’.

6.1600 foundations of computer security 147

The problem with using string interpolation is that an adversarial
user can supply a phone number like

123"; DROP TABLE users; "

The SQL engine will then receive the query:

’SELECT name FROM users WHERE phone = "123"; DROP TABLE

users;’,

which will have the effect of deleting the users table.
The principled way to solve this problem is to have a strategy for

unambiguously encoding data. In SQL, if you have a quote character "
in a data string, the programmer writes it as \". This is called “escap-
ing” a string. A SQL library can automatically escape characters such
as quotes, but escaping is not as easy as replacing each quote with its
escaped equivalent—you need to worry about escaping the escape
character “\\” and all sorts of other subtleties.

Modern libraries for interacting with databases perform escaping
automatically to avoid these “SQL injection” attacks.

18.2.2 Cross-Site Scripting

Another common behavior is to take input from the user via a form,
save it to the database, and later render that input to another user
as HTML. For example, a social media site will have each user en-
ter their name when the sign up, and may use some code like the
following to render another user’s list of friends:

def render_friends(friends: List[str]):

print("<h3>Friends</h3>")

print("")

for name in friends:

print("" + name + "")

print("")

If a friend’s name is something expected, like “Alice” or “Bob”,
this works fine. However, what if a friends sets their name to some-
thing like <script>send_to_adversary(document.cookie)</script>?
Now, the rendered HTML will look something like the following:

<h3>Friends</h3>

Alice

Bob

<script>

send_to_adversary(document.cookie)

</script>

6.1600 foundations of computer security 148

This script tag runs the contained Javascript code in the viewer’s
browser. Anyone who views a friends list with this adversary in
it, then, will have their authentication cookie sent to the adversary,
potentially allowing the adversary to log in as that user.

The core of this issue is similar to the SQL injection attack: an
attacker is able to insert code that the victim’s browser will run. To
prevent this, the solution is again escaping: we typically replace
the angle brackets (< and >) used to denote HTML tags with the
sequences < and >. Now that & has a special meaning, we also
must escape it as &. Modern web frameworks have “templating”
systems that automate this escaping process.

18.2.3 Decoding: Android Apps

The application-installation process on Android also suffered from
decoding errors. Apps on Android (.apk files) are just renamed ZIP
files.

Apps shipped with a signature. When installing an app, Android
would first check that the contents of the ZIP file match the signature.
If the signature checked out, Android would then install the app.
However, the signature checking code and the installation code used
different ZIP decoders. An attacker was able to take advantage of a
historical quirk of the ZIP format that meant that ZIP holds two lists
of files: the signature checker used one list, while the installer used
the other list. By pointing to real files from one list but to malicious
files in the other list, an attacker was able to bypass this signature
check and cause a user to install malicious code.

18.3 Concurrency Bugs

When systems have code running in parallel, things become much
more difficult to reason about, and as a result, many bugs can occur.
Consider the following code running on a bank server:

def xfer(src, dst, amt):

s = bal[src]

d = bal[dst]

if s < amt:

raise InsufficientBalanceError

balances[dst] = d + amt

balances[src] = s - amt

By executing two of these xfer requests in parallel, an attacker can
cause unexpected behavior. For example, if an attacker tries to send
money from a single source to two destinations at once, the check s <

6.1600 foundations of computer security 149

amt may pass in both executions, and both destinations will then be
updated to have money. However, the source will only be deducted
once, since s is stored before any money is transferred.

The fix is to make sure that there is some kind of locking or
concurrency-control strategy in place. The important high-level
bit is to be thinking carefully about how concurrent execution can
affect your software, in cases when multiple threads of execution can
access the same data at the same time.

18.3.1 File system races / Time-of-check-time-of-use (TOCTOU) bugs

When deadline with files, symbolic links can cause all sorts of chaos.
A piece of code might want to check that it is deadline with a regular
file—rather than a symbolic link—before opening it. A bad way to
implement would be like this:

// WRONG

if(lstat(path, &st) < 0) error();

if(!S_ISREG(st.st_node)) error();

// ***
int f = open(path, O_RDWR);

...

The problem is that if an attacker can replace the file when the code
is at line ***, the attacker could swap out the regular file with a
symbolic link that points to somewhere else. The openat() API call gives a way to

open a file while ensuring that the file
is of a particular type.

The way to defend against this bug is to change the interface.
Newer versions of the POSIX file-system APIs enable checking for
this type of property in a way that defats race conditions.

18.4 Resource Usage

Other bugs allow attackers to consume many resources on a system,
denying service to honest users.

For example, hash tables typically use a hash function designed
to be very fast when deciding which bin to place an input in. These
hash functions are typically not collision-resistant in the crypto-
graphic sense. Hash tables work well when inputs get distributed
evenly across all of the bins. However, if multiple inputs get mapped
to the same hash value, the performance of a hash table deviates
from the constant-time idea we have of a hash table—hash tables
typically revert to using a linked list of all the values for a given hash
value.

If an attacker is able to predict which bin their input will end up
in, they can maliciously craft inputs that create a huge linked list,
resulting in very poor performance for the hash table.

6.1600 foundations of computer security 150

The way to defend against this type of attack is to use a keyed
hash function—essentially a pseudorandom function—where the
implementation does not reveal the secret key to the attacker (over
the network, etc.).

18.5 Dealing with Software Bugs

As we have seen, there are many types of bugs so there are many
ways to defend against them. Here are some general rules:

Clear Specification. One way to avoid design-level bugs is to have a
clear and complete specification about what your program is sup-
posed to do. In particular, for things such as encoders and decoders,
a precise specification can make it easier to check that you have
handled all of the important corner cases.

Design. A simpler design is easier to understand, and thus bugs are
easier to find.

Limit Bug Impact. Some techniques that we will discuss, such as
privilege separation, allow us to protect security even when software
bugs arise.

Find and Prevent Bugs at Development Time. Techniques such as
fuzzing can find bugs before they hit production systems.

Catch an Mitigate Bugs at Runtime

Deploy Bug Fixes Quickly A big advance in browser security came
from mechanisms for pushing out software updates quickly.

19
Privilege Separation

The last chapter left off on a somewhat unsatisfying note: our
software is bound to have bugs and those bugs are likely to be ex-
ploitable. Today, we will try to limit the impact that these bugs can
have by planning for compromise and aiming to limit the damage that
each component can cause if an attacker compromises it.

The philosophy that we will employ is called the Principle of
Least Privilege. The idea is to give each component in the system
the least privileges needed to do its job. By limiting the access that In real systems, it is often costly to

implement least privilege in the strictest
sense possible. You should think of
the principle of least privileges as a
difficult-to-achieve design goal, rather
than a rule that every component of
every system must satisfy.

each component of our software has to do sensitive actions, we can
prevent the compromise of our whole system when a single piece is
attacked.

To summarize our strategy:

Principle of Least Privilege: Each component should have the smallest
set of privileges necessary to do its job.

As a concrete example, a web server might have some networking
code, it might talk to a database server, and it might use some cryp-
tographic keys. One way to architect the system with least privilege
would be to split the server into multiple distinct processes—one that
receives network requests, one that interfaces with the database, and
one that uses the cryptographic keys. These components then would
speak to each other using narrow, restrictive APIs.

In some sense, a system that perfectly implements the principle
of least privilege gives one with the “best security we could ask for,”
in the face of component compromise. However, most real systems An orthogonal, but important, strategy

is to reduce the number of privileges
that a component needs to do its job.

do not completely implement the principle of least privilege for a
number of reasons:

Challenge: Splitting Boundaries. A large piece of software has many
components that often have many points of interaction. To effectively
implement least privilege, we need to find boundaries at which
we can separate our software. A few common ways to partition a If we don’t split up a large piece of

software into components, the software
just consists of one über-component.
An attacker who breaks into this one
component can hijack the entire system.

6.1600 foundations of computer security 152

system or application are:

• Isolating by user: In an operating system, different users of the
systems have different privileges. This way, if an attacker com-
promises one user’s account it does not compromise the entire
system.

• Splitting by feature: In large business applications, different
features (e.g., search, user management, mail) run as isolated com-
ponents. This way, a bug in one component does not necessarily
affect the entire system.

• Splitting off buggy code: The Firefox web browser uses special
sandboxes to compartmentalizes bug-prone video codec code
(Section 19.3). This way, if a malicious website is able to exploit
the codec code, it is not so easy for the attacker to compromise the
system.

• Separating exposed versus internal code: Google’s front-end
HTTP servers are isolated from the servers that run core appli-
cation logic. This way, an attacker on the network is one step re-
moved from the servers with access to Google’s internal resources
(databases, etc.).

• Isolating sensitive data or keys: Certificate authorities (CAs) use
hardware security modules to isolate the cryptographic keys from
all other code in the system. Laptops and servers sometimes have
separate cryptographic co-processors for this purpose as well.

Challenge: Interface/API. If we chop our monolithic app into different
domains, we also need to clearly define an API that the different
domains can use to interact. This API must allow us to preserve the
functionality of the system while making it difficult for an attacker
that compromises one component from compromising an adjacent
one.

Some strategies for interfacing between different components of a
system might be

• remote procedure calls (RPCs) over a network,

• message queues,

• shared memory,

• shared database, or

• shared files or directories.

In designing interfaces between isolated components, we tend to
worry about:

6.1600 foundations of computer security 153

• Functionality: Does the isolation plan allow the application to
work as it should?

• Security: Does the isolation strategy prevent the compromise of
one component from affecting others?

• Performance: How much performance overhead does the isolation
mechanism add?

• Complexity: How much code does the isolation mechanism
require? If the compartmentalization strategy requires a large
amount of code, this code might introduce new vulnerabilities.

19.1 Example: Logging

Most systems use logging to keep track of the actions that an ap-
plication has performed. That way, if an attacker compromises the
application, system administrators can look at the log to see what
happened and how to mitigate it. For a logging system to be useful,
it must be difficult for an attacker who compromises the application
to erase the log.

It is very natural to separate out the log into a separate component:
the app’s functionality is almost entirely separate from the log, and
the app’s interface to the log can be very simple. The app should be
allowed to append to the log and read from the log—the app should
not be allowed to remove entries from the log. This way, compromise
of the application or log server will not be enough to erase the log.

Application ----- Log entries -----> Log server

server |

| | Append/Read API

| | (No delete)

| v

-------- No access -----> X Log

Figure 19.1: One way to ar-
chitect a logging system. An
attacker that compromises the
application and/or log server
may not be able to erase the
logs.

19.2 Example: Cryptography Keys

Many applications use cryptographic keys for authentication: certifi-
cate authorities need to generate signed certificates for their clients,
cryptocurrency wallets need to sign transactions, and WebAuthn re-
quires an authenticator to sign a challenge from the relying party. In
all of these applications, we worry a lot about an attacker stealing the
application’s secret signing key. Towards the goal of protecting cryp-
tographic secrets, we often isolate the code that uses cryptographic

6.1600 foundations of computer security 154

keys into a separate software (or even hardware) component. In par-
ticular, we might create a cryptography component whose only API
is sign(msg) and get_public_key(). In this way, even if an attacker
compromises the application, it cannot easily extract the secret key.

This design does not completely protect us against the compro-
mise of the application. In particular, an attacker who compromises
our app can still call sign() as much as they like to sign any message
they like. At the same time, having the key isolated to this crypto
component allows us to add checks inside the crypto component to,
for example, reject messages of the wrong type. If our service is a Although in many cases the things we

are worried about an attacker asking
for signatures of will pass this type
check: for example, for a CA, this
would still allow an attacker to generate
a certificate for their malicious website.

certificate authority, we could set up our crypto component to verify
that each message is an actual signature before signing it.

Application <----- Requests -----> Key manager

| ^

| | Sign API

| | (No extraction

| | of key)

| v

-------- No access -----> X Signing key

Figure 19.2: A common architec-
ture for isolating cryptographic
keys from an application.

This division also allows our crypto code to do some meaningful
logging: imagine that the crypto module saves every signature
it creates to a log. Compromise of the main app would allow an
attacker to generate arbitrary signatures, but administrators could
then see every signature that was generated during the compromise.
This would be very helpful in recovery.

19.3 Example: Media Codecs in Web Browsers

Media codecs (e.g., for JPEG decoding) are notoriously complex and
bug-prone: codec libraries have been at the source of many web-
browser exploits. If we were able to isolate these codecs, we could
make it less likely that a codec bug allows an attacker to access data
other than the media file being decoded.

Browser tab ----- Encoded data-----> JPG/Media codec

<------- Bitmap --------
Figure 19.3: The Firefox
browser isolates media codecs
in a separate sandbox.

Isolating codecs may not always be as trivial as Fig. 19.3 makes it
seem. In many cases, codecs require a sophisticated interface to the
browser tab: the codec library may progressively decode videos as
data arrives, for example. Even image decoders progressively decode

6.1600 foundations of computer security 155

images, improving resolution as more data arrives. Supporting this
functionality without adding vulnerabilities or excessive latency
requires careful API design.

Firefox isolates these risky codecs using the language-level isola-
tion that the WebAssembly language provides.

19.4 Example: Server for Network Time Protocol (NTP)

Operating systems use the network-time protocol to fetch the current
time from time servers on the Internet, and to update the current
time to match. Setting the time requires root privilege on Unix-like
systems, but NTP also requires network accesses; the networking
code can be complicated and bug-prone. To prevent an attacker who
finds a bug in these network protocols from gaining root privilege
on our machine, many systems separate the two into a process that
handles talking to the NTP server on the network and a privileged
process that accepts the time from this other process and sets it. This
way, an attacker who find a bug in the network code can only set the
time—they cannot perform arbitrary actions as root. In addition, the
time service may impose some policy on time changes (e.g,. that time
can never go backwards).

Launcher --------> Network <---> Web

| Service

| |

| | "adjust clock"

| v

|-------------> Time Service [Policy enforcement]

Figure 19.4: Modern operating
systems implement a network-
time protocol (NTP) client as
separate processes. This way, an
attacker who compromises the
client over the network cannot
arbitrarily corrupt the system
time.

19.5 Example: OpenSSH Server

A secure shell (SSH) server has access to many sensitive resources:
network port 22, a host secret key, the system’s password file, and all
users’ data. When it starts, the SSH server runs a “monitor” process
that listens for connections on port 22. When the monitor receives a
connection, the first thing it does is to spawn a new per-connection
worker process that communicates over the network. The worker
client has no access to the host key or password database—the
worker process can only ask the monitor for help in authenticating.
The monitor-worker API supports a few operations:

• a signing operation, that instructs the monitor to sign a protocol
transcript,

6.1600 foundations of computer security 156

• a password-authentication operation, that instructs the monitor to
check a password (this can be rate limited to prevent password
guessing), and

• a start-session operation, that instructs the monitor to create a new
process with a shell for the user.

[Host key]

[Passwords]

[Port 22]

|

v

Monitor --- Spawns per client --> Worker <--- Client1

| Worker <--- Client2

| ...

--------> Session <----------> Worker <--- ClientN

process

Figure 19.5: The OpenSSH
server is split into multiple pro-
cess to mitigate the compromise
of the network-facing code.

While this architecture adds quite a bit of complexity to the
OpenSSH server, it has paid off in terms of mitigating the impact
of vulnerabilities in client-facing code.

19.6 Example: Web applications

Companies will often implement Web applications (e.g., a photo-
sharing website) as a number of separate services, running on sep-
arate physical machines. Client connections come into a front-end
server that terminates the TLS connection and proxies client data
to a front-end application server. The front-end server then routes
requests to one or more application services, each of which may have
access to different databases. For example, the login service may have
access to the password database, while the profile service may not.

19.7 Example: Web client

When you open a PDF attachment in Gmail , you might worry that
the PDF could exploit some bug in your browser that could steal
your sensitive Google data. To make this kind of attack more difficult,
Gmail serves attachments and other suspect files from a separate
domain (“origin’)): googleusercontent.com. Code loaded from
googleusercontent.com cannot access cookies or data for google.com.
In this way, even if an attacker can somehow run JavaScript in your
browser, it cannot easily steal your Google cookies.

6.1600 foundations of computer security 157

[TLS Key]

|

v

Client ----> HTTPS ---> Front-end

server service

^

|---> Login <--> Password DB

| service

|

|---> Profile <--> User DB

| service

|

|---> Photo <--> Photo DB

service

Figure 19.6: Large Web services
tend to isolate different appli-
cation features into different
services, often on different
physical machines. The system
gates access to these services
via minimal front-end client-
facing servers.

19.8 Example: Web browser

Web browsers today are extraordinarily complicated pieces of soft-
ware. The sensitive data that a browser is trying to protect are things,
such as user cookies, cached data, browser history, and other user
data. The browser may spawn new processes to handle rendering
for each site from each distinct domain/origin. In this way, if an at-
tacker from one origin can exploit a bug in the JavaScript engine, the
attacker may still not be able to compromise sensitive user data from
other domains/origins. GPU code, which is extremely complicated
and bug-prone, may run in yet another process. Today, compromising
a browser entirely often requires finding and exploiting a collection
of bugs in multiple components.

codec codec

^ ^

| |

v v

mit.edu nytimes.com

| |

| |

---- Browser core <------> UI <---> GPU

|

v

[Cookies]

[Cached data]

Figure 19.7: Web browsers may
isolate the execution of each ori-
gin’s code in a separate process.
They further isolate compli-
cated and bug-prone codecs
and GPU code in separate
processes.

6.1600 foundations of computer security 158

19.9 Example: Payment Systems

Processing credit-card transactions in web applications is risky: if
a vendor suffers a compromise, the credit-card network may fine
them or kick them off the network. To avoid ever having to handle
credit-card data, most websites use an external payment-processing
service that handles credit-card information. When the user makes
a purchase, the vendor redirects the user to the payment-processing
service, who collects the user’s credit-card data. After payment, the
payment-processing service redirects the user back to the vendor’s
website.

--------> Web app -----> Order DB

| ^

| |

Client Payment data

| |

| |

--------> Payment -----> Visa/MC

service

|

v

[Credit card #s]

Figure 19.8: Online vendors
often use a separate payment
processor that handles the
user’s credit-card data.

20
Bug Finding

We are going to continue our treatment of security and bugs with
a discussion of how to find bugs. As we already have seen, bugs
are a big deal in terms of security problems. We have discussed
how to architect a system using privilege separation so that bugs do
not matter so much. But even with a very good privilege-separated
design, we still want to make sure that our system is as bug-free as
possible.

The topic of this chapter is then: How do we find bugs?

Step 1: Define what is a bug. Before we even begin talking about how
to find bugs, we need to answer the question: What is a bug? There
are a number of application-independent ways to determine when we
have hit a bug:

• the program crashes,

• the program makes an out-of-bounds memory access, or

• the program jumps to an unknown or undefined point in the
program.

More difficult types of bug to detect are ones that we can only detect
with knowledge of what the application is supposed to do:

• the program’s output is incorrect, or

• the program allows an attacker to access data it should not be able
to access.

Step 2: Find bugs. To find a bug, we just need to identify a possible
execution of the program that leads to one of the buggy outcomes we
defined in Step 1. The reason this is difficult is:

• there are typically exponentially many possible inputs to the
program and it may be difficult to find one the triggers the bug,

6.1600 foundations of computer security 160

• concurrent systems exhibit non-deterministic behavior, and

• inputs from the environment (time, network state, etc.) can change
the behavior of the program.

20.1 Bug finding: A concrete example

To frame our discussion of bugs, we will consider one specific exam-
ple of a C program that parses a binary packet that has the format
depicted in Fig. 20.1. The packet starts with a header byte and a

--

| header | len | id | id | id | ... | id |

--

Figure 20.1: An example packet
format.

length byte and then has a list of IDs.

1 // Parse header

2 char in[64];

3 int hdr = in[0];

4 if (hdr != s) returnl;

5 int n = in[1];

6 if (n > 64) return;

7

8 // Read ID fields

9 int ctr[32];

10 char *next = &in[2];

11 for (int i=0; i < n; i++) {

12 ctr[*next]++;

13 next++;

14 }

Figure 20.2: An example of
some buggy parsing code.

20.2 Manual testing

When we manually test code, we consider a specific execution of
the program and predefine an expected result. For the example of
Fig. 20.2, we might tests to check that the following two inputs give
the following behavior:

in = {6}; // Should have no effect.

in = {5, 1, 2}; // Should cause ctr[2] == 1

6.1600 foundations of computer security 161

Benefits. The main advantage of manual testing is that tests can be
targeted and can exercise application-specific logic. If you have a
precise correctness condition that your program should ensure, it is
often easiest to test it with manual testing.

An additional advantage is that manual tests are useful in regres-
sion testing: If you find a bug in your program today, you can write
a manual test that tests that the buggy condition does not occur. As
you update your program later on, this regression test can determine
whether the same bug occurs again.

Downsides. The downsides of manual tests are that they are expen-
sive to write, the test cases can themselves be buggy (especially when
the program is complicated), it requires a lot of program-specific un-
derstanding, and it is difficult to write enough tests to cover a large
fraction of the program’s behavior.

20.3 Fuzzing

Fuzzing is the process of running a program on a very large number
of randomly generated inputs. As soon as a random input causes the
program to crash, we know that we have detected a bug.

When using a fuzzer to test a piece of code, we will typically ask
the compiler to instrument the code with extra instructions to test
whether the code behaved improperly. In C, for example, we will With the GCC compiler, you

can compile your code with the
-fsanitize=address flag to insert
extra checks for memory-access errors.

instruct the compiler to check for out-of-bounds memory accesses.
To test for application bugs with a fuzzer, we can instrument our

code with assertions that will crash the program if the program ever
violates certain programmer-specified invariants.

Fuzzers may have to test a large number of inputs before finding
one that triggers a bug. In the code of Fig. 20.2, if a well-formed
packet has n=64, the program will write off the end of the in array.
(The check in Line 6 should test whether n >= 64 instead of n > 64.)
For a fuzzer to hit this bug, it will need to choose a random input
value of the form:

in = {5, 64, ... 64 arbitrary values ...};

The probability that a uniform randomly bitstring of the appropri-
ate length hits this bug is 2−8 · 2−8 = 2−16, which is quite small.

Coverage-guided fuzzing. Real fuzzers do not just feed uniform
random bitstrings to programs that they are trying to fuzz. Instead, Most random bitstrings will probably

not cause the program to exercise a
large fraction of the program’s code,
since the program will reject them early
most of the time.

real fuzzers try to pick inputs in a way that maximizes the fuzzer’s
code coverage: the fraction of the lines of the program’s code that the
fuzzed programs have executed.

6.1600 foundations of computer security 162

To implement this strategy, the fuzzer maintains a corpus of
bitstrings. Each time the fuzzer runs the program, it picks an input
from the corpus and randomly mutates it in some way (e.g., by
changing or adding a byte). If running the new string on the program
causes the program to execute some new lines of code (i.e., the
coverage increases), the fuzzer adds the newly mutated string to the
corpus.

While this strategy does not have a robust theory to support it,
coverage-guided fuzzing works shockingly well in practice. Many
major software projects use fuzzing extensively to find bugs.

A coverage-guided fuzzer run on Fig. 20.2 might find the follow-
ing input that causes the program to crash with an out-of-bounds
write:

in = {5, 1, 100};

Benefits. A major benefit of fuzzers is that they are almost com-
pletely automated—they require very little input from the program-
mer. Since programmer time is more expensive than machine time,
finding bugs using fuzzers is often much cheaper than finding bugs
via manual test cases. Since fuzzers execute the program on billions
of inputs, they will often find tricky bugs that a human might never
find.

Drawbacks. A drawback of fuzzers is that they cannot find application-
specific bugs: they are essentially limited to only finding violated
assertions in a program. So while fuzzers are a useful tool for finding
bugs, they are typically only useful in conjunction with manual tests.

Generalizations of fuzzing. The first fuzzers used random bitstrings
as their initial pool of inputs. More recent fuzzers have application-
specific logic for handling HTML, JSON, or other file formats—these
fuzzers are better at catching higher-level logic errors. Some lan-
guages, such as Go, have support for fuzzing in their test infrastruc-
ture.

20.4 Symbolic execution

A weakness of fuzzing is that a fuzzer may not be able to trigger
bugs that hide behind if conditions that are very very rarely true. For example, if a parser first checks a

CRC32 checksum on a packet, a fuzzer
will almost never find an input that
causes the program to run past the
checksum check. Another example of
difficult-to-fuzz code might be some
HTML parsing code that checks that
every < symbol is followed by an >

symbol.

Symbolic execution is a testing strategy that can find bugs in these
difficult-to-fuzz programs.

The idea of symbolic execution is that we will run the program.
But instead of running the program on actual concrete input values,

6.1600 foundations of computer security 163

we will run the program on symbolic variables that represent arbitrary
values. For example, we might want to use symbolic execution to run
the following simple snippet of code:

c = a + b;

e = d + c;

f = a * d;

When executing this code, the state of memory might look like
this, where we replace the value of the variable d with a variable X:

--

... | 5 | 7 | 12 | X | | | ...

--

a b c d e f

The major headache when using symbolic execution is control flow.
For example, we might have code that looks like this:

if (e == f) {

BUG();

} else {

// Something else

}

If running with the symbolic variable d = X, then we will have the
condition: (d+c == a*d), which simplifies to: (X+12 == 5*X). An important thing to know is that

there is no guarantee that a SAT solver
will actually be able to find an input
that causes the program to execute
one branch or another. The reason is
that we know of no efficient algorithm
for finding an assignment of the
variables for an arbitrary condition that
causes the condition to be true. (This
problem is NP complete.) At the same
time, for finding branch conditions
in “reasonable” programs, SAT solves
work surprisingly well.

To handle this sort of case, we can use a program called a SAT
Solver to search for inputs that cause the condition to be true. For
example, a SAT solver run on the branch condition (X+12 == 5*X)

will likely find the value X==3 that causes the condition to be true.
Then the symbolic-execution engine can continue executing the
program down the true branch of the program with the constraint
X==3 on the symbolic variable X. In parallel, the engine can search
for values of X that cause the program to go down the false branch
of the program. A SAT solver might find X==908234 as one input that
causes the program to traverse the false branch.

Running a symbolic-execution engine on the code of Fig. 20.2
might produce the following output:

ERROR: buggy.c:10 memory error

ERROR: buggy.c:12 memory error

The symbolic-execution engine may consider the following tree of
program executions, branching on each condition:

// Input data

in = {i0, i1, i2, i3, i4, ...};

6.1600 foundations of computer security 164

[i0 == 5]

/

| FALSE -> return

| TRUE -> [i1 > 64]

\ /

| TRUE -> return

| FALSE -> [0 < i1]

\ /

| FALSE -> return

| TRUE -> [i2 < 0 || i2 >= 32]

\ /

| TRUE -> BUG!

| FALSE -> [1 < i1]

\ /

| ...continue ...

| ...execution...

\

Benefits. Symbolic execution can find tricky bugs involving com-
plicated branch conditions that fuzzers and manual tests may not
find. In addition, symbolic execution may be able to find bugs that
do not crash the program. In addition, a symbolic-execution engine
can in principle consider all possible inputs to a program and can
give a guarantee that the program has no bugs of a certain type (e.g.,
out-of-bounds read).

Drawbacks. Symbolic-execution engines can be very slow to run and
often work poorly on very large pieces of code. As the length of an
execution grows, the symbolic-execution engine accumulates more To address these drawbacks in sym-

bolic executions, one approach is to
write a scheduler that guides the search
that the symbolic execution makes
through the program state. A second
approach is to define loop invariants or
function invariants that aim simplify the
job that the SAT-solver must perform
by giving it more information about the
program’s expected behavior.

and more symbolic variables (representing values in memory) and
the number of constraints on each symbolic variables grows as well.
When there are many variables and many constraints, the SAT solver
may not be able to determine—in a reasonable amount of time—
whether there is or is not a satisfying assignment to the variables. For
these reasons, symbolic execution can work well for small snippets of
code; in large programs (such as a web browser), symbolic execution
may not be able to progress very deep into the program.

21
Runtime Defenses

So far, we have discussed ways to achieve security in the presence of
the reality that code has bugs by separating our system into compo-
nents with limited privilege and by attempting to find bugs in our
code. However, we will still be left with some bugs. In this chapter,
we will aim to monitor execution of the system to detect and buggy
behavior and halt in its presence.

There is no cut-and-dry method to achieve this. However, we can
think about certain attacks that we might care about and construct
defenses to make those attacks harder.

21.1 Buffer Overflow Defenses

We have discussed the pervasive buffer overflow attack, which takes
advantage of a missing bounds check to overwrite memory beyond
the bounds of an array, often modifying the current function’s return
address to cause the attacked system to run attacker-specified code
which is placed in the buffer itself.

21.1.1 Non-Executable Stack

Programming languages like C use a region of memory called the
stack to store function variables. The input buffer in the buffer over-
flow attack is typically placed in this stack memory region. However,
program code is typically in a separate region of memory. CPUs also
allow us to add permissions to different memory regions: we can
mark each as read (R), write (W), and/or execute (X). To minimize
the possible effects of a buffer overlow attack, one approach is to
prevent running code from the stack at all by marking the stack as
RW only.

This seems to eliminate a major piece of an effective buffer over-
flow attack: the attacker can no longer supply code of their choice
and point to it with the return address. However, modern attackers

6.1600 foundations of computer security 166

have worked around this with something called return-oriented
programming: with the ability to supply their own code removed,
attackers must find code that already exists to do what they like. This
may be full existing functions, but more likely attackers will set the
return address to point into the middle of some function and execute
just a fragment that does something useful. It turns out that with
more work, it is possible to perform many attacks using only code
that already exists on the system.

21.1.2 Stack Canary

To try to remove the adversary’s ability to overwrite the return
address in the presence of a buffer overflow, another defense is
to insert a stack canary in every stack frame between the function
variables and the return address. At the start of each function an
operation is inserted to write this canary to some value. At the end
of the function before returning, a check on the canary value will be
inserted: if the canary has changed, something must have overwritten
it and the program should exit to avoid running unknown code.

This is effective because in a buffer overflow scenario, the attacker
needs to write memory sequentially until the address they care about
writing is reached: if the canary is between the function variables
and the return address, the attacker must overwrite the canary to
modify the return address. However, this is not a perfect defense: if
the attacker writes the same value to the canary as was already there,
it will go undetected. Therefore, the canary value must be hard for
the attacker to guess.. Using a random value seems promising, and A buffer overflow attack does not

directly allow the attacker to read
arbitrary memory, so the attacker needs
to guess the value

in order to avoid the performance overhead of picking a new random
value on every function invocation, a canary value is often picked at
program startup and stored outside of the stack to prevent a buffer
overflow from overwriting the reference canary value.

This defense is still not perfect—for example, it does not prevent
an attacker from overwriting function pointers. However, it does
make a successful attack significantly harder.

21.1.3 Address Space Layout Randomization (ASLR)

Another approach for these buffer overflow-style attacks is to make
it hard for the adversary to guess a useful address to jump to. To do
this, many modern systems randomize the locations of code, stack,
and heap memory regions when a process starts. With this defense
in place, an attacker needs to learn the location of the code memory
region in order to do any meaninful return-oriented programming
attack.

6.1600 foundations of computer security 167

21.1.4 Bounds Checking with Fat Pointers

All of the defenses so far have attempted only to minimize the dam-
age of a buffer overflow after it has been exploited. However, we
could prevent a more comprehensive suite of attacks if we could
make sure that our code never reads or writes a pointer that is out-
side the bounds of a given buffer. Memory-safe languages like Go,
Rust, or Python have this bounds checking built in, but attempting
to retrofit a C compiler to achieve this bounds-checking presents
additional challenges.

In the Fat Pointers technique, pointers are augmented to include
the base and the limit of the buffer the pointer belongs to. This base
and limit are initialized on an allocation, and on a dereference a
check is inserted to guarantee that the current value of the pointer is
within the region specified by the base and limit. Pointer arithmetic
preserves the base and limit but modifies the pointer itself as before,
allowing the pointer to possibly go out of bounds.

Unlike a nonexecutable stack, stack canaries, and ASLR, fat point-
ers are not widely used. This is largely because the modified “fat”
pointers are too incompatible with existing C code. C code some-
times casts pointers to integers and back again, causing issues for
our new 24-byte pointers, and the modified pointer size can modify
memory layout in ways that the code does not expect.

21.1.5 Control Flow Integrity (CFI)

Another approach is to target jumps specifically: we know that there
is a certain set of valid jumps in our program: code should only be
jumping to return points in functions and function starts. If we could
detect when a function returns by jumping to some target outside
of this set, we can prevent many attacks where an attacker causes
the program to jump to code that can be used maliciously. Checking
these jump targets is called Control Flow Integrity.

To implement CFI, we need to add several checks on different
kinds of jumps. For direct jumps, we know at compile time that these
jumps are valid since there is nothing that the attacker can control.
No checks are needed. For computed jumps, that use some variable
in the jump target, we need to check that the return address is a
valid jump target. To do this, compilers that implement CFI create
a bitmap that maps a hash of each address to a bit that indicates
whether that address is a valid jump target. This allows achieving
good performance, but there is still necessarily an overhead. Many
compilers provide CFI as a compilation flag.

6.1600 foundations of computer security 168

21.2 Input Sanitization Defenses

We have discussed SQL injection and cross-site scripting, which
allowed an attacker to insert code by adding meaningful characters
like " or >into their input. To protect against this, user inputs should
be sanitized, a process that takes these special characters and escapes
them, converting them to some other sequence so that they are
treated as plain text.

21.2.1 Taint Tracking

To check for failures in this sanitization at runtime, a common ap-
proach is called taint tracking. Input is marked as tainted at sources of
user input. At functions that perform this escaping, this taint label is
removed. Sensitive functions such as the HTML renderer are marked
as sinks, and any time a sink is run a check will be inserted to ensure
that the input data is not tainted. If the data is tainted, some part of
the input must not have been sanitized since it came from the user,
and the program should halt to avoid an exploit.

This is implemented in many browsers to prevent cross-site script-
ing using Trusted Types: for JavaScript calls that update the displayed
HTML, such as innerHTML = foo, browsers may restrict the type of
foo to ensure that the code explicity converts its type to something
like TrustedHTML. This does not guarantee that the sanitization was
done correctly, but does ensure that the programmer acknowledged
the risk in their code.

Part V

Advanced Topics in
Cryptography

22
Privacy with Utility

So far, we have discussed several cryptography primitives, from hash
functions to encryption schemes, and explored many applications
of those primitives to systems security. These primitives have pro-
vided security, but in a very all-or-nothing sense: in order to provide
broadly applicable security, our definitions required that a certain
party (with the key) could either completely decrypt the message,
learning the message contents, or cannot do anything with the mes-
sage at all.

In some cases, however, it may be useful to loosen these restric-
tions, adding features to our encryption schemes.

22.1 Functional Encryption

One feature that turns out to be useful is the ability for some party
to compute a certain function of a message without learning the
message itself.

Example: Email Encryption. Email is a common form of communica-
tion, and it seems like it would be desirable for it to be end-to-end
encrypted so that only the sender and recipient can learn the mes-
sage contents. However, email is not end-to-end encrypted. This is
because end-to-end encryption prevents many kind of important
functionality—for example, if we applied ElGamal encryption to
our emails, our email server would not be able to inspect incoming
emails to filter spam—all emails would look totally random to the
server! In order to hide our messages from the server while still al-
lowing the server to classify messages as spam, we need a new type
of encryption scheme called functional encryption.

Definition 22.1.1 (Functional Encryption). A functional encryption
scheme is one that allows, for all functions f , generating sk f such that
it is possible to efficiently determine f (m) given Enc(m) and sk f , but

6.1600 foundations of computer security 172

nothing else.

It turns out that problem of functional encryption is equivalent to
the problem of program obfuscation.

22.1.1 Program Obfuscation

Imagine we are providing bug fixes, including security fixes, to a
piece of proprietary software. We would ideally like to avoid dis-
closing the security bugs in the old version of the software, but if we
distribute our program anyone can inspect the changes and see what
they are fixing. Ideally, we would have a way of distributing software
that does something without revealing what the software does. We
would like some obfuscator O such that for a given program C, O(C)
is “unintelligible” but provides identical input-output behavior.

Current approaches to this problem are heuristic-based, involving
things like adding useless code that were intended to make it difficult
to reverse-engineer the changes. More recently, research has defined
a very weak form of obfuscation called indistinguishability obfuscation
and shown that this notion of indistinguishability obfuscation is
equivalent to functional encryption. Indistinguishability Obfuscation
does not provide obfuscation itself, but provides that for any two
programs C1 and C2 with the same input-output behavior, the ob-
fuscator O provides that O(C1) ∼= O(C2)—that it is not possible to
distinguish between the obfuscations of two functions with the same
input-output behavior.

It turns out that we could generate many of the primitives that
we have discussed so far just from this notion of indistinguishability
obfuscation.

22.2 Zero-Knowledge Proofs

We have said broadly that our goal with encryption and other prim-
itives is that the adversary “learns nothing” about the statement.
However, this has clearly not been the case so far: the adversary
learns the encryption of the message or the hash of the message.

For a zero-knowledge proof, we would like to have a way of
proving that a statement is true without revealing any information
beyond the fact that the statement is true.

As a real-world example, consider that Alice has two balls and
would like to prove to Bob that the two balls are different without
revealing how they are different. To do this, Alice can give the balls
to Bob and tell Bob to put them behind his back and decide whether
to switch the two balls or not switch the two balls. Bob should then
give the balls to Alice, and Alice will tell Bob whether the balls were

6.1600 foundations of computer security 173

switched or not. If Alice is right many times, Bob can be quite sure
that the balls are indeed different, since Alice can reliably distinguish
them.

This does not sound at all like a typical proof that you might write
down on paper. Indeed, zero-knowledge proofs are impossible using
“classical proofs”. However, zero-knowledge proofs are possible
using interactive proofs.

Definition 22.2.1 (Interactive Proof). An interactive proof consists of
two parties: a “prover” P and a “verifier” V. If P knows the “proof”
of the statement, then P is accurate with probability 1. If the state-
ment is false, then V accepts the proof with probability less than
1
2 .

Perhaps surprisingly, we can show that any proof at all can be
converted into a zero-knowledge proof.

As another example, consider proving that a graph is 3-colorable.
The input is a graph G, and P aims to prove to V without revealing
any information that it is possible to assign colors 1, 2, or 3 to each
vertex such that no two adjacent vertices have the same color. This
is easy to prove in the non-zero-knowledge case: P could simply
provide a coloring of G, which V can easily verify. However, this
reveals information about the coloring.

To prove that the graph is 3-colorable without revealing informa-
tion about G, the verifier will first permute the colors {1, 2, 3}. P will
then provide n commitments to V—statements that commit P to a
given color for each vertex without revealing those colors to V. One way to construction this kind of

commitment is, given a color c, generate
some randomness r. Then, reveal
H(c||r) using a collision-resistant hash
function. To verify the commitment,
reveal the color and the randomness:
the other party can then recompute the
hash for themselves to check that the
values are the ones that produces the
original commitment.

V then picks an edge (i, j) from the set of edges in G and sends
that pair to P. P then verifies their commitments of the colors of i
and j to V by revealing the colors. V accepts the response if the two
colors are distinct and the corresponding commitments are valid. If G
is not three-colorable, this will fail will probability at lease 1

|E| . Thus,
this can be repeated to achieve the desired probability.

The statement of 3-colorability is NP-complete, meaning that any
NP statement can be converted to 3-colorability. That is, it is possible
to write a reduction from any statement with a polynomially-sized
witness to 3-colorability such that the existence of a 3-coloring of
the corresponding graph proves that the original statement is true.
Therefore, this shows that we can generate a zero-knowledge proof
for any statement in NP!

In fact, interactive proofs can be used to efficiently prove anything
in PSPACE, which is believed to be much larger than NP.

23
Differential Privacy

Taking advantage of our growing capability to collect all kinds of
data, computation allows us to learn from this data and use it to
make predictions. For example, machine learning algorithms are
trained on huge datasets and then used to predict features of new
input data.

In order for these predictions to be meaningfully useful, the data
they base their predictions on must be based in reality. If researchers
are designing a system to predict whether a patient has a certain
disease, they need real patient data to base their model on. However,
this data is very sensitive: the US has all kinds of laws protecting
medical data with strict requirements. Ideally, we would like to use
the data itself without the ability to tell who the data corresponds to.
This way, we can alleviate privacy concerns.

However, this problem of using data while protecting the privacy
of the individuals that the data comes from proves to be very hard.

23.1 Approach 1: Anonymize the Data

An obvious solution may seem to be to remove explicit identifiers like
name, address, and phone number. This way, it won’t be possible to
just glance at the data and see who a record corresponds to. However,
this approach does not work since these datasets do not exist in
isolation.

Example: Re-identification by Linking (Sweeney 1997) An example
of this has to do with health data. In Massachusetts, the Group
Insurance Commission released a dataset that they believed to be
anonymous. This dataset consists of health data including patient
ethnicity, ZIP code, birth date, sex, date of visit, diagnosis, procedure,
and medication.

In 1997, Sweeney purchased (for $20!) another public dataset from
Cambridge, MA: the voter registration list. This dataset included

6.1600 foundations of computer security 176

voter name, address, ZIP code, birth date, and gender.
Importantly, this other database included each voter’s zip code,

birth date, and gender! From linking the data in these two datasets,
Sweeney was able to completely de-anonymize the GIC dataset and
reveal private medical information for everyone up to the governor of
Massachusetts.

Netflix Competition In 2006, Netflix aimed to improve their movie
recommendation system. To do this, they aimed to have researchers
do the work for them: they published an “anonymized” dataset that
included a randomized user id, movie id, rating, and date. They
released a portion of the dataset, and the group that could produce
a model that best predicted ratings for the unreleased set of movies
would win a million dollars.

One group of researchers was able to link individual records in
the Netflix database to records from the public IMDb database. This
allowed them to de-anonymize the data from Netflix even though the
database contained no identifying information whatsoever!

Attempts to publish only part of a dataset to make the entries
anonymous simply does not work due to the availability of other
data that may be correlated.

23.2 Approach 2: Publish Only Statistics

Another approach we might consider is to publish only summary
statistics with the aim that these summary statistics compress the
data so much that it is impossible to learn anything meaningful
about an individual from them. However, we have to be careful: even
a few statistics can reveal sensitive information.

For example, consider a company that released the average salary
of its employees regularly. If the company releases this average
before and after the resignation of one individual, anyone who
knows that that individual resigned can learn his salary.

So, releasing only statistics does not cleanly protect privacy either.

23.3 Differential Privacy

In order to achieve some measure of privacy, we need to define
what privacy means: a natural definition may be something like “an
algorithm is private if before and after it runs, no one learns anything
about a given individual in the dataset”. However, a definition like
this removes all utility from the algorithm: it does not meaningfully
compromise the privacy of an individual to reveal that smoking

6.1600 foundations of computer security 177

cigarettes causes cancer for them, since it does for every human.
However, this first definition attempt would prevent this.

Since we are interested in protecting the privacy of individuals
while learning about the whole group, it should be satisfactory if
it is impossible to tell whether a given individual was included in
the dataset or not. To formalize this, we will require that a pair of
datasets that differ in only a single row—that is, one contains a row
and the other does not—are close. We can define this as follows:

Definition 23.3.1 (ϵ-differential privacy). An algorithm A is ϵ-
differentially private if, for all neighboring datasets x and x′ that
differ in only one row, for all subsets S of outputs of A:

Pr[A(x) ∈ S]− Pr[A(x′) ∈ S] ≤ ϵ

or, equivalently,

Pr[A(x) ∈ S] ≤ eϵPr[A(x′) ∈ S]

Note that eϵ ≈ 1 + ϵ. This is approximately saying that whether or not
a given row is included in the dataset, the probability of the output
being detectably different is less than ϵ.

In order to achieve this, the algorithm must be randomized. Take
our salary example from before: if we want to reveal an average
salary of all employees, achieving differential privacy requires adding
noise in order to bring the probability of detection down to ϵ.

23.3.1 Adding Noise

A common approach to achieving DP is exactly this: adding random
noise to the data in order to add uncertainty about the real data. The
first instance of this was by Warner in 1965, who proposed using
random noise to allow individuals to be truthful.

For example, consider a professor that wants to learn the fraction
of students who cheated on a test. Obviously asking students to
directly answer whether they cheated or not would result in students
lying and saying that they did not cheat. Instead, using Warner’s
approach, the professor could ask students to answer honestly with
probably 2/3, but to lie with probability 1/3. This allows a student
who did cheat to claim that they were lying, as per the directions.
However, with many students, the noise should average out, and the
professor can still learn approximately how many students cheated
on the test.

We can apply this same approach if we want to make a certain
algorithm differentially private. Instead of publishing A(x) directly,
we can publish A(x) + noise.

6.1600 foundations of computer security 178

Choosing Noise Level. In order to determine how much noise needs
to be added to the function to achieve a given ϵ, we need to consider
the function we are computing. For example, if our function returns a
constant no matter what the data is, no noise is necessary. However,
if the function returns one individual’s record exactly, the record
needs to be completely randomized so a large amount of noise is
necessary. For an aggregate statistic like an average, something in the
middle is required.

To formalize this, we will use a notion called global sensitivity of
the function. This aims to capture the maximal change in f that
results from changing one of the function’s n inputs.

Definition 23.3.2 (Global Sensitivity). The global sensitivity of a
funcion f is given by:

GS f = max
neighborsx,x′

∥ f (x)− f (x′)∥1

Where “neighbors” are sets of inputs that differ in only a single
value.

This gives us a sense of how much noise is necessary: if the func-
tion changes by a large amount when a single input changes, a large
amount of noise is necessary, but if it changes only slightly then less
noise is required.

In order to specify exactly how much noise to add, the Laplace
distribution is used. The laplace distribution is:

h(y) =
1
2b

e−
|y|
b

For a function f , if A adds noise to f from the Laplace distribution

with b ≥ GS f
ϵ , then A is ϵ-DP.

Part VI

Conclusions

24
Conclusions

To conclude, we will explore five case studies that exemplify what we
have covered so far.

24.1 Authentication: OPM Hack

In order to get security clearance to view classified documents, it is
necessary to fill out a form called an SF86 that covers all kinds of per-
sonal details from relationships and mental health to drug use and
finances—some of the most sensitive data there is. Many, many peo-
ple have filled these out—around 2.8 million people have some level
of current security clearance. The goal of this invasive background
check was to understand people’s exposure to blackmailing.

These records are stored in a database at the Office of Person-
nel Management. In 2015, the OPM announced that 20 million of
these records have been exposed. This was a big problem for the US
Government. Not only did it expose exactly how to blackmail every
person with security clearance, but also records of CIA employees
were not stored in this OPM database—this meant that if you knew
someone had a security clearance but they were not in the database,
you had an idea that they might be a CIA agent.

24.1.1 How it Happened

Learn Contractor Credentials. First, the attacker somehow got a
contractor’s credentials. This could have been through phishing or
some other means. The system did not use two-factor authentication,
and only around 1% of OPM users used smart cards. Importantly,
the contractor did not need to have many privileges on the system—
perhaps only enough permissions to log in.

Compromise Root Account. Then the attacker likely compromised the
root account on a local machine. Given that these systems were old,

6.1600 foundations of computer security 182

this was likely easy—old version of Windows were not particularly
careful about protecting access to the root account. One way to
do this was by scheduling a job for the future. Windows allowed
unprivileged users to schedule jobs that would run as the system
user, so a command like at 16:05 /interactive "cmd.exe" would
open a command prompt as the system user at 4:05 PM.

Learn Administrator Credentials. Even with access to the root account
on a local machine, the attacker needed to learn credentials to be able
to log into one of the machines with access to the database. Windows
did not store the password of the currently logged in user, but it
did store the hash of the password and uses that to authenticate to
the server. This means that the client does not need the cleartext
password to log in!

As we have covered many times, passwords are terrible for authen-
tication. Signatures, as used with standards like FIDO2/WebAuthn,
provide much stronger security and should be used whenever possi-
ble.

24.2 Transport Security: Mining your Ps & Qs

TLS is used all over the web, and many hardware devices from
routers to doorbells run TLS servers to provide management inter-
faces. To run TLS, these devices need a public key, and thus must
generate that public key. In RSA, which used to be the most popular
signature algorithm, a key was generated by multiplying to large
primes p and q such that N = pq. The key idea is that no one except
the signer knows the factorization of N.

When these devices boot for the first time, they need to generate
this public key. And for the factorization to be secret, p and q must
be random. However, many devices like routers and doorbells do not
have the input devices, hard drives, and other sources of randomness
that are typically used to generate secure keys.

It turned out that many of these devices were not able to generate
enough randomness before they generated their keys. As a result,
researchers that scanned the web found that many keys generated by
these devices were duplicated. They also found that many pairs of
keys shared one of their two prime factors. In either case, it was easy
to factorize these keys and thus find the corresponding private key.

24.3 Platform Security: Sony PS3 Hack

The Sony PS3 originally could boot Linux and Windows. Since
the hardware was subsidized by the games that they sold, PS3s

6.1600 foundations of computer security 183

were cheaper than comparable PCs, and for that reason PS3s were a
popular option for a cheap PC. In a software update, Sony disabled
the ability to run a custom operating system. Like the iPhone and
other systems we discussed, PS3s then used secure boot to ensure
that they only boot Sony-signed operating systems.

Sony used EC-DSA for their signatures, which resulted in signa-
tures along the lines of:

σ = (gr, r + H(pk||gr||m) · sk) (mod q)

σ′ = (gr, r + H(pk||gr||m′) · sk) (mod q)

In EC-DSA, r is supposed to be a long random number, serving
as a nonce. However, Sony re-used these nonces in pairs of signa-
tures. This meant that their signatures revealed their secret key! This
allowed others to sign their own operating systems.

Importantly, Sony had a plan for updating the PS3 firmware that
allowed them to ship a fix for this attack. However, attackers quickly
found flaws in every other update they shipped—it is very hard to
secure a device that the attacker has unconstrained access to.

24.4 Software Security: WannaCry Ransomware

Ransomware is a type of malware that encrypt important-looking
files on the infected system and demands a payment in Bitcoin to
decrypt the files. This is inconvenient and upsetting for personal
computers, but for enterprise computer systems this can cause huge
monetary losses. For hospital systems, this can even lead to loss of
life. This WannaCry randomware infected hundreds of thousands
of computers and caused billions of dollars of damange, but did not
make much money due to bad payment systems and slow decryp-
tion.

The bugs used to enable this were part of an exploit developed
and kept secret by the NSA called EternalBlue. It took advantage
of several C bugs, including an invalid cast, a parser bug, and an
allocation bug, to eventually achieve remote code execution over the
network on a Windows system.

The NSA intended to keep these exploits to themselves, and thus
did not inform Microsoft (or anyone else) about the bugs in their
software. However, an NSA contractor took terabytes of NSA data
home with him, including this exploit. On his home computer, he ran
Kaspersky antivirus. Importantly, Kaspersky sends suspicious files
home for analysis. Wall Street Journal reported that this was likely
how the exploit leaked and became a part of malware.

6.1600 foundations of computer security 184

In order to spread to many computers, WannaCry looked some-
thing like the following:

1. Connect to a website at a random-looking address and exit if it
succeeds. Security teams would often analyze software that they
thought may include malware by running it in a VM, allowing
network requests to succeed, and watching what happens. This
random-looking domain did not really exist, so this may have been
a way to try to detect when the software is running in a VM and
make it behave "normally“.

2. Install Tor and connect to command-and-contral infrastructure.

3. Encrypt all files with a fixed set of extensions with RSA and AES.

4. Demand a ransome to be paid to one of four static Bitcoin ad-
dresses.

5. Spread itself by trying to perform the exploit on all IPs in the local
network.

When designing a system, it is prudent to have the system as
simple as possible, since less software leads to fewer bugs. And of
course, any bug is a security bug—each of the bugs used in the Eter-
nalBlue exploit did not look like a security bug, but the combination
of them allowed for a powerful exploit.

24.5 Privacy: US Census

The US Census, performed every decade, collects data used to allo-
cate seats in the House of Representatives and by many researchers.
The Census Bureau is mandated to make this information public, but
is forbidden by law from publishing any data that allows individuals
to be identified.

In the 2020 census, the bureau used differential privacy to protect
released data from de-identification. However, they used ϵ = 19.61 to
avoid adding so much noise that the data lost its utility. This meant
that if the probability of some event happening to an individual
without the release of these data was p, the release of these data with
ϵ = 19.61 was guaranteed to make the probility at most ≈ e19.61 p, or
around a million times the original probability.

Part VII

Appendices

A
Factoring integers

The problem of integer factorization was central to 20th-century cryp-
tography. Breaking the one-wayness of the RSA trapdoor one-way
function (Chapter 6), for example, is no harder than factoring inte-
gers. In this chapter, we will see a couple of surprisingly powerful
algorithms for factoring integers.

We will only consider factoring numbers of the form N = pq, for
distinct odd primes p and q. (The general case is not too much more
challenging.) Throughout, let n = ⌈log2 N⌉ be the bitlength of the
number to factor.

A.1 Background

Trial division. We can factor N by trying to divide N by each of the
primes of size ≤

√
N and checking whether the result is an integer. If

so, we have found a factor of N. Since at least one of the two factors
of N is in {1, . . . ,

√
N}, this algorithm (“trial division”) runs in time

roughly
√

N = 2n/2.
Trial division is an exponential time algorithm, since it runs in time

2Ω(n), where the bitlength n is the size of the number to be factored.
The best known factoring algorithms run in sub-exponential time 2O(nc),
for some constant c < 1.

Euclid’s algorithm. An important subroutine in almost all factoring
algorithms is Euclid’s polynomial-time algorithm for computing the
greatest common divisor of two integers x and y. In this discussion, we draw on Arjen

Lenstra’s very nice survey on factor-
ing Arjen K Lenstra. “Integer factoring”.
In: Designs Codes, and Cryptography
19.2/3 (2000).

The principle of Euclid’s algorithm is that

gcd(x, y) = gcd(x, y mod x) and gcd(x, 0) = x.

So, for example, if we want to compute gcd(46, 12), we can compute
it as:

gcd(46, 12) = gcd(12, 10) = gcd(10, 2) = 2.

6.1600 foundations of computer security 188

Difference of squares. The second key idea is that, if we can find two
numbers x, y ∈ Z whose squares are congruent modulo N, we can
use these numbers to factor N:

x2 = y2 (mod N)

x2 − y2 = 0 (mod N)

(x + y)(x− y) = 0 (mod N)

If x = ±y, then this relation is not helpful to us. But if x ̸= ±y, It is not necessarily obvious that the
useful pairs (x, y) will ever exist. The
key idea is that, modulo N = pq, ever
number in Z∗N either has four square
roots or has none. If an element in Z∗N
has four square roots then the roots are
of the form r,−r, s,−s. In this case, a
pair (±r,±s) yields the sort of relation
that we need to factor.

then we know that x + y ̸= 0 mod N and x − y ̸= 0 mod N. So we
have:

(x + y)(x− y) = kN ∈ Z,

for some positive integer k ∈ Z. Then x + y must be a multiple of one
of the factors of N (but not both), and gcd(x + y, N) reveals a factor of
N.

The goal of many factoring algorithms—including the one we
will see today—is finding these integers x and y whose squares are
congruent modulo N.

A.2 Dixon’s algorithm

Dixon’s algorithm is one of the simplest sub-exponential-time factor-
ing algorithms. It gives a fast method for finding two numbers whose
squares are congruent modulo N. Once we have these squares, we
can use them to factor as in Appendix A.1

A.2.1 The idea

The principle of Dixon’s algorithm is that we will pick many random
numbers r ∈ Z∗N and square them modulo the integer N we would
like to factor.

Say that we are somehow able to find numbers r, r′ such that

r2 = 2 · 32 · 5 (mod N)

r′2 = 2 · 5 (mod N),

then we know that:

(rr′)2 = 22 · 32 · 52 (mod N)

(rr′)2 = (2 · 3 · 5)2 (mod N)

and now we have two numbers whose squares are congruent modulo
N:

x = rr′ and y = 2 · 3 · 5.

6.1600 foundations of computer security 189

If we are lucky, this is the useful type of congruence that we can use
to factor N (i.e., rr′ ̸= ±2 · 2 · 5 mod N).

The principle of Dixon’s algorithm is to generate many such rs
and then use linear algebra to find a subset of them whose product
modulo N is a perfect square.

A.2.2 The algorithm

Input: An integer N = pq for odd primes p and q. A parameter
B ∈N, which we refer to as “the size of the factor base.”

Output: The factors (p, q) of N.

1. Collect linear relations. Maintain a list L of pairs of (a) an element
in Z∗N and (b) vectors over ZB

2 . Repeat until L contains B + 1 pairs:

• Sample r ←R Z∗N .

• Compute s← (r2 mod N).

• Attempt to write s as a product of the first B primes:

s = 2e2 3e35e5 . . .

If a number completely splits into
prime factors ≤ B, we say that the
number is “B-smooth.”• If successful, add the pair (r, (e2, e3, e5, . . .)) to the list L.

2. Solve linear system. Let L = {(r1, v1), (r2, v2), . . . }. Find a non-
zero combination of the vectors in L that sums to zero modulo 2.
That is, find S ⊆ [B + 1] such that

∑
i∈S

vi = (0, 0, 0, · · · , 0) ∈ ZB
2 .

Letting We can find the set S using Gaussian
elimination in roughly B3 time. Since
the set of vectors will be extremely
sparse, there are faster methods that
implementers use in practice.

(e2, e3, e5, . . .)← ∑
i∈S

vi,

we then have a difference of squares:(
∑
i∈S

ri

)2

= (2(
e2
2) · 3(

e3
3) · 5(

e5
2) · · ·)2 (mod N).

3. Use Euclid’s algorithm to try to factor N. We can take:

x =

(
∑
i∈S

ri

)
y = 2(

e2
2) · 3(

e3
3) · 5(

e5
2) · · ·)

and compute gcd(x + y, N). With probability roughly 1/2, over the
random choice of the rs, this will yield a factor of N.

6.1600 foundations of computer security 190

A.2.3 The analysis.

The costs of the three steps of the algorithms are:

1. Each iteration of the loop requires us to try to factor a number into
primes ≤ B. We can factor in this way by trial division using time
roughly B. I’m ignoring any log B factors, which

do matter very much in practice.
The question then is how many trials it will take for us to find a
single smooth number. For a smoothness bound B, let’s say for
now that it takes T(B) trials—we will look into the precise value of
T(B) in a moment..

2. Solving the linear system using Gaussian elimination takes
roughly B3 time.

3. Run Euclid’s algorithm—the time required here is negligible
compared to the time of the first two steps. This step runs in time
poly(log N) = poly(n).

Putting everything together, we have that factoring an n-bit num-
ber with a factor base of size B takes time:

B · T(B) + B3 + poly(n). (A.1)

Smoothness probabilities. The key question that we need to answer to
complete the analysis is

“If we pick an integer uniformly at random from {1, . . . , N}, what is
the probability that the integer will be B-smooth?”

The convention is to denote the number of B-smooth numbers in
{1, . . . , N} as Ψ(N, B). When B is “not too small,” we have: For many more details on these es-

timates, take a look at Granville’s
very nice survey on smooth num-
bers. Andrew Granville. “Smooth
numbers: computational number theory
and beyond”. In: Algorithmic number
theory: lattices, number fields, curves and
cryptography 44 (2008), pp. 267–323

Ψ(N, B) ≈ N · u−u+o(1) for u =
log N
log B

.

The probability of a random number modulo N being B-smooth is
then Ψ(N, B)/N and the expected number of tries it will take for us
to find a smooth number is:

T(B) = 1/Ψ(N, B).

We are being slightly imprecise—we
actually need to know the number of
squares (quadratic residues) modulo
N that are smooth. But heuristically,
we can assume that quadratic residues
behave like random integers modulo N
for the purposes of smoothness.

Now we can plug this estimate into the expression (A.1) for the
running time of Dixon’s algorithm and we can solve for the value
of B that minimizes the running time. In particular, to minimize the
running time we want:

B ≈ T(B) ≈ N/Ψ(N, B) = uu,

6.1600 foundations of computer security 191

for u = (log N)/(log B).

B = uu

log B = u log u

log B =
log N
log B

log
log N
log B

log2 B ≈ log N log log N

log B ≈
√

log N log log N

B ≈ exp(
√

log N log log N).

If we plug this value of B into Dixon’s algorithm, we get a running
time of

exp(O(
√

log N log log N) = 2O(
√

n log n).

Bibliography

Bellare, Mihir and Phillip Rogaway. “Random oracles are practical: A
paradigm for designing efficient protocols”. In: ACM Conference on
Computer and Communications Security. 1993.

Diffie, Whitfield and Martin E Hellman. “New Directions in Cryptog-
raphy”. In: Transactions on Information Theory 22.6 (1976).

– “Exhaustive Cryptanalysis of the NBS Data Encryption Standard”.
In: Computer 6.10 (1977), pp. 74–84.

Duong, Thai and Juliano Rizzo. Flickr’s API Signature Forgery Vulner-
ability. https://vnhacker.blogspot.com/2009/09/flickrs-api-
signature-forgery.html. Sept. 2009.

Granville, Andrew. “Smooth numbers: computational number theory
and beyond”. In: Algorithmic number theory: lattices, number fields,
curves and cryptography 44 (2008), pp. 267–323.

Hastad, J. et al. “A Pseudorandom Generator from any One-way
Function”. In: SIAM Journal on Computing 28.4 (1999), pp. 1364–
1396.

Hill, Mark D. et al. “On the Spectre and Meltdown Processor Security
Vulnerabilities”. In: IEEE Micro 39.2 (2019), pp. 9–19.

Honan, Mat. How Apple and Amazon Security Flaws Led to My Epic
Hacking. https://www.wired.com/2012/08/apple-amazon-mat-
honan-hacking/. Aug. 2012.

Koscher, Karl et al. “Experimental security analysis of a modern
automobile”. In: IEEE Symposium on Security and Privacy. 2010.

Lamport, Leslie. Constructing Digital Signatures from a One Way Func-
tion. Tech. rep. Oct. 1979.

Lenstra, Arjen K. “Integer factoring”. In: Designs Codes, and Cryptogra-
phy 19.2/3 (2000).

Lenstra, Arjen K, Thorsten Kleinjung, and Emmanuel Thomé. “Uni-
versal security”. In: Number Theory and Cryptography. 2013.

Motoyama, Marti et al. “Re: CAPTCHAs—Understanding CAPTCHA-
Solving Services in an Economic Context”. In: Proceedings of the
19th USENIX Security Symposium. Washington, DC, Aug. 2010.

Müller, Jens et al. “Practical decryption exfiltration: Breaking pdf
encryption”. In: ACM CCS. 2019.

https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/

6.1600 foundations of computer security 194

Nemec, Matus et al. “The Return of Coppersmith’s Attack: Practical
Factorization of Widely Used RSA Moduli”. In: CCS. 2017.

Rivest, Ronald L., Adi Shamir, and Leonard Adleman. “A method
for obtaining digital signatures and public-key cryptosystems”. In:
Communications of the ACM 21.2 (1978), pp. 120–126.

Thompson, Ken. “Reflections on trusting trust”. In: Communications of
the ACM 27.8 (1984).

Trew, J. ‘Find My iPhone’ exploit may be to blame for celebrity photo hacks
(update). https://www.engadget.com/2014-09-01-find-my-
iphone-exploit.html. Sept. 2014.

Wegman, Mark N and J Lawrence Carter. “New hash functions and
their use in authentication and set equality”. In: Journal of computer
and system sciences 22.3 (1981).

Yilek, Scott et al. “When private keys are public: Results from the
2008 Debian OpenSSL vulnerability”. In: SIGCOMM. 2009.

Zetter, Kim. Palin e-mail hacker says it was easy. https://www.wired.
com/2008/09/palin-e-mail-ha/. Sept. 2008.

https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html
https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html
https://www.wired.com/2008/09/palin-e-mail-ha/
https://www.wired.com/2008/09/palin-e-mail-ha/

	Disclaimer
	Contributors
	What is Security?
	Overview
	What is Security?
	Examples
	What are the general principles for secure system design?

	I Authentication
	Authenticating People
	Authentication: Security goals
	Protecting against direct attacks: Bearer tokens, PINs, and passwords
	Protecting against eavesdropping attacks: Challenge-response protocols
	Protecting against active attacks: Signatures and U2F
	Two-Factor Authentication

	Collision Resistance and File Authentication
	Intuition: Collision resistance
	Defining collision resistance (slightly more formally)
	Constructing a collision-resistant hash function
	Applications: Merkle Trees

	Message Authentication Codes
	Defining message authentication codes
	Pseudorandom Functions
	From pseudorandom functions to MACs

	Digital Signatures
	Definitions
	Constructing a Signature Scheme
	Constructing a Signature Scheme for Signing a Single Bit
	One-time-secure Signatures (Lamport Signatures)
	A one-time signature scheme for arbitrary-length messages
	From one-time security to many-time security
	Choosing Signature Schemes

	RSA Signatures
	Trapdoor one-way permutations
	The RSA construction: Forward direction
	The RSA construction: Inverse direction

	Public-key Infrastructure
	Public-key infrastructure
	Option 1: Use verification keys as names
	Trust on first use (TOFU)
	Certificates

	II Transport Security
	Introduction to Encryption
	Background
	Encryption Scheme Syntax
	One-time Pad
	A Weak Encryption Scheme
	Encrypting longer messages: Counter mode

	Authenticated Encryption
	Defining Authenticated Encryption
	AES-GCM (Galois Counter Mode)

	Key Exchange and Public-key Encryption
	Key exchange
	Diffie-Hellman key exchange
	The discrete-log problem
	Generalizations of Diffie-Hellman
	Defining Public-Key Encryption
	ElGamal Encryption Scheme

	Encryption in Practice
	File Encryption
	Stream Encryption: Transport Layer Security (TLS)
	Properties that TLS does not provide

	Open Questions in Encryption
	Problem: Encryption does not hidethe source and destination of a packet
	Problem: Attacker sees packet sizes and timings
	A Promising Direction: Metadata Privacy for Messaging
	Problem: Endpoint Compromise

	III Platform Security
	Architecting a secure system
	Isolation
	Authentication
	Authorization Policies
	Auditing
	Delegation and Chained Requests

	Isolation
	Defining Isolation
	Implementing Isolation

	Software Trust
	Library Imports
	Building Binaries
	Installing & Updating Software
	Booting the System: Secure Boot
	Secure attention key

	Hardware Security
	Hardware Bug
	Attacks without Physical Access
	Physical Attacks

	Case Study: iOS Security
	App Security
	iOS Secure Boot
	iOS protection for data at rest

	IV Software Security
	Software Security
	Memory Corruption
	Encoding Bugs
	Concurrency Bugs
	Resource Usage
	Dealing with Software Bugs

	Privilege Separation
	Example: Logging
	Example: Cryptography Keys
	Example: Media Codecs in Web Browsers
	Example: Server for Network Time Protocol (NTP)
	Example: OpenSSH Server
	Example: Web applications
	Example: Web client
	Example: Web browser
	Example: Payment Systems

	Bug Finding
	Bug finding: A concrete example
	Manual testing
	Fuzzing
	Symbolic execution

	Runtime Defenses
	Buffer Overflow Defenses
	Input Sanitization Defenses

	V Advanced Topics in Cryptography
	Privacy with Utility
	Functional Encryption
	Zero-Knowledge Proofs

	Differential Privacy
	Approach 1: Anonymize the Data
	Approach 2: Publish Only Statistics
	Differential Privacy

	VI Conclusions
	Conclusions
	Authentication: OPM Hack
	Transport Security: Mining your Ps & Qs
	Platform Security: Sony PS3 Hack
	Software Security: WannaCry Ransomware
	Privacy: US Census

	VII Appendices
	Factoring integers
	Background
	Dixon's algorithm

