We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Epoch: [0] [39428/39429] eta: 0:00:00 lr: 0.000200 class_error: 60.00 grad_norm: 32.79 loss: 3.9304 (4.0446) loss_ce: 1.6838 (1.6791) loss_bbox: 0.8631 (1.0390) loss_giou: 1.3310 (1.3266) loss_ce_unscaled: 0.8419 (0.8395) class_error_unscaled: 81.2500 (71.9218) loss_bbox_unscaled: 0.1726 (0.2078) loss_giou_unscaled: 0.6655 (0.6633) cardinality_error_unscaled: 294.6667 (293.4123) time: 0.4156 data: 0.0000 max mem: 19834 Epoch: [0] Total time: 4:32:57 (0.4154 s / it) Averaged stats: lr: 0.000200 class_error: 60.00 grad_norm: 32.79 loss: 3.9304 (4.0446) loss_ce: 1.6838 (1.6791) loss_bbox: 0.8631 (1.0390) loss_giou: 1.3310 (1.3266) loss_ce_unscaled: 0.8419 (0.8395) class_error_unscaled: 81.2500 (71.9218) loss_bbox_unscaled: 0.1726 (0.2078) loss_giou_unscaled: 0.6655 (0.6633) cardinality_error_unscaled: 294.6667 (293.4123) Traceback (most recent call last): File "/root/autodl-tmp/solq/main.py", line 407, in main(0, ngpus_per_node, args) File "/root/autodl-tmp/solq/main.py", line 362, in main test_stats, coco_evaluator = evaluate( File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/root/autodl-tmp/solq/engine.py", line 125, in evaluate results = postprocessors['bbox'](outputs, orig_target_sizes) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/root/autodl-tmp/solq/models/solq.py", line 479, in forward out_logits, out_bbox, out_vector = outputs['pred_logits'], outputs['pred_boxes'], outputs['pred_vectors'] KeyError: 'pred_vectors'
batchsize=3 An error occurred during the last training session. May I ask what happened
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Epoch: [0] [39428/39429] eta: 0:00:00 lr: 0.000200 class_error: 60.00 grad_norm: 32.79 loss: 3.9304 (4.0446) loss_ce: 1.6838 (1.6791) loss_bbox: 0.8631 (1.0390) loss_giou: 1.3310 (1.3266) loss_ce_unscaled: 0.8419 (0.8395) class_error_unscaled: 81.2500 (71.9218) loss_bbox_unscaled: 0.1726 (0.2078) loss_giou_unscaled: 0.6655 (0.6633) cardinality_error_unscaled: 294.6667 (293.4123) time: 0.4156 data: 0.0000 max mem: 19834
Epoch: [0] Total time: 4:32:57 (0.4154 s / it)
Averaged stats: lr: 0.000200 class_error: 60.00 grad_norm: 32.79 loss: 3.9304 (4.0446) loss_ce: 1.6838 (1.6791) loss_bbox: 0.8631 (1.0390) loss_giou: 1.3310 (1.3266) loss_ce_unscaled: 0.8419 (0.8395) class_error_unscaled: 81.2500 (71.9218) loss_bbox_unscaled: 0.1726 (0.2078) loss_giou_unscaled: 0.6655 (0.6633) cardinality_error_unscaled: 294.6667 (293.4123)
Traceback (most recent call last):
File "/root/autodl-tmp/solq/main.py", line 407, in
main(0, ngpus_per_node, args)
File "/root/autodl-tmp/solq/main.py", line 362, in main
test_stats, coco_evaluator = evaluate(
File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/root/autodl-tmp/solq/engine.py", line 125, in evaluate
results = postprocessors['bbox'](outputs, orig_target_sizes)
File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/root/autodl-tmp/solq/models/solq.py", line 479, in forward
out_logits, out_bbox, out_vector = outputs['pred_logits'], outputs['pred_boxes'], outputs['pred_vectors']
KeyError: 'pred_vectors'
batchsize=3 An error occurred during the last training session. May I ask what happened
The text was updated successfully, but these errors were encountered: