# Copyright (c) 2020, Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Differentiable Augmentation for Tensorflow. Reference: - [Differentiable Augmentation for Data-Efficient GAN Training]( https://arxiv.org/abs/2006.10738) (NeurIPS 2020) """ import tensorflow as tf def DiffAugment(x, policy='', channels_first=False): if policy: if channels_first: x = tf.transpose(x, [0, 2, 3, 1]) for p in policy.split(','): for f in AUGMENT_FNS[p]: x = f(x) if channels_first: x = tf.transpose(x, [0, 3, 1, 2]) return x def rand_brightness(x): magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) - 0.5 x = x + magnitude return x def rand_saturation(x): magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) * 2 x_mean = tf.reduce_mean(x, axis=3, keepdims=True) x = (x - x_mean) * magnitude + x_mean return x def rand_contrast(x): magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) + 0.5 x_mean = tf.reduce_mean(x, axis=[1, 2, 3], keepdims=True) x = (x - x_mean) * magnitude + x_mean return x def rand_translation(x, ratio=0.125): batch_size = tf.shape(x)[0] image_size = tf.shape(x)[1:3] shift = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) translation_x = tf.random.uniform([batch_size, 1], -shift[0], shift[0] + 1, dtype=tf.int32) translation_y = tf.random.uniform([batch_size, 1], -shift[1], shift[1] + 1, dtype=tf.int32) grid_x = tf.clip_by_value(tf.expand_dims(tf.range(image_size[0], dtype=tf.int32), 0) + translation_x + 1, 0, image_size[0] + 1) grid_y = tf.clip_by_value(tf.expand_dims(tf.range(image_size[1], dtype=tf.int32), 0) + translation_y + 1, 0, image_size[1] + 1) x = tf.gather_nd(tf.pad(x, [[0, 0], [1, 1], [0, 0], [0, 0]]), tf.expand_dims(grid_x, -1), batch_dims=1) x = tf.transpose(tf.gather_nd(tf.pad(tf.transpose(x, [0, 2, 1, 3]), [[0, 0], [1, 1], [0, 0], [0, 0]]), tf.expand_dims(grid_y, -1), batch_dims=1), [0, 2, 1, 3]) return x def rand_cutout(x, ratio=0.5): if tf.random.uniform([], minval=0.0, maxval=1.0) < 0.3: batch_size = tf.shape(x)[0] image_size = tf.shape(x)[1:3] cutout_size = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) offset_x = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[0] + (1 - cutout_size[0] % 2), dtype=tf.int32) offset_y = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[1] + (1 - cutout_size[1] % 2), dtype=tf.int32) grid_batch, grid_x, grid_y = tf.meshgrid(tf.range(batch_size, dtype=tf.int32), tf.range(cutout_size[0], dtype=tf.int32), tf.range(cutout_size[1], dtype=tf.int32), indexing='ij') cutout_grid = tf.stack([grid_batch, grid_x + offset_x - cutout_size[0] // 2, grid_y + offset_y - cutout_size[1] // 2], axis=-1) mask_shape = tf.stack([batch_size, image_size[0], image_size[1]]) cutout_grid = tf.maximum(cutout_grid, 0) cutout_grid = tf.minimum(cutout_grid, tf.reshape(mask_shape - 1, [1, 1, 1, 3])) mask = tf.maximum(1 - tf.scatter_nd(cutout_grid, tf.ones([batch_size, cutout_size[0], cutout_size[1]], dtype=tf.float32), mask_shape), 0) x = x * tf.expand_dims(mask, axis=3) return x AUGMENT_FNS = { 'color': [rand_brightness, rand_saturation, rand_contrast], 'translation': [rand_translation], 'cutout': [rand_cutout], }