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Chapter 1

Overview of Créatúr

Créatúr1 is a software framework for automating experiments with artificial life (ALife). It provides a daemon which
ensures that each agent gets its turn to use the CPU. You can use other applications on the computer at the same
time without fear of interfering with experiments; they will run normally (although perhaps more slowly). Créatúr
also provides a library of modules to help you implement your own ALife species. Even if you aren’t using the Créatúr
framework, you may find some of these modules useful.

1Créatúr (pronounced kray-toor) is an irish word meaning animal, creature, or unfortunate person.
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Chapter 2

Getting started

2.1 Installing Créatúr and the examples
The instructions below should work on Linux or OSX. (Créatúr uses the unix package in order to implement the
daemon.)

1. Make sure you’ve installed the Haskell platform. You can get it from http://hackage.haskell.org/platform/.

2. At the command prompt, type cabal install creatur. This will install the Créatúr framework.

3. Download creatur-examples-master.zip from https://github.com/mhwombat/creatur-examples/archive/
master.zip. This contains the examples used in this tutorial.

4. Unzip the file you just downloaded (creatur-examples-master.zip). This will create a directory called
creatur-examples-master.

5. At the command prompt, go to the directory you just created. (cd creatur-examples-master).

6. Build and install the examples by typing cabal install.

2.2 Learning Haskell
If you’ve never used Haskell before, I recommend the following books. The complete content of both books is freely
available online, so try both and see which one best suits your learning style. As suggested by the title, Real World
Haskell teaches Haskell using a series of practical examples. Learn You a Haskell is presented with a great deal of
humour, and may give you a deeper understanding of functional programming concepts.

• Learn You a Haskell for Great Good!: A Beginner’s Guide
Miran Lipovaca
ISBN-13: 978-1593272838
http://learnyouahaskell.com/

• Real World Haskell
Bryan O’Sullivan, Don Stewart, and John Goerzen
ISBN-13: 978-0596514983
http://book.realworldhaskell.org/

The Haskell community is very friendly and welcoming to newbies. Two good places to ask questions are the be-
ginners@haskell.org mailing list (see http://www.haskell.org/haskellwiki/Mailing_lists for more information)
and Stack Overflow http://stackoverflow.com/questions/tagged/haskell.

The API documentation for Créatúr is available at http://hackage.haskell.org/package/creatur.

2.3 IMPORTANT: GHC version dependencies
You may notice some differences between the snippets of source code presented in this tutorial and the actual source
code for the examples. GHC version 7.10 introduced some important changes. For Créatúr users, this means that it
is no longer necessary to import Control.Applicative. In order to make these examples work with both older and
newer versions of GHC, I made some (temporary) changes to the examples. These changes are explained below.

First, I temporarily added a CPP language pragma to allow conditional compilation.

{-# LANGUAGE CPP #-}
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You can remove that line if you’re only working with GHC 7.10 or greater, but it will do no harm to leave it in.
Finally, I added some code which imports Control.Applicative or not, depending on the GHC version used.

#if MIN_VERSION_base(4,8,0)
-- Starting with GHC 7.10 (base 4.8), we don't need to import
-- Control.Applicative
#else
import Control.Applicative
#endif

You don’t need those lines if you’re only working with GHC 7.10 or greater, but it will do no harm to leave them
in.
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Chapter 3

The main daemon loop

The daemon clock is a simple counter used to schedule events. At each tick of the clock, the daemon:

1. Reads the current list of agents, which are stored as separate files in the current directory.

2. Queues the agents in random order.

3. Processes the queue, giving each agent an opportunity to use the CPU by invoking a user-supplied function.

4. Increments the daemon clock.

A different random order is used at each clock tick so that no agent has an unfair advantage. (If agents were always
processed in the same order, agents near the end of the list might, for example, find that the best food has already
been eaten or that the desirable mating partners are already taken.)
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Chapter 4

Overview of the process

The steps for using Créatúr to create and run an ALife experiment are listed below.

1. Create one or more ALife species

2. Generate an initial population

3. Configure a daemon

4. Build and run the universe

6



Chapter 5

A very simple species

In this part of the tutorial, we create and run a universe with a very simple species. This will introduce you to the
basics of the Créatúr framework.

5.1 Create a species
We’ll only use one species in this example, and it will be a very simple species called Rock. Rocks don’t reproduce, so
we don’t need to worry about genetics.

A complete listing of the source code discussed here is provided on page 7. We’ll discuss the main points here.
The DeriveGeneric pragma activates support for generics (available beginning with GHC 7.2 or the Haskell Platform
2012.4.0.0), which allows some code to be generated automatically for us.

{-# LANGUAGE DeriveGeneric #-}

Rocks have a unique ID, and a counter. We will use the counter to demonstrate that the Créatúr framework
persists (“remembers”) the state of the rock from one run to the next.

data Rock = Rock String Int deriving (Show, Generic)

All agents used in the Créatúr framework must be an instance of Serialize, which ensures that they can be
written to and read from a database or file system. Notice that we do not need to write put and get functions.
Deriving Generic instructs Haskell to generate them for us.

instance Serialize Rock

All species used in the Créatúr framework must be an instance of ALife.Creatur.Agent, which requires us to
implement two functions: agentId and isAlive. The function agentId returns a unique identifier for this agent. The
function isAlive indicates whether the agent is currently alive (if it is not alive, it would automatically be archived).
Since rocks never die, this function can simply return True.

instance Agent Rock where
agentId (Rock name _) = name
isAlive _ = True

Making Rock an instance of ALife.Creatur.Database.Record allows us to store agents and retrieve them from
the file system. A record needs a unique identifier; we can use agentId for this purpose.

instance Record Rock where key = agentId

Finally, we need to write the function that will be invoked by the daemon when it is the agent’s turn to use the
CPU. This function is passed as a configuration parameter to the daemon, as will be seen in Section 5.3. This example
is quite simple; it merely writes a message to the log file and returns a new version of the rock, with an updated
counter. However, this is where your agents get a chance to eat, mate, and do whatever else they need to do. We’ll
see a more typical implementation in Section 7.1.

run :: Rock -> StateT (SimpleUniverse Rock) IO Rock
run (Rock name k) = do
writeToLog $ name ++ "'s turn. counter=" ++ show k
return $ Rock name (k+1)

The type signature of run is explained in Section 5.3. The complete code listing is below.
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{-# LANGUAGE DeriveGeneric #-}

module Tutorial.Chapter5.Rock (Rock(..), run) where

import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import ALife.Creatur.Universe (SimpleUniverse, writeToLog)
import Control.Monad.State ( StateT )
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

data Rock = Rock String Int deriving (Show, Generic)

instance Serialize Rock

instance Agent Rock where
agentId (Rock name _) = name
isAlive _ = True

instance Record Rock where key = agentId

run :: Rock -> StateT (SimpleUniverse Rock) IO Rock
run (Rock name k) = do
writeToLog $ name ++ "'s turn. counter=" ++ show k
return $ Rock name (k+1)

5.2 Generate an initial population
We will create our first population in a directory called Chapter5. In main, we initialise the chapter5 directory, create
two rocks, and write them to the directory. The parameters to the mkSimpleUniverse command specify the name of
the universe, and the path to the directory that contains it. When a log file reaches the maximum size, it is closed
and a new log file is started.

import Tutorial.Chapter5.Rock (Rock(..))
import ALife.Creatur.Universe (store, mkSimpleUniverse)
import Control.Monad.State.Lazy (evalStateT)

main :: IO ()
main = do
let u = mkSimpleUniverse "Chapter5" "chapter5"

let a = Rock "Rocky" 42
evalStateT (store a) u

let b = Rock "Roxie" 99
evalStateT (store b) u

return ()

The procedure for running this program will be described in Section 5.4.

5.3 Configure a daemon
The module ALife.Creatur.Universe.Task provides some tasks that you can use with the daemon. These tasks
handle reading and writing agents, which reduces the amount of code you need to write. (It’s also easy to write your
own tasks, using those in ALife.Creatur.Universe.Task as a guide.) The simplest task has the type signature:

runNoninteractingAgents
:: (Universe u, Serialize (Agent u))
=> AgentProgram u -> SummaryProgram u -> StateT u IO ()

8



That signature looks complex, but essentially it means that if you supply an AgentProgram, it will run it for you.
So what type signature must your AgentProgram have? Here’s the definition.

type AgentProgram u = Agent u -> StateT u IO (Agent u)

This is the signature for an agent that doesn’t interact with other agents. The input parameter is the agent whose
turn it is to use the CPU. The program must return the agent (which may have been modified). The universe will then
automatically be updated with these changes. We will use the run function in Tutorial.Chapter5.Rock (discussed
in Section 5.1) as our AgentProgram. Its type signature is shown below.

run :: Rock -> StateT (SimpleUniverse a) IO Rock

SimpleUniverse a provides the logging, clock, and agent naming functionality we need. So the type signature of
run is consistent with AgentProgram. The program below configures and launches the daemon.

module Main where

import Tutorial.Chapter5.Rock (run)
import ALife.Creatur.Daemon (CreaturDaemon(..), Job(..),
simpleDaemon, launch)

import ALife.Creatur.Universe (mkSimpleUniverse)
import ALife.Creatur.Task (simpleJob, runNoninteractingAgents,
doNothing)

import System.Directory (canonicalizePath)

main :: IO ()
main = do
dir <- canonicalizePath "chapter5" -- Required for daemon
let u = mkSimpleUniverse "Chapter5" dir
let j = simpleJob

{ task=runNoninteractingAgents run doNothing doNothing,
sleepTime=0 }

launch $ CreaturDaemon (simpleDaemon j u) j

5.4 Build and run the example
Here is the listing of creatur-examples.cabal.

Name: creatur-examples
Version: 5.9.5
-- keep in sync with créatúr, update tutorial and dependencies below
Stability: experimental
Description: Examples demonstrating the use of the \"Créatúr\"

framework for artificial life experiments.
Synopsis: Examples demonstrating the use of \"Créatúr\".
License: BSD3
License-file: LICENSE
Homepage: https://github.com/mhwombat/creatur-example
Bug-reports: https://github.com/mhwombat/creatur-examples/issues
Copyright: (c) Amy de Buitléir 2010-2015
Author: Amy de Buitléir
Maintainer: amy@nualeargais.ie
Build-Type: Simple
Cabal-Version: >=1.8

source-repository head
type: git
location: https://github.com/mhwombat/creatur-examples.git

source-repository this
type: git
location: https://github.com/mhwombat/creatur-examples.git
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tag: 5.9.5

Executable chapter5-daemon
Main-Is: Tutorial/Chapter5/Daemon.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: array ==0.5.*,

base ==4.*,
cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
hdaemonize ==0.5.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
split ==0.2.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
unix ==2.7.*,
zlib ==0.5.*

Executable chapter5-init
Main-Is: Tutorial/Chapter5/GeneratePopulation.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: base ==4.*,

cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
zlib ==0.5.*

Executable chapter7-daemon
Main-Is: Tutorial/Chapter7/Daemon.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: array ==0.5.*,

base ==4.*,
cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
hdaemonize ==0.5.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
split ==0.2.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
unix ==2.7.*,
zlib ==0.5.*

Executable chapter7-init
Main-Is: Tutorial/Chapter7/GeneratePopulation.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: base ==4.*,
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cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
zlib ==0.5.*

Executable chapter8-daemon
Main-Is: Tutorial/Chapter8/Daemon.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: array ==0.5.*,

base ==4.*,
cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
hdaemonize ==0.5.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
split ==0.2.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
unix ==2.7.*,
zlib ==0.5.*

Executable chapter8-init
Main-Is: Tutorial/Chapter8/GeneratePopulation.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: base ==4.*,

cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
zlib ==0.5.*

Executable chapter9-daemon
Main-Is: Tutorial/Chapter9/Daemon.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: array ==0.5.*,

base ==4.*,
cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
hdaemonize ==0.5.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
split ==0.2.*,
time ==1.4.* || ==1.5.*,
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transformers ==0.4.*,
unix ==2.7.*,
zlib ==0.5.*

Executable chapter9-init
Main-Is: Tutorial/Chapter9/GeneratePopulation.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: base ==4.*,

cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
random ==1.1.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
zlib ==0.5.*

Executable chapter10-daemon
Main-Is: Tutorial/Chapter10/Daemon.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: array ==0.5.*,

base ==4.*,
cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
hdaemonize ==0.5.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
random ==1.1.*,
split ==0.2.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
unix ==2.7.*,
zlib ==0.5.*

Executable chapter10-init
Main-Is: Tutorial/Chapter10/GeneratePopulation.hs
GHC-Options: -Wall
Hs-source-dirs: src
Build-Depends: base ==4.*,

cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
random ==1.1.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
zlib ==0.5.*

Executable chapter11
Main-Is: Tutorial/Chapter11/Example.hs
GHC-Options: -Wall
Hs-source-dirs: src
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Build-Depends: base ==4.*,
cereal ==0.4.*,
creatur ==5.9.5,
directory ==1.2.*,
ghc-prim ==0.3.* || ==0.4.*,
MonadRandom ==0.3.*,
mtl ==2.2.*,
old-locale ==1.0.*,
time ==1.4.* || ==1.5.*,
transformers ==0.4.*,
zlib ==0.5.*

1. If you haven’t already done so, follow the instructions in Section 2.1.

2. Create the initial population by running chapter5-init.

3. Start the daemon with the command sudo chapter5-daemon start.

4. Stop the daemon with the command sudo chapter5-daemon stop. (Stopping the daemon may take a few
seconds.)

Log messages are sent to chapter5/log/Chapter5.log. Examine that file and notice that the counter is counting
up for both rocks. If you stop the daemon and restart it, it will pick up where it left off 1

A sample extract from the log file is shown below. The first field is the system clock time. The second field is the
daemon clock time. The third field is the log message. Note that in clock tick 0, Rocky gets to use the CPU before
Rocky, while in clock tick 3, Roxie goes first. This demonstrates the randomisation discussed in section 3.

130121121233+0000 Starting
130121121233+0000 0 Rocky's counter is 42
130121121233+0000 0 Roxie's counter is 99
130121121233+0000 1 Rocky's counter is 43
130121121233+0000 1 Roxie's counter is 100
130121121233+0000 2 Roxie's counter is 101
130121121233+0000 2 Rocky's counter is 44
130121121233+0000 3 Roxie's counter is 102
130121121233+0000 3 Rocky's counter is 45
130121121234+0000 4 Rocky's counter is 46
130121121234+0000 4 Roxie's counter is 103

5.5 Key points
• Any species used in the Créatúr framework must be an instance of ALife.Creatur.Agent and Serialize.

Normally the species should also be an instance of ALife.Creatur.Database.Record.

• It is generally not necessary to write an implementation of Serialize. Instead, add deriving Generic to the
declaration, and declare instance Serialize MyClass.

• Consult the haddock documentation (http://hackage.haskell.org/package/creatur) for more detailed information
about the API.

1When the stop command is received, the daemon will attempt to finish the processing for the current agent. Depending on the processor
speed and the complexity of the agent task, it may not finish before the hard kill which is issued three seconds later. The database or file
system is not updated until an agent’s turn at the CPU is complete, so any partial results are discarded. If the daemon terminates while
an agent is running, it “remembers” the state of the queue; that agent’s turn will start over when the daemon is restarted.
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Chapter 6

Recombination

When agents reproduce, the offspring will inherit a mixture of genetic information from both parents. Here are two
scenarios that could be used, although there are other possibilities.

1. Your agents use asexual reproduction. Each agent has a single sequence of genetic information. When two agents
mate, their genes are shuffled to produce two new sequences. You can create two children from these sequences,
or discard one sequence and create a child with the remaining sequence.

2. Your agents use sexual reproduction. Each agent has two sequences of genetic information. When two agents
mate, each agent contributes one sequence to the child. A parent’s two sequences are shuffled to produce two
new sequences. One of the sequences is discarded; the other sequence becomes that parent’s contribution to the
child’s genome. The same process occurs with the other parent’s genome. The two sequences (one from each
parent) are combined to create the child’s genome. This is analogous to the production of a gamete (ovum or
sperm) in biology.

Both scenarios involve shuffling a pair of sequences to produce two new pairs, and possibly discarding one of
the sequences. In addition, you may wish to allow occasional random mutations. The Créatúr framework provides
the several operations for this purpose, in the ALife.Creatur.Genetics.Recombination package. These operations
can be applied (multiple times) with specified probabilities and combined in various ways. Two common operations,
crossover and cut-and-splice, are illustrated below. In crossover, a single crossover point is chosen. All data beyond
that point is swapped between strings. In cut-and-splice, two points are chosen, one on each string. This generally
results in two strings of unequal length.

Before: After:

Figure6.1: Crossover

Before: After

Figure6.2: Cut-and-splice

Here’s a sample program that might be used to shuffle two sequences of genetic material.

withProbability 0.1 randomCrossover (xs, ys) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

To understand how this program works, let’s walk through a simple example. Suppose this program acted on the
following pair of sequences:

([A,A,A,A,A,A,A,A,A,A],[C,C,C,C,C,C,C,C,C,C])

The randomCrossover function might perform a simple crossover, perhaps resulting in:

([A,A,A,A,A,A,A,C,C,C],[C,C,C,C,C,C,C,A,A,A])
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TherandomCutAndSplice function might then perform a cut-and-splice, perhaps resulting in:

([A,A,A,A,C,A,A,A],[C,C,C,C,C,C,A,A,A,C,C,C])

The mutatePairedLists function might then mutate one or both sequences, perhaps resulting in

([T,A,A,A,C,A,A,A],[C,C,C,C,C,C,A,A,C,C,C,C])

The numbers 0.1, 0.01, and 0.001 control the likelihood of each of the three operations occurring. After the first three
operations, we have two new sequences. In this example, we only want one of the sequences, so the final line randomly
chooses one.

To perform more than one crossover, the operation can simply be repeated as shown below.

withProbability 0.1 randomCrossover (xs, ys) >>=
withProbability 0.08 randomCrossover (xs, ys) >>=
. . .

Alternatively, we can choose the number of crossover operations at random. The function repeatWithProbability
performs an operation a random number of times, such that the probability of repeating the operation n times is pn.

repeatWithProbability 0.1 randomCrossover (xs, ys) >>=
. . .

Other recombination operators are also available. Consult the documentation of ALife.Creatur.Genetics.
Recombination for more information.
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Chapter 7

Simplified sexual reproduction

In this part of the tutorial, we create a species with a greatly simplified form of sexual reproduction that is often used
in artificial life and genetic programming

7.1 Create a species
The species used in this example is called Plant. Each Plant has a unique ID, a flower colour, an energy level, and
some genetic information. (A complete listing of the source code discussed here is provided on page 17.)

data Plant = Plant
{
plantName :: String,
plantFlowerColour :: FlowerColour,
plantEnergy :: Int,
plantGenome :: Sequence

} deriving (Show, Generic)

As with Rocks, the type Plant will be an instance of the Serialize, Agent and Record classes. Our plants will
stay alive until all of their energy is gone.

instance Serialize Plant

instance Agent Plant where
agentId = plantName
isAlive plant = plantEnergy plant > 0

instance Record Plant where key = agentId

We’ll have a choice of flower colours.
data FlowerColour = Red | Orange | Yellow | Violet | Blue
deriving (Show, Eq, Generic, Enum, Bounded)

In order for Plant to be an instance of Serialize, any type that it uses must also be an instance. So we make
FlowerColour be an instance of Serialize.

instance Serialize FlowerColour

We need a way to encode the plant genes into DNA-like sequences that can be shuffled, or even mutated, during
reproduction. We’ll encode the genes as sequences of Bools. We could write our own coding scheme, but ALife.
Creatur.Genetics.Code.BRGCBool provides a scheme for us, using a class called Genetic. The Genetic class provides
the method put, which encodes a gene and writes it to a sequence, and the method get, which reads and decodes the
first gene in a sequence. By making FlowerColour an instance of Genetic, FlowerColour will be encoded as a string
of boolean values using a Gray code. A Gray code maps values to codes in a way that guarantees that the codes for
two consecutive values will differ by only one bit. This feature is useful for encoding genes because the result of a
crossover operation will be similar to the inputs. This helps to ensure that offspring are similar to their parents, as
any radical changes from one generation to the next are the result of mutation alone.

When the genes of an agent have a small set of possible values, it is practical to store their genetic information as a
string of Bools. (If an agent has genes with a larger number of possible values, it may be better to store their genetic
information as a string of numbers. Créatúr also provides ALife.Creatur.Genetics.Code.BRGCWord8, which encodes
the genes using a Gray code, but stores them using a string of Word8s. Since BRGCWord8 provides most of the same
functions as BRGCBool, all we need to do to make Plant use Word8s is to import BRGCWord8 instead of BRGCBool.)
We’ll see an example of this in Section 9.1.
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instance Genetic FlowerColour

To support reproduction, we need a way to build a plant from its genome. First, each plant needs a copy of its
genome in order to produce offspring; we’ll use the copy method to obtain this. Next, we determine the colour of the
bug. We could use the method get in the class Genetic, which returns a Maybe value containing the next gene in a
sequence. However, our sequence of Bools may not be a valid code for a colour, in which case the call to get would
return Nothing. In this example, we will create a plant no matter what errors there are in the genome, so we will use
getWithDefault, using Red as the default value. (Alternatively, we could treat the mutation as non-viable, and not
create the offspring. We’ll see an example of that in Section 9.1. All plants start life with an energy of 10.

buildPlant :: String -> Reader (Either [String] Plant)
buildPlant name = do
g <- copy
colour <- getWithDefault Red
return . Right $ Plant name colour 10 g

We need a way to mate two plants and produce some offspring. We can do this by implementing the Reproductive
class in ALife.Creatur.Genetics.Reproduction.SimplifiedSexual. (In reality, plants use a variety of reproduction
methods.) This class requires us to implement the following:

1. A type called Base, which specifies the type used to encode genes for this species. Recall that we’ve used Bools
for this purpose.

2. A method called recombine which shuffles (and maybe mutates) the parent’s genes to produce the offspring.

3. A method called build which creates the offspring. We can call the read method in the Reproductive class,
supplying the buildPlant method as an argument.

instance Reproductive Plant where
type Strand Plant = Sequence
recombine a b =
withProbability 0.1 randomCrossover (plantGenome a, plantGenome b) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runReader (buildPlant name)

The implementation for recombine uses the sample recombination program discussed on page 14. Next, we
write the function run, which is invoked when it is the agent’s turn to use the CPU. Because our plants need to
interact in order to mate, when we write the daemon (in Section 7.3) we will use runInteractingAgents instead
of runNoninteractingAgents. This requires a different type signature for run than we used for rocks. The type
signature we need is

type AgentsProgram u = [Agent u] -> StateT u IO [Agent u]

The input parameter is a list of agents. The first agent in the list is the agent whose turn it is to use the CPU.
The rest of the list contains agents it could interact with. (We only need to use the first two elements of this list.)
Finally, the program must return a list of agents that it has modified.

The function run is invoked when it is the agent’s turn to use the CPU. It takes a list of all agents in the population,
with the current agent at the head of the list. It returns a list of agents that have been created or modified during the
turn. In this implementation, run “mates” two plants and takes away one unit of energy to represent the energy cost
of reproduction (otherwise the plants would live forever).

run :: [Plant] -> StateT (SimpleUniverse Plant) IO [Plant]
run (me:other:_) = do
name <- genName
(Right baby) <- liftIO $ evalRandIO (makeOffspring me other name)
writeToLog $
plantName me ++ " and " ++ plantName other ++
" gave birth to " ++ name ++ ", with " ++
show (plantFlowerColour baby) ++ " flowers"

return [deductMatingEnergy me, deductMatingEnergy other, baby]
run _ = return [] -- need two agents to mate

The complete code listing is below.
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{-# LANGUAGE DeriveGeneric, FlexibleContexts, TypeFamilies #-}
module Tutorial.Chapter7.Plant (Plant(..), FlowerColour(..),
buildPlant, run) where

import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import ALife.Creatur.Genetics.BRGCBool (Genetic, Reader, Sequence,
getWithDefault, runReader, copy)

import ALife.Creatur.Genetics.Recombination (mutatePairedLists,
randomCrossover, randomCutAndSplice, randomOneOfPair, withProbability)

import ALife.Creatur.Genetics.Reproduction.SimplifiedSexual
(Reproductive, Strand, recombine, build, makeOffspring)

import ALife.Creatur.Universe (SimpleUniverse, genName, writeToLog)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Random (evalRandIO)
import Control.Monad.State (StateT)
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

data Plant = Plant
{
plantName :: String,
plantFlowerColour :: FlowerColour,
plantEnergy :: Int,
plantGenome :: Sequence

} deriving (Show, Generic)

instance Serialize Plant

instance Agent Plant where
agentId = plantName
isAlive plant = plantEnergy plant > 0

instance Record Plant where key = agentId

data FlowerColour = Red | Orange | Yellow | Violet | Blue
deriving (Show, Eq, Generic, Enum, Bounded)

instance Serialize FlowerColour
instance Genetic FlowerColour

buildPlant :: String -> Reader (Either [String] Plant)
buildPlant name = do
g <- copy
colour <- getWithDefault Red
return . Right $ Plant name colour 10 g

instance Reproductive Plant where
type Strand Plant = Sequence
recombine a b =
withProbability 0.1 randomCrossover (plantGenome a, plantGenome b) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runReader (buildPlant name)

run :: [Plant] -> StateT (SimpleUniverse Plant) IO [Plant]
run (me:other:_) = do
name <- genName
(Right baby) <- liftIO $ evalRandIO (makeOffspring me other name)
writeToLog $
plantName me ++ " and " ++ plantName other ++
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" gave birth to " ++ name ++ ", with " ++
show (plantFlowerColour baby) ++ " flowers"

writeToLog $ "Me: " ++ show me
writeToLog $ "Mate: " ++ show other
writeToLog $ "Baby: " ++ show baby
return [deductMatingEnergy me, deductMatingEnergy other, baby]

run _ = return [] -- need two agents to mate

deductMatingEnergy :: Plant -> Plant
deductMatingEnergy p = p {plantEnergy=plantEnergy p - 1}

7.2 Generate an initial population
We will create the next population in a directory called chapter7. In main, we initialise the chapter7 directory,
create three Plants, and write them to the directory. The initial population only contains plants with red, yellow, or
violet flowers. Eventually, plants with orange or blue flowers might appear, but only as the result of mutation. (In
Section 9.2, we introduce a different technique for creating an initial population, using random genetic sequences.)
The complete code listing is below.

import Tutorial.Chapter7.Plant (FlowerColour(..), buildPlant)
import ALife.Creatur.Universe (store, mkSimpleUniverse)
import ALife.Creatur.Genetics.BRGCBool (write, runReader)
import Control.Monad.State.Lazy (evalStateT)

main :: IO ()
main = do
let u = mkSimpleUniverse "Chapter7" "chapter7"

-- Create some plants and save them in the population directory.
let g1 = write Red
let (Right p1) = runReader (buildPlant "Rose") g1
evalStateT (store p1) u

let g2 = write Yellow
let (Right p2) = runReader (buildPlant "Sunny") g2
evalStateT (store p2) u

let g3 = write Violet
let (Right p3) = runReader (buildPlant "Vi") g3
evalStateT (store p3) u

return ()

7.3 Configure a daemon
The program below configures and launches the daemon. Note that this time we call runInteractingAgents instead
of runNoninteractingAgents. The argument 2 indicates that we need at least two agents in the population (for
mating).

module Main where

import Tutorial.Chapter7.Plant (run)
import ALife.Creatur.Daemon (CreaturDaemon(..), Job(..),
simpleDaemon, launch)

import ALife.Creatur.Universe (mkSimpleUniverse)
import ALife.Creatur.Task (simpleJob, runInteractingAgents,
doNothing)

import System.Directory (canonicalizePath)
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main :: IO ()
main = do
dir <- canonicalizePath "chapter7" -- Required for daemon
let u = mkSimpleUniverse "Chapter7" dir
let j = simpleJob

{ task=runInteractingAgents run doNothing doNothing,
sleepTime=0 }

launch $ CreaturDaemon (simpleDaemon j u) j

7.4 Build and run the example
1. If you haven’t already done so, follow the instructions in Section 2.1.

2. Create the initial population by running chapter7-init.

3. Start/stop/restart the daemon with the command sudo chapter7-daemon start|stop|restart. (Stopping
the daemon may take a few seconds.)

Log messages are sent to chapter7/log/Chapter7.log.
A sample extract from the log file is shown below. To conserve space, the timestamps have been omitted. From

this, you can see that the first mating (between Rose and Sunny) occurs at time 0. The offspring, Chapter7_1, gets
its first CPU turn at time 1.

Starting
0 Vi and Rose gave birth to Chapter7_1, with Red flowers
0 Rose and Vi gave birth to Chapter7_2, with Violet flowers
0 Sunny and Rose gave birth to Chapter7_3, with Red flowers
1 Chapter7_1 and Sunny gave birth to Chapter7_4, with Yellow flowers
1 Rose and Vi gave birth to Chapter7_5, with Violet flowers
1 Chapter7_3 and Chapter7_2 gave birth to Chapter7_6, with Red flowers
1 Chapter7_2 and Sunny gave birth to Chapter7_7, with Violet flowers
1 Vi and Chapter7_7 gave birth to Chapter7_8, with Violet flowers
1 Sunny and Chapter7_8 gave birth to Chapter7_9, with Yellow flowers
2 Chapter7_4 and Rose gave birth to Chapter7_10, with Yellow flowers
2 Chapter7_7 and Chapter7_6 gave birth to Chapter7_11, with Violet flowers
2 Chapter7_6 and Rose gave birth to Chapter7_12, with Red flowers
2 Chapter7_5 and Chapter7_10 gave birth to Chapter7_13, with Violet flowers
2 Chapter7_3 and Chapter7_7 gave birth to Chapter7_14, with Red flowers
2 Chapter7_8 and Chapter7_14 gave birth to Chapter7_15, with Red flowers
2 Rose and Chapter7_14 gave birth to Chapter7_16, with Red flowers
2 Sunny and Chapter7_12 gave birth to Chapter7_17, with Yellow flowers
2 Vi and Chapter7_5 gave birth to Chapter7_18, with Violet flowers

7.5 Key points
• A species that reproduces should be an instance of the Genetic class in one of the ALife.Creatur.Genetics.Code.*

modules, e.g., ALife.Creatur.Genetics.Code.BRGCBool.

• It is generally not necessary to write an implementation of Genetic. Instead, add deriving Generic to the
declaration, and declare instance Genetic MyClass.

• In order for a type to use a generic implementation for a class such as Serialize or Genetic, any type that it
“contains” must also be an instance of that class.

• Encoding genetic information using a Gray code helps to ensure that offspring are similar to their parents (unless
a mutation occurs).

• The module ALife.Creatur.Genetics.Recombination provides functions for controlling how the genes of the
parents are shuffled to produce the child’s genome.
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Chapter 8

Sexual reproduction

In this part of the tutorial, we create a species with the ability to reproduce sexually.

8.1 Create a species
We create a type to represent the Bug species. Each bug has a unique ID, a colour, sex, an energy level, and some
genetic information. Because our bugs will reproduce sexually, they have two sets of genes, one inherited from each
parent. Thus, the genome will be stored as a DiploidSequence instead of a Sequence.

data Bug = Bug
{
bugName :: String,
bugColour :: BugColour,
bugSex :: Sex,
bugEnergy :: Int,
bugGenome :: DiploidSequence

} deriving (Show, Generic)

instance Serialize Bug

We make Bug implement the Agent and Record classes. Our bugs will stay alive until their energy reaches zero.

instance Agent Bug where
agentId = bugName
isAlive bug = bugEnergy bug > 0

instance Record Bug where key = agentId

We create the genes for colour and sex.

data BugColour = Green | Purple
deriving (Show, Eq, Enum, Bounded, Generic)

instance Serialize BugColour
instance Genetic BugColour

data Sex = Male | Female
deriving (Show, Eq, Enum, Bounded, Generic)

instance Serialize Sex
instance Genetic Sex

Recall that our bugs have two sets of genes. These genes may not be identical, so we need a way to determine the
resulting colour of the bug from its genes. The Diploid class contains a method called generic, which, given two
possible forms of a gene, takes into account any dominance relationship, and returns a gene representing the result.

We could write an implementation of express, but the Diploid class provides a generic implementation. The
generic implementation of express chooses the ”smaller” of the two values. For numeric values, this simply means
taking the minimum of the two values, so a gene with a value of 3.5 is dominant over one with a value of 7.6. For
types with multiple constructors, the constructors that appear earlier in the definition are dominant over those that
appear later, so a Male gene will be dominant over a Female gene. In other words, a bug with two Female genes is
female, but a bug with at least one Male gene is male. This is loosely based on the XY-chromosome system used by
humans and some other animals. (To avoid giving the males too much power, we’ll let the females initiate mating!)
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instance Diploid BugColour
instance Diploid Sex

To support reproduction, we need a way to build a bug from its genome. Like the plants we created earlier, each
bug needs a copy of its genome in order to produce offspring. For plants, we used the method copy to get the unread
genetic information. However, bugs have two sets of genes, so we use copy2 instead. Next, we determine the sex
and colour of the bug from its genome. We could use the method getAndExpress in the module BRGCBool, which
returns a Maybe value containing a tuple with the first gene in a sequence, and the rest of the paired sequences. It may
happen that neither sequence of Bools begins with a valid code for a colour or for the sex, in which case the call to
getAndExpress would return Nothing. For convenience, we’ll use the getAndExpressWithDefault method instead,
supplying a default sex and colour. All bugs start life with 10 units of energy.

buildBug :: String -> DiploidReader (Either [String] Bug)
buildBug name = do
g <- copy2
sex <- getAndExpressWithDefault Female
colour <- getAndExpressWithDefault Green
return . Right $ Bug name colour sex 10 g

Next, we need a way to mate two bugs and produce some offspring. We can do this by implementing the
Reproductive class in ALife.Creatur.Genetics.Reproduction.Sexual. This class requires us to implement the
following:

1. A type called Strand, which specifies the type used for encoded genes for this species. Recall that we’ve used
Bools for this purpose.

2. A method called produceGamete which shuffles (and maybe mutates) the two sequences of genes from one parent,
and then produces a single sequence that will become part of the child’s genome. (This is analogous to creating
either a single sperm or ova.)

3. A method called build which creates the offspring. We can use the buildBug method that we’ve already created,
and pass it to runReader.

instance Reproductive Bug where
type Strand Bug = Sequence
produceGamete a =
repeatWithProbability 0.1 randomCrossover (bugGenome a) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runDiploidReader (buildBug name)

Although the implementation of produceGamete is similar to that of recombine for the Plant class, these two
functions have different uses. Asexual reproduction uses recombine to mix the genetic information from two parents;
the resulting sequence becomes the entire genome of the child. Sexual reproduction uses produceGamete to mix the
genetic information from one parent; the resulting sequence becomes half of the genome of the child. The other half
of the child’s genome comes from the other parent, also generated using produceGamete.

The function run is invoked when it is the agent’s turn to use the CPU. It takes a list of all agents in the population,
with the current agent at the head of the list. It returns a list of agents that have been created or modified during
the turn. Let’s let the females initiate mating. If this bug is female, and the second bug is male, then mating occurs.
If mating occurs, we deduct one unit of energy. If mating does not occur, then no agents have been modified so we
return an empty list.
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run :: [Bug] -> StateT (SimpleUniverse Bug) IO [Bug]
run (me:other:_) = do
writeToLog $ agentId me ++ "'s turn"
if bugSex me == Female && bugSex other == Male
then do
name <- genName
(Right baby) <- liftIO $ evalRandIO (makeOffspring me other name)
writeToLog $
bugName me ++ " and " ++ bugName other ++
" gave birth to " ++ name ++ ", a " ++
show (bugColour baby) ++ " " ++ show (bugSex baby) ++ " bug"

return [deductMatingEnergy me, deductMatingEnergy other, baby]
else return []

run _ = return [] -- need two agents to mate

deductMatingEnergy :: Bug -> Bug
deductMatingEnergy bug = bug {bugEnergy=bugEnergy bug - 1}

The complete code listing is below.

{-# LANGUAGE DeriveGeneric, FlexibleContexts, TypeFamilies #-}
module Tutorial.Chapter8.Bug (Bug(..), Sex(..), BugColour(..),
buildBug, run) where

import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import ALife.Creatur.Genetics.BRGCBool (Genetic, Sequence,
DiploidSequence, DiploidReader, getAndExpressWithDefault,
runDiploidReader, copy2)

import ALife.Creatur.Genetics.Diploid (Diploid)
import ALife.Creatur.Genetics.Recombination (mutatePairedLists,
randomCrossover, randomCutAndSplice, randomOneOfPair,
repeatWithProbability, withProbability)

import ALife.Creatur.Genetics.Reproduction.Sexual (Reproductive, Strand,
produceGamete, build, makeOffspring)

import ALife.Creatur.Universe (SimpleUniverse, genName, writeToLog)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Random (evalRandIO)
import Control.Monad.State (StateT)
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

data Bug = Bug
{
bugName :: String,
bugColour :: BugColour,
bugSex :: Sex,
bugEnergy :: Int,
bugGenome :: DiploidSequence

} deriving (Show, Generic)

instance Serialize Bug

instance Agent Bug where
agentId = bugName
isAlive bug = bugEnergy bug > 0

instance Record Bug where key = agentId

data BugColour = Green | Purple
deriving (Show, Eq, Enum, Bounded, Generic)

instance Serialize BugColour
instance Genetic BugColour
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instance Diploid BugColour

data Sex = Male | Female
deriving (Show, Eq, Enum, Bounded, Generic)

instance Serialize Sex
instance Genetic Sex
instance Diploid Sex

buildBug :: String -> DiploidReader (Either [String] Bug)
buildBug name = do
g <- copy2
sex <- getAndExpressWithDefault Female
colour <- getAndExpressWithDefault Green
return . Right $ Bug name colour sex 10 g

instance Reproductive Bug where
type Strand Bug = Sequence
produceGamete a =
repeatWithProbability 0.1 randomCrossover (bugGenome a) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runDiploidReader (buildBug name)

run :: [Bug] -> StateT (SimpleUniverse Bug) IO [Bug]
run (me:other:_) = do
writeToLog $ agentId me ++ "'s turn"
if bugSex me == Female && bugSex other == Male
then do
name <- genName
(Right baby) <- liftIO $ evalRandIO (makeOffspring me other name)
writeToLog $
bugName me ++ " and " ++ bugName other ++
" gave birth to " ++ name ++ ", a " ++
show (bugColour baby) ++ " " ++ show (bugSex baby) ++ " bug"

writeToLog $ "Mother: " ++ show me
writeToLog $ "Father: " ++ show other
writeToLog $ "Baby: " ++ show baby
return [deductMatingEnergy me, deductMatingEnergy other, baby]

else return []
run _ = return [] -- need two agents to mate

deductMatingEnergy :: Bug -> Bug
deductMatingEnergy bug = bug {bugEnergy=bugEnergy bug - 1}

8.2 Generate an initial population
We will create the next population in a directory called Chapter8. In main, we initialise the chapter8 directory,
create three Bugs, and write them to the directory. The bugs in the initial population will each have two identical
sequences of genetic material. (In Section 9.2, we introduce a different technique for creating an initial population,
using random genetic sequences.) The complete code listing is below.

import Tutorial.Chapter8.Bug (Sex(..), BugColour(..), buildBug)
import ALife.Creatur.Universe (store, mkSimpleUniverse)
import ALife.Creatur.Genetics.BRGCBool (put, runWriter,
runDiploidReader)

import Control.Monad.State.Lazy (evalStateT)

main :: IO ()
main = do
let u = mkSimpleUniverse "Chapter8" "chapter8"
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-- Create some Bugs and save them in the population directory.
let g1 = runWriter (put Male >> put Green)
let (Right b1) = runDiploidReader (buildBug "Bugsy") (g1,g1)
evalStateT (store b1) u

let g2 = runWriter (put Male >> put Purple)
let (Right b2) = runDiploidReader (buildBug "Mel") (g2,g2)
evalStateT (store b2) u

let g3 = runWriter (put Female >> put Green)
let (Right b3) = runDiploidReader (buildBug "Flo") (g3, g3)
evalStateT (store b3) u

let g4 = runWriter (put Male >> put Purple)
let (Right b4) = runDiploidReader (buildBug "Buzz") (g4, g4)
evalStateT (store b4) u

8.3 Configure a daemon
The program below configures and launches the daemon.

module Main where

import Tutorial.Chapter8.Bug (run)
import ALife.Creatur.Daemon (CreaturDaemon(..), Job(..),
simpleDaemon, launch)

import ALife.Creatur.Universe (mkSimpleUniverse)
import ALife.Creatur.Task (simpleJob, runInteractingAgents,
doNothing)

import System.Directory (canonicalizePath)

main :: IO ()
main = do
dir <- canonicalizePath "chapter8" -- Required for daemon
let u = mkSimpleUniverse "Chapter8" dir
let j = simpleJob

{ task=runInteractingAgents run doNothing doNothing,
sleepTime=0 }

launch $ CreaturDaemon (simpleDaemon j u) j

8.4 Build and run the example
1. If you haven’t already done so, follow the instructions in Section 2.1.

2. Create the initial population by running chapter8-init.

3. Start/stop/restart the daemon with the command sudo chapter8-daemon start|stop|restart. (Stopping
the daemon may take a few seconds.)

Log messages are sent to chapter8/log/Chapter8.log.
A sample extract from the log file is shown below.

150416183914+0100 0 Starting
150416183914+0100 1 Beginning of round
150416183914+0100 1 Bugsy's turn
150416183914+0100 1 Mel's turn
150416183914+0100 1 Buzz's turn
150416183914+0100 1 Flo's turn
150416183914+0100 1 Flo and Bugsy gave birth to Chapter8_1, a Green Male bug
150416183914+0100 1 Mother: Bug {bugName = "Flo", bugColour = Green, bugSex = Female,
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bugEnergy = 10, bugGenome = ([False,True],[False,True])}
150416183914+0100 1 Father: Bug {bugName = "Bugsy", bugColour = Green, bugSex = Male,
bugEnergy = 10, bugGenome = ([True,True],[True,True])}
150416183914+0100 1 Baby: Bug {bugName = "Chapter8_1", bugColour = Green, bugSex = Male,
bugEnergy = 10, bugGenome = ([False,True],[True,True])}
150416183914+0100 1 Flo returned to population
150416183914+0100 1 Bugsy returned to population
150416183914+0100 1 Chapter8_1 added to population
150416183914+0100 1 End of round
150416183914+0100 2 Beginning of round
150416183914+0100 2 Chapter8_1's turn
150416183914+0100 2 Bugsy's turn
150416183914+0100 2 Flo's turn
150416183914+0100 2 Flo and Buzz gave birth to Chapter8_2, a Green Male bug
150416183914+0100 2 Mother: Bug {bugName = "Flo", bugColour = Green, bugSex = Female,
bugEnergy = 9, bugGenome = ([False,True],[False,True])}
150416183914+0100 2 Father: Bug {bugName = "Buzz", bugColour = Purple, bugSex = Male,
bugEnergy = 10, bugGenome = ([True,False],[True,False])}
150416183914+0100 2 Baby: Bug {bugName = "Chapter8_2", bugColour = Green, bugSex = Male,
bugEnergy = 10, bugGenome = ([False,True],[True,False])}
150416183914+0100 2 Flo returned to population
150416183914+0100 2 Buzz returned to population
150416183914+0100 2 Chapter8_2 added to population
150416183914+0100 2 Buzz's turn
150416183914+0100 2 Mel's turn
150416183914+0100 2 End of round

8.5 Key points
• A species that reproduces sexually should be an instance of Diploid (as well as Genetic).

• It is generally not necessary to write an implementation of Diploid. Instead, add deriving Generic to the
declaration, and declare instance Diploid MyClass.

• The generic implementation of Diploid chooses the “smaller” of two values. For types with multiple constructors,
this means that constructors that appear earlier in the definition are dominant over those that appear later.

• The list of agents returned by the “run” method only needs to contain agents that have been modified.

26



Chapter 9

Generating a random initial population

In this part of the tutorial, we generate a random initial population.

9.1 Create a species
Let’s make or bugs more interesting by adding spots.

data Bug = Bug
{
bugName :: String,
bugColour :: BugColour,
bugSpots :: [BugColour],
bugSex :: Sex,
bugEnergy :: Int,
bugGenome :: DiploidSequence

} deriving (Show, Generic)

We’ll also allow a broader range of colours.

data BugColour = Green | Purple | Red | Brown | Orange | Pink | Blue
deriving (Show, Eq, Enum, Bounded, Generic)

Creating a random sequence of genes is not difficult. But how long should the string be? We’d have to calculate
the number of bits required to represent the colours we’ve allowed. Furthermore, the length of the sequence depends
on how many spots the bug has. So we need to know the at least part of the decoded value of the sequence in order to
determine the length required. We could just create a random gene sequence that is longer than we expect to need;
the extra genes won’t do any harm, and might eventually become useful as the result of recombination. But that is
somewhat wasteful.

It might be better to have the initial population start with a “clean” genome where the entire sequence is used.
Recombination will eventually make some sequences longer, and others shorter, but on average we would expect the
sequences to be a reasonable length.

Fortunately, there is an easy way to do this. When creating our initial population, we can pass buildBug an infinite
gene sequence, but instruct it to keep only as much of the sequence as it needs to build a complete bug. We add a
flag to the buildBug function to tell it whether it should truncate the sequence (which is what we want when creating
the initial population), or keep the entire gene sequence (which is what we want during normal operation). Another
change is that we used getAndExpress instead of getAndExpressWithDefault. If the genome is invalid, buildBug
will return Nothing.

buildBug :: Bool -> String -> DiploidReader (Either [String] Bug)
buildBug truncateGenome name = do
sex <- getAndExpress
colour <- getAndExpress
spots <- getAndExpress
g <- if truncateGenome then consumed2 else copy2
return $ Bug name <$> sex <*> colour <*> spots <*> pure 10 <*> pure g

The complete code listing is below.

{-# LANGUAGE DeriveGeneric, FlexibleContexts, TypeFamilies #-}
{-# LANGUAGE CPP #-}
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module Tutorial.Chapter9.Bug (Bug(..), Sex(..), BugColour(..),
buildBug, run) where

import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import ALife.Creatur.Genetics.BRGCBool (Genetic, Sequence,
DiploidSequence, DiploidReader, getAndExpress,
runDiploidReader, copy2, consumed2)

import ALife.Creatur.Genetics.Diploid (Diploid)
import ALife.Creatur.Genetics.Recombination (mutatePairedLists,
randomCrossover, randomCutAndSplice, randomOneOfPair,
repeatWithProbability, withProbability)

import ALife.Creatur.Genetics.Reproduction.Sexual (Reproductive, Strand,
produceGamete, build, makeOffspring)

import ALife.Creatur.Universe (SimpleUniverse, genName, writeToLog)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Random (evalRandIO)
import Control.Monad.State (StateT)
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

#if MIN_VERSION_base(4,8,0)
-- Starting with GHC 7.10 (base 4.8), we don't need to import
-- Control.Applicative
#else
import Control.Applicative
#endif

data Bug = Bug
{
bugName :: String,
bugColour :: BugColour,
bugSpots :: [BugColour],
bugSex :: Sex,
bugEnergy :: Int,
bugGenome :: DiploidSequence

} deriving (Show, Generic)

instance Serialize Bug

instance Agent Bug where
agentId = bugName
isAlive bug = bugEnergy bug > 0

instance Record Bug where key = agentId

data BugColour = Green | Purple | Red | Brown | Orange | Pink | Blue
deriving (Show, Eq, Enum, Bounded, Generic)

instance Serialize BugColour
instance Genetic BugColour
instance Diploid BugColour

data Sex = Male | Female
deriving (Show, Eq, Enum, Bounded, Generic)

instance Serialize Sex
instance Genetic Sex
instance Diploid Sex

buildBug :: Bool -> String -> DiploidReader (Either [String] Bug)
buildBug truncateGenome name = do
sex <- getAndExpress
colour <- getAndExpress
spots <- getAndExpress
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g <- if truncateGenome then consumed2 else copy2
return $ Bug name <$> sex <*> colour <*> spots <*> pure 10 <*> pure g

instance Reproductive Bug where
type Strand Bug = Sequence
produceGamete a =
repeatWithProbability 0.1 randomCrossover (bugGenome a) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runDiploidReader (buildBug False name)

run :: [Bug] -> StateT (SimpleUniverse Bug) IO [Bug]
run (me:other:_) = do
writeToLog $ agentId me ++ "'s turn"
if bugSex me == Female && bugSex other == Male
then do
name <- genName
(Right baby) <- liftIO $ evalRandIO (makeOffspring me other name)
writeToLog $
bugName me ++ " and " ++ bugName other ++
" gave birth to " ++ name ++ ", a " ++
show (bugColour baby) ++ " " ++ show (bugSex baby) ++ " bug"

writeToLog $ "Mother: " ++ show me
writeToLog $ "Father: " ++ show other
writeToLog $ "Baby: " ++ show baby
return [deductMatingEnergy me, deductMatingEnergy other, baby]

else return []
run _ = return [] -- need two agents to mate

deductMatingEnergy :: Bug -> Bug
deductMatingEnergy bug = bug {bugEnergy=bugEnergy bug - 1}

9.2 Generate an initial population
We will create the next population in a directory called Chapter9. In main, we initialise the chapter9 directory, create
two infinite gene sequences, use those sequences to create some Bugs, and write them to the directory. In the previous
example, the bugs in the initial population each had two identical sequences of genetic material. This time, however,
each bug is created from two random sequences, which will usually differ. The complete code listing is below.

import Tutorial.Chapter9.Bug (Bug, buildBug)
import ALife.Creatur.Universe (store, mkSimpleUniverse)
import ALife.Creatur.Genetics.BRGCBool (DiploidReader,
runDiploidReader)

import Control.Monad.State.Lazy (evalStateT)
import Data.Either (rights)
import System.Random (randoms, getStdGen, newStdGen)

buildBugs :: [String] -> DiploidReader [Bug]
buildBugs names = do
bugs <- mapM (buildBug True) names
return $ rights bugs

main :: IO ()
main = do
let u = mkSimpleUniverse "Chapter9" "chapter9"

-- Create some Bugs and save them in the population directory.
let names = ["Bugsy", "Mel", "Flo", "Buzz"]

r1 <- newStdGen -- source of random genes
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r2 <- getStdGen -- source of random genes

let g1 = randoms r1
let g2 = randoms r2

let agents = runDiploidReader (buildBugs names) (g1, g2)
mapM_ (\b -> evalStateT (store b) u) agents

9.3 Configure a daemon
The program below configures and launches the daemon.

module Main where

import Tutorial.Chapter9.Bug (run)
import ALife.Creatur.Daemon (CreaturDaemon(..), Job(..),
simpleDaemon, launch)

import ALife.Creatur.Universe (mkSimpleUniverse)
import ALife.Creatur.Task (simpleJob, runInteractingAgents,
doNothing)

import System.Directory (canonicalizePath)

main :: IO ()
main = do
dir <- canonicalizePath "chapter9" -- Required for daemon
let u = mkSimpleUniverse "Chapter9" dir
let j = simpleJob

{ task=runInteractingAgents run doNothing doNothing,
sleepTime=0 }

launch $ CreaturDaemon (simpleDaemon j u) j

9.4 Build and run the example
1. If you haven’t already done so, follow the instructions in Section 2.1.

2. Create the initial population by running chapter9-init.

3. Start/stop/restart the daemon with the command sudo chapter9-daemon start|stop|restart. (Stopping
the daemon may take a few seconds.)

Log messages are sent to chapter9/log/Chapter10.log.

9.5 Key points
• To create a species for which the initial population can be randomly generated, add a parameter to the “build”

method that controls whether the gene sequence is truncated.

• When creating the initial population, use truncation. Thereafter, turn truncation off.
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Chapter 10

Working with multiple species

In this part of the tutorial, we create a universe with multiple species, where each species is a different Haskell type.
(They will be wrapped up in a single type via different constructors.)

10.1 Create a species
We’ll have a Martian landscape with rocks, plants, and bugs.

data Martian = FromRock Rock | FromPlant Plant | FromBug Bug
deriving (Show, Generic)

All agents will use the same run function, which prints a log message and then gives the agent an opportunity to
mate.

run :: [Martian] -> StateT (SimpleUniverse Martian) IO [Martian]
run xs@(me:_) = do
writeToLog $ agentId me ++ "'s turn"
tryMating xs

run [] = error "empty agent list"

If the first two agents on the list are the same species, and aren’t rocks, then we call that agent’s custom imple-
mentation of tryMating.

tryMating :: [Martian] -> StateT (SimpleUniverse Martian) IO [Martian]
tryMating (FromPlant me:FromPlant other:_) = do

xs <- P.tryMating [me, other]
return $ map FromPlant xs

tryMating (FromBug me:FromBug other:_) = do
xs <- B.tryMating [me, other]
return $ map FromBug xs

tryMating xs = return xs -- can't mate rocks or mismatched species

The complete code listing is below.

{-# LANGUAGE DeriveGeneric #-}
module Tutorial.Chapter10.Martian (Martian(..), run) where

import Tutorial.Chapter10.Rock (Rock)
import Tutorial.Chapter10.Plant (Plant)
import qualified Tutorial.Chapter10.Plant as P (tryMating)
import Tutorial.Chapter10.Bug (Bug)
import qualified Tutorial.Chapter10.Bug as B (tryMating)
import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import ALife.Creatur.Universe (SimpleUniverse, writeToLog)
import Control.Monad.State (StateT)
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

data Martian = FromRock Rock | FromPlant Plant | FromBug Bug
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deriving (Show, Generic)

instance Serialize Martian

instance Agent Martian where
agentId (FromRock x) = agentId x
agentId (FromPlant x) = agentId x
agentId (FromBug x) = agentId x
isAlive (FromRock x) = isAlive x
isAlive (FromPlant x) = isAlive x
isAlive (FromBug x) = isAlive x

instance Record Martian where
key = agentId

run :: [Martian] -> StateT (SimpleUniverse Martian) IO [Martian]
run xs@(me:_) = do
writeToLog $ agentId me ++ "'s turn"
tryMating xs

run [] = error "empty agent list"

tryMating :: [Martian] -> StateT (SimpleUniverse Martian) IO [Martian]
tryMating (FromPlant me:FromPlant other:_) = do

xs <- P.tryMating [me, other]
return $ map FromPlant xs

tryMating (FromBug me:FromBug other:_) = do
xs <- B.tryMating [me, other]
return $ map FromBug xs

tryMating xs = return xs -- can't mate rocks or mismatched species

We can re-use the implementation of Bug from Section 8, but without the run method. All agents will use the run
method in Tutorial.Chapter10.Martian. The complete code listing is below.

{-# LANGUAGE DeriveGeneric #-}

module Tutorial.Chapter10.Rock (Rock(..)) where

import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

data Rock = Rock String Int deriving (Show, Generic)

instance Serialize Rock

instance Agent Rock where
agentId (Rock name _) = name
isAlive _ = True

instance Record Rock where key = agentId

We can re-use the implementation of Plant from Section 7, with a few changes. The code that implements mating
has been moved into a custom tryMating function. Again, we can drop the run method because all agents will use
the run method in Tutorial.Chapter10.Martian. For a little variety, we’ll store the genetic information as [Word8]
instead of [Bool]. To make that change, we only need to modify the import to:

import ALife.Creatur.Genetics.BRGCWord8 . . .

The complete code listing is below.

{-# LANGUAGE DeriveGeneric, FlexibleContexts, TypeFamilies #-}
module Tutorial.Chapter10.Plant (Plant(..), FlowerColour(..),
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buildPlant, tryMating) where

import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import ALife.Creatur.Genetics.BRGCWord8 (Genetic, Reader, Sequence,
getWithDefault, runReader, copy, consumed)

import ALife.Creatur.Genetics.Recombination (mutatePairedLists,
randomCrossover, randomCutAndSplice, randomOneOfPair, withProbability)

import ALife.Creatur.Genetics.Reproduction.SimplifiedSexual
(Reproductive, Strand, recombine, build, makeOffspring)

import ALife.Creatur.Universe (SimpleUniverse, genName, writeToLog)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Random (evalRandIO)
import Control.Monad.State (StateT)
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

data Plant = Plant
{
plantName :: String,
plantFlowerColour :: FlowerColour,
plantEnergy :: Int,
plantGenome :: Sequence

} deriving (Show, Generic)

instance Serialize Plant

instance Agent Plant where
agentId = plantName
isAlive plant = plantEnergy plant > 0

instance Record Plant where key = agentId

data FlowerColour = Red | Orange | Yellow | Violet | Blue
deriving (Show, Eq, Generic, Enum, Bounded)

instance Serialize FlowerColour
instance Genetic FlowerColour

buildPlant :: Bool -> String -> Reader (Either [String] Plant)
buildPlant truncateGenome name = do
colour <- getWithDefault Red
g <- if truncateGenome then consumed else copy
return . Right $ Plant name colour 10 g

instance Reproductive Plant where
type Strand Plant = Sequence
recombine a b =
withProbability 0.1 randomCrossover (plantGenome a, plantGenome b) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runReader (buildPlant False name)

tryMating
:: (Agent a, Serialize a)
=> [Plant] -> StateT (SimpleUniverse a) IO [Plant]

tryMating (me:other:_) = do
name <- genName
(Right baby) <- liftIO $ evalRandIO (makeOffspring me other name)
writeToLog $
plantName me ++ " and " ++ plantName other ++
" gave birth to " ++ name ++ ", with " ++
show (plantFlowerColour baby) ++ " flowers"
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writeToLog $ "Me: " ++ show me
writeToLog $ "Mate: " ++ show other
writeToLog $ "Baby: " ++ show baby
return [deductMatingEnergy me, deductMatingEnergy other, baby]

tryMating x = return x -- need two agents to mate

deductMatingEnergy :: Plant -> Plant
deductMatingEnergy p = p {plantEnergy=plantEnergy p - 1}

We can re-use the implementation of Bug from Section 8, with a few changes. The code that implements mating
has been moved into a custom tryMating function. And again we can drop the run method and switch to Word8
encoding for the genetic information. The complete code listing is below.

{-# LANGUAGE DeriveGeneric, FlexibleContexts, TypeFamilies #-}
{-# LANGUAGE CPP #-}
module Tutorial.Chapter10.Bug (Bug(..), Sex(..), BugColour(..),
buildBug, tryMating) where

import ALife.Creatur (Agent, agentId, isAlive)
import ALife.Creatur.Database (Record, key)
import ALife.Creatur.Genetics.BRGCWord8 (Genetic, Sequence,
DiploidSequence, DiploidReader, getAndExpress, runDiploidReader,
copy2, consumed2)

import ALife.Creatur.Genetics.Diploid (Diploid)
import ALife.Creatur.Genetics.Recombination (mutatePairedLists,
randomCrossover, randomCutAndSplice, randomOneOfPair,
repeatWithProbability, withProbability)

import ALife.Creatur.Genetics.Reproduction.Sexual (Reproductive, Strand,
produceGamete, build, makeOffspring)

import ALife.Creatur.Universe (SimpleUniverse, genName, writeToLog)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Random (evalRandIO)
import Control.Monad.State (StateT)
import Data.Serialize (Serialize)
import GHC.Generics (Generic)

#if MIN_VERSION_base(4,8,0)
-- Starting with GHC 7.10 (base 4.8), we don't need to import
-- Control.Applicative
#else
import Control.Applicative
#endif

data Bug = Bug
{
bugName :: String,
bugColour :: BugColour,
bugSpots :: [BugColour],
bugSex :: Sex,
bugEnergy :: Int,
bugGenome :: DiploidSequence

} deriving (Show, Generic)

instance Serialize Bug

instance Agent Bug where
agentId = bugName
isAlive bug = bugEnergy bug > 0

instance Record Bug where key = agentId

data BugColour = Green | Purple | Red | Brown | Orange | Pink | Blue
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deriving (Show, Eq, Enum, Bounded, Generic)
instance Serialize BugColour
instance Genetic BugColour
instance Diploid BugColour

data Sex = Male | Female
deriving (Show, Eq, Enum, Bounded, Generic)

instance Serialize Sex
instance Genetic Sex
instance Diploid Sex

buildBug :: Bool -> String -> DiploidReader (Either [String] Bug)
buildBug truncateGenome name = do
sex <- getAndExpress
colour <- getAndExpress
spots <- getAndExpress
g <- if truncateGenome then consumed2 else copy2
return $ Bug name <$> sex <*> colour <*> spots <*> pure 10 <*> pure g

instance Reproductive Bug where
type Strand Bug = Sequence
produceGamete a =
repeatWithProbability 0.1 randomCrossover (bugGenome a) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runDiploidReader (buildBug False name)

tryMating
:: (Agent a, Serialize a)
=> [Bug] -> StateT (SimpleUniverse a) IO [Bug]

tryMating (me:other:_) = do
writeToLog $ bugName me ++ ", a " ++ show (bugSex me) ++ " bug, sees "
++ bugName other ++ ", a " ++ show (bugSex other)

if bugSex me == Female && bugSex other == Male
then do
name <- genName
(Right baby) <- liftIO $ evalRandIO (makeOffspring me other name)
writeToLog $
bugName me ++ " and " ++ bugName other ++
" gave birth to " ++ name ++ ", a " ++
show (bugColour baby) ++ " " ++ show (bugSex baby) ++ " bug"

writeToLog $ "Mother: " ++ show me
writeToLog $ "Father: " ++ show other
writeToLog $ "Baby: " ++ show baby
return [deductMatingEnergy me, deductMatingEnergy other, baby]

else do
writeToLog $ bugName me ++ " is not interested in "
++ bugName other

return []
tryMating _ = return [] -- need two agents to mate

deductMatingEnergy :: Bug -> Bug
deductMatingEnergy bug = bug {bugEnergy=bugEnergy bug - 1}

10.2 Generate an initial population
We will create the next population in a directory called Chapter10. In main, we initialise the chapter10 directory,
create some rocks, bugs, and plants, and then write them to the directory. Since we’re using [Word8] to encode the
genome, we need to import BRGCWord8 instead of BRGCBool.
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import Tutorial.Chapter10.Rock (Rock(..))
import Tutorial.Chapter10.Plant (buildPlant)
import Tutorial.Chapter10.Bug (buildBug)
import Tutorial.Chapter10.Martian (Martian(..))
import ALife.Creatur.Genetics.BRGCWord8 (Reader, DiploidReader,
runReader, runDiploidReader)

import ALife.Creatur.Universe (store, mkSimpleUniverse)
import Data.Either (rights)
import Control.Monad.State.Lazy (evalStateT)
import System.Random (getStdGen, newStdGen, randoms)

buildPlants :: [String] -> Reader [Martian]
buildPlants names = do
xs <- mapM (buildPlant True) names
return . map FromPlant . rights $ xs

buildBugs :: [String] -> DiploidReader [Martian]
buildBugs names = do
xs <- mapM (buildBug True) names
return . map FromBug . rights $ xs

main :: IO ()
main = do
let u = mkSimpleUniverse "Chapter10" "chapter10"

-- Create some rocks and save them in the population directory.
let rock1 = FromRock $ Rock "Rocky" 0
evalStateT (store rock1) u

let rock2 = FromRock $ Rock "Roxie" 0
evalStateT (store rock2) u

-- Create some plants and save them in the population directory.
let plantNames = ["Rose", "Sunny", "Vi"]

r <- newStdGen -- source of random genes
let g = randoms r

let plants = runReader (buildPlants plantNames) g
mapM_ (\b -> evalStateT (store b) u) plants

-- Note: The next part "hangs" for me. It didn't used to. And the
-- same code works in Chapter 9. I haven't had a chance to debug
-- the problem yet.

-- Create some Bugs and save them in the population directory.
let names = ["Bugsy", "Mel", "Flo", "Buzz"]

r1 <- newStdGen -- source of random genes
r2 <- getStdGen -- source of random genes

let g1 = randoms r1
let g2 = randoms r2

let agents = runDiploidReader (buildBugs names) (g1, g2)
mapM_ (\b -> evalStateT (store b) u) agents
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10.3 Configure a daemon
The daemon implementation should be familiar by now.

module Main where

import Tutorial.Chapter10.Martian (run)
import ALife.Creatur.Daemon (CreaturDaemon(..), Job(..),
simpleDaemon, launch)

import ALife.Creatur.Universe (mkSimpleUniverse)
import ALife.Creatur.Task (simpleJob, runInteractingAgents,
doNothing)

import System.Directory (canonicalizePath)

main :: IO ()
main = do
dir <- canonicalizePath "chapter10" -- Required for daemon
let u = mkSimpleUniverse "Chapter10" dir
let j = simpleJob

{ task=runInteractingAgents run doNothing doNothing,
sleepTime=0 }

launch $ CreaturDaemon (simpleDaemon j u) j

10.4 Build and run the example
1. If you haven’t already done so, follow the instructions in Section 2.1.

2. Create the initial population by running chapter10-init.

3. Start/stop/restart the daemon with the command sudo chapter10-daemon start|stop|restart. (Stop-
ping the daemon may take a few seconds.)

Log messages are sent to chapter10/log/Chapter10.log.

10.5 Key points
• To work with multiple species, where each species is a different Haskell type, unify the types with a “container”

type (e.g., the Martian class).
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Chapter 11

Advanced genomes

.
In the previous chapters, we developed agents with very simple genes. However, genes can be arbitrarily complex.

The default implementation of Genetic is usually sufficient, as in the following example.

data ComplexGene = A | B Colour | C Word8 | D Bool Char | E [ComplexGene]
deriving (Show, Eq, Generic)

instance Genetic ComplexGene

You are not restricted to using the default implementation of Genetic. In the following example, we write a custom
implementation. You can mix custom and default implementations; the implementation of Genetic for CustomGene
uses the default implementation of Genetic for Colour.

data CustomGene = F Colour | G Bool
deriving (Show, Eq, Generic)

instance Genetic CustomGene where
put (F c) = putRawWord8 7 >> put c
put (G b) = putRawWord8 8 >> put b
get = do
x <- getRawWord8
case x of
(Right 7) -> do
c <- get :: Reader (Either [String] Colour)
return . fmap F $ c

(Right 8) -> do
b <- get :: Reader (Either [String] Bool)
return . fmap G $ b

_ -> return $ Left ["Invalid gene sequence"]

One reason you might want to write a custom implementation of Genetic is for efficiency. In this example, we
store three boolean values in a Word8 value to reduce the amount of storage required.

data CustomGene2 = H Bool Bool Bool
deriving (Show, Eq, Generic)

instance Genetic CustomGene2 where
put (H x y z) = putRawWord8 (x' + y' + z')
where x' = (4 *) . fromIntegral . fromEnum $ x :: Word8

y' = (2 *) . fromIntegral . fromEnum $ y :: Word8
z' = fromIntegral . fromEnum $ z :: Word8

get = do
w <- getRawWord8 :: Reader (Either [String] Word8)
let x = fmap (flip testBit 2) w :: Either [String] Bool
let y = fmap (flip testBit 1) w :: Either [String] Bool
let z = fmap (flip testBit 0) w :: Either [String] Bool
return $ H <$> x <*> y <*> z

You will find these examples in the code listing below. To run the example, type chapter11.
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{-# LANGUAGE DeriveGeneric, FlexibleContexts, FlexibleInstances,
TypeFamilies #-}

{-# LANGUAGE CPP #-}
import Prelude hiding (read)
import ALife.Creatur.Genetics.BRGCWord8 (Genetic, Reader, put, get,
putRawWord8, getRawWord8, write, read)

import Data.Bits
import Data.Word (Word8)
import GHC.Generics (Generic)

#if MIN_VERSION_base(4,8,0)
-- Starting with GHC 7.10 (base 4.8), we don't need to import
-- Control.Applicative
#else
import Control.Applicative
#endif

--
-- This example shows how the default implementation of Genetic is
-- usually sufficient, even for a complex data structure.
--
data Colour = Green | Purple
deriving (Show, Eq, Enum, Bounded, Generic)

instance Genetic Colour

data ComplexGene = A | B Colour | C Word8 | D Bool Char | E [ComplexGene]
deriving (Show, Eq, Generic)

instance Genetic ComplexGene

--
-- This is an example of a custom implementation of Genetic. This
-- implementation uses the default implementations of Genetic for Colour
-- and Bool, showing that it is possible to mix and match.
--

data CustomGene = F Colour | G Bool
deriving (Show, Eq, Generic)

instance Genetic CustomGene where
put (F c) = putRawWord8 7 >> put c
put (G b) = putRawWord8 8 >> put b
get = do
x <- getRawWord8
case x of
(Right 7) -> do
c <- get :: Reader (Either [String] Colour)
return . fmap F $ c

(Right 8) -> do
b <- get :: Reader (Either [String] Bool)
return . fmap G $ b

_ -> return $ Left ["Invalid gene sequence"]

--
-- In this example, we store three boolean values in a Word8 value
-- to reduce the amount of storage required.
--

data CustomGene2 = H Bool Bool Bool
deriving (Show, Eq, Generic)

instance Genetic CustomGene2 where
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put (H x y z) = putRawWord8 (x' + y' + z')
where x' = (4 *) . fromIntegral . fromEnum $ x :: Word8

y' = (2 *) . fromIntegral . fromEnum $ y :: Word8
z' = fromIntegral . fromEnum $ z :: Word8

get = do
w <- getRawWord8 :: Reader (Either [String] Word8)
let x = fmap (flip testBit 2) w :: Either [String] Bool
let y = fmap (flip testBit 1) w :: Either [String] Bool
let z = fmap (flip testBit 0) w :: Either [String] Bool
return $ H <$> x <*> y <*> z

test :: (Eq x, Show x, Genetic x) => x -> IO ()
test x = do
putStrLn $ "wrote gene: " ++ show x
let dna = write x
putStrLn $ "dna=" ++ show dna
let x2 = read dna
putStrLn $ "read: " ++ show x2
if x2 == Right x

then putStrLn "SUCCESS"
else putStrLn "FAILURE"

main :: IO ()
main = do
putStrLn "Example of complex gene"
test (E [ A, B Purple, C 7, D True 'a', E []])

putStrLn "\nExample of a custom implementation of Genetic"
test (F Green)

putStrLn "\nAnother example of a custom implementation of Genetic"
test (H True False True)
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Chapter 12

FAQ

Frequently Anticipated Questions
Q: What is the structure of the universe directory?
A: See the example below.

chapter9
chapter9/db
chapter9/db/Flo -- contains the agent named ``Flo''
chapter9/db/Bugsy -- contains the agent named ``Bugsy''
chapter9/db/Chapter9_16 -- contains the agent named ``Chapter9_16''
. . .
chapter9/namer -- contains a counter for generating names
chapter9/log
chapter9/log/Chapter9.log -- the current log file

-- there may be older log files as well
chapter9/log/Chapter9.exp -- contains a counter for log rotation
chapter9/clock -- contains the current ``universe'' time

Q: How can I write tools (apart from the daemon) that operate on the agents.
A: See Tutorial/Chapter9/Examine.hs for an example of a simple analysis tool. That program uses agentIds

and getAgent to read the agents from the population, without modifying them. You can also work with agents that
have “died” and been archived, using archivedAgentIds and getAgentFromArchive.

Alternatively, you can read the agent files directly, as shown below. Be careful not to modify a file while the
daemon is running.

ghci> :l Tutorial.Chapter9.Bug
[1 of 1] Compiling Tutorial.Chapter9.Bug ( src/Tutorial/Chapter9/Bug.hs, interpreted )
Ok, modules loaded: Tutorial.Chapter9.Bug.
ghci> import Data.Serialize
ghci> import Data.ByteString
ghci> x <- BS.readFile "chapter9/db/Bugsy"
ghci> let b = decode x :: Either String Bug
ghci> b
Right (Bug {bugName = "Bugsy", bugColour = Green, bugSpots = [], bugSex = Female,
bugEnergy = 6, bugGenome = ([False,True,False,True,False],[True,True,True,False])})

Q: What causes this (or a similar) error message?

No instance for (ALife.Creatur.Genetics.Code.BRGCWord8.GGene
(GHC.Generics.Rep ClassifierGene))

arising from a use of `ALife.Creatur.Genetics.Code.BRGCWord8.$gdmput'

A: Did you remember to add deriving Generic to your gene type?
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Chapter 13

TO DO

Some things I’d like to do to enhance this tutorial...

1. Explain that if you don’t want the child to be immediately mature and able to interact with other agents and
mate, you could keep it as a field in the mother’s implementation until it’s mature. Include an example.

2. Show how to collect statistics.

3. Show how to keep agents and logs in a database rather than as separate files. I’m thinking of providing an
”agent interface” to MongoDB and any ODBC-compliant DB.

4. Show how to get a list of agents meeting certain criteria (e.g. all agents within a certain distance of a particular
agent). This will require a different DB.

5. Show how to add other state data to the universe (in addition to the clock, logger, agent namer, and database).
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