forked from rockchip-linux/kernel
-
Notifications
You must be signed in to change notification settings - Fork 2
/
filemap.c
2788 lines (2491 loc) · 74.2 KB
/
filemap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* linux/mm/filemap.c
*
* Copyright (C) 1994-1999 Linus Torvalds
*/
/*
* This file handles the generic file mmap semantics used by
* most "normal" filesystems (but you don't /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*/
#include <linux/export.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
#include <linux/cpuset.h>
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
#include <linux/hugetlb.h>
#include <linux/memcontrol.h>
#include <linux/cleancache.h>
#include <linux/rmap.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>
/*
* FIXME: remove all knowledge of the buffer layer from the core VM
*/
#include <linux/buffer_head.h> /* for try_to_free_buffers */
#include <asm/mman.h>
/*
* Shared mappings implemented 30.11.1994. It's not fully working yet,
* though.
*
* Shared mappings now work. 15.8.1995 Bruno.
*
* finished 'unifying' the page and buffer cache and SMP-threaded the
* page-cache, 21.05.1999, Ingo Molnar <[email protected]>
*
* SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
*/
/*
* Lock ordering:
*
* ->i_mmap_rwsem (truncate_pagecache)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
*
* ->i_mutex
* ->i_mmap_rwsem (truncate->unmap_mapping_range)
*
* ->mmap_sem
* ->i_mmap_rwsem
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
*
* ->mmap_sem
* ->lock_page (access_process_vm)
*
* ->i_mutex (generic_perform_write)
* ->mmap_sem (fault_in_pages_readable->do_page_fault)
*
* bdi->wb.list_lock
* sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
*
* ->i_mmap_rwsem
* ->anon_vma.lock (vma_adjust)
*
* ->anon_vma.lock
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
*
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->tree_lock (try_to_unmap_one)
* ->zone.lru_lock (follow_page->mark_page_accessed)
* ->zone.lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->tree_lock (page_remove_rmap->set_page_dirty)
* bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
* ->inode->i_lock (page_remove_rmap->set_page_dirty)
* ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
* bdi.wb->list_lock (zap_pte_range->set_page_dirty)
* ->inode->i_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*
* ->i_mmap_rwsem
* ->tasklist_lock (memory_failure, collect_procs_ao)
*/
static int page_cache_tree_insert(struct address_space *mapping,
struct page *page, void **shadowp)
{
struct radix_tree_node *node;
void **slot;
int error;
error = __radix_tree_create(&mapping->page_tree, page->index,
&node, &slot);
if (error)
return error;
if (*slot) {
void *p;
p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
if (!radix_tree_exceptional_entry(p))
return -EEXIST;
if (shadowp)
*shadowp = p;
mapping->nrshadows--;
if (node)
workingset_node_shadows_dec(node);
}
radix_tree_replace_slot(slot, page);
mapping->nrpages++;
if (node) {
workingset_node_pages_inc(node);
/*
* Don't track node that contains actual pages.
*
* Avoid acquiring the list_lru lock if already
* untracked. The list_empty() test is safe as
* node->private_list is protected by
* mapping->tree_lock.
*/
if (!list_empty(&node->private_list))
list_lru_del(&workingset_shadow_nodes,
&node->private_list);
}
return 0;
}
static void page_cache_tree_delete(struct address_space *mapping,
struct page *page, void *shadow)
{
struct radix_tree_node *node;
unsigned long index;
unsigned int offset;
unsigned int tag;
void **slot;
VM_BUG_ON(!PageLocked(page));
__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
if (!node) {
/*
* We need a node to properly account shadow
* entries. Don't plant any without. XXX
*/
shadow = NULL;
}
if (shadow) {
mapping->nrshadows++;
/*
* Make sure the nrshadows update is committed before
* the nrpages update so that final truncate racing
* with reclaim does not see both counters 0 at the
* same time and miss a shadow entry.
*/
smp_wmb();
}
mapping->nrpages--;
if (!node) {
/* Clear direct pointer tags in root node */
mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
radix_tree_replace_slot(slot, shadow);
return;
}
/* Clear tree tags for the removed page */
index = page->index;
offset = index & RADIX_TREE_MAP_MASK;
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
if (test_bit(offset, node->tags[tag]))
radix_tree_tag_clear(&mapping->page_tree, index, tag);
}
/* Delete page, swap shadow entry */
radix_tree_replace_slot(slot, shadow);
workingset_node_pages_dec(node);
if (shadow)
workingset_node_shadows_inc(node);
else
if (__radix_tree_delete_node(&mapping->page_tree, node))
return;
/*
* Track node that only contains shadow entries.
*
* Avoid acquiring the list_lru lock if already tracked. The
* list_empty() test is safe as node->private_list is
* protected by mapping->tree_lock.
*/
if (!workingset_node_pages(node) &&
list_empty(&node->private_list)) {
node->private_data = mapping;
list_lru_add(&workingset_shadow_nodes, &node->private_list);
}
}
/*
* Delete a page from the page cache and free it. Caller has to make
* sure the page is locked and that nobody else uses it - or that usage
* is safe. The caller must hold the mapping's tree_lock and
* mem_cgroup_begin_page_stat().
*/
void __delete_from_page_cache(struct page *page, void *shadow,
struct mem_cgroup *memcg)
{
struct address_space *mapping = page->mapping;
trace_mm_filemap_delete_from_page_cache(page);
/*
* if we're uptodate, flush out into the cleancache, otherwise
* invalidate any existing cleancache entries. We can't leave
* stale data around in the cleancache once our page is gone
*/
if (PageUptodate(page) && PageMappedToDisk(page))
cleancache_put_page(page);
else
cleancache_invalidate_page(mapping, page);
page_cache_tree_delete(mapping, page, shadow);
page->mapping = NULL;
/* Leave page->index set: truncation lookup relies upon it */
/* hugetlb pages do not participate in page cache accounting. */
if (!PageHuge(page))
__dec_zone_page_state(page, NR_FILE_PAGES);
if (PageSwapBacked(page))
__dec_zone_page_state(page, NR_SHMEM);
BUG_ON(page_mapped(page));
/*
* At this point page must be either written or cleaned by truncate.
* Dirty page here signals a bug and loss of unwritten data.
*
* This fixes dirty accounting after removing the page entirely but
* leaves PageDirty set: it has no effect for truncated page and
* anyway will be cleared before returning page into buddy allocator.
*/
if (WARN_ON_ONCE(PageDirty(page)))
account_page_cleaned(page, mapping, memcg,
inode_to_wb(mapping->host));
}
/**
* delete_from_page_cache - delete page from page cache
* @page: the page which the kernel is trying to remove from page cache
*
* This must be called only on pages that have been verified to be in the page
* cache and locked. It will never put the page into the free list, the caller
* has a reference on the page.
*/
void delete_from_page_cache(struct page *page)
{
struct address_space *mapping = page->mapping;
struct mem_cgroup *memcg;
unsigned long flags;
void (*freepage)(struct page *);
BUG_ON(!PageLocked(page));
freepage = mapping->a_ops->freepage;
memcg = mem_cgroup_begin_page_stat(page);
spin_lock_irqsave(&mapping->tree_lock, flags);
__delete_from_page_cache(page, NULL, memcg);
spin_unlock_irqrestore(&mapping->tree_lock, flags);
mem_cgroup_end_page_stat(memcg);
if (freepage)
freepage(page);
page_cache_release(page);
}
EXPORT_SYMBOL(delete_from_page_cache);
static int filemap_check_errors(struct address_space *mapping)
{
int ret = 0;
/* Check for outstanding write errors */
if (test_bit(AS_ENOSPC, &mapping->flags) &&
test_and_clear_bit(AS_ENOSPC, &mapping->flags))
ret = -ENOSPC;
if (test_bit(AS_EIO, &mapping->flags) &&
test_and_clear_bit(AS_EIO, &mapping->flags))
ret = -EIO;
return ret;
}
/**
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
* @mapping: address space structure to write
* @start: offset in bytes where the range starts
* @end: offset in bytes where the range ends (inclusive)
* @sync_mode: enable synchronous operation
*
* Start writeback against all of a mapping's dirty pages that lie
* within the byte offsets <start, end> inclusive.
*
* If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
* opposed to a regular memory cleansing writeback. The difference between
* these two operations is that if a dirty page/buffer is encountered, it must
* be waited upon, and not just skipped over.
*/
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end, int sync_mode)
{
int ret;
struct writeback_control wbc = {
.sync_mode = sync_mode,
.nr_to_write = LONG_MAX,
.range_start = start,
.range_end = end,
};
if (!mapping_cap_writeback_dirty(mapping))
return 0;
wbc_attach_fdatawrite_inode(&wbc, mapping->host);
ret = do_writepages(mapping, &wbc);
wbc_detach_inode(&wbc);
return ret;
}
static inline int __filemap_fdatawrite(struct address_space *mapping,
int sync_mode)
{
return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
}
int filemap_fdatawrite(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end)
{
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite_range);
/**
* filemap_flush - mostly a non-blocking flush
* @mapping: target address_space
*
* This is a mostly non-blocking flush. Not suitable for data-integrity
* purposes - I/O may not be started against all dirty pages.
*/
int filemap_flush(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);
static int __filemap_fdatawait_range(struct address_space *mapping,
loff_t start_byte, loff_t end_byte)
{
pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
struct pagevec pvec;
int nr_pages;
int ret = 0;
if (end_byte < start_byte)
goto out;
pagevec_init(&pvec, 0);
while (index <= end) {
unsigned i;
nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
end, PAGECACHE_TAG_WRITEBACK);
if (!nr_pages)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
wait_on_page_writeback(page);
if (TestClearPageError(page))
ret = -EIO;
}
pagevec_release(&pvec);
cond_resched();
}
out:
return ret;
}
/**
* filemap_fdatawait_range - wait for writeback to complete
* @mapping: address space structure to wait for
* @start_byte: offset in bytes where the range starts
* @end_byte: offset in bytes where the range ends (inclusive)
*
* Walk the list of under-writeback pages of the given address space
* in the given range and wait for all of them. Check error status of
* the address space and return it.
*
* Since the error status of the address space is cleared by this function,
* callers are responsible for checking the return value and handling and/or
* reporting the error.
*/
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
loff_t end_byte)
{
int ret, ret2;
ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
ret2 = filemap_check_errors(mapping);
if (!ret)
ret = ret2;
return ret;
}
EXPORT_SYMBOL(filemap_fdatawait_range);
/**
* filemap_fdatawait_keep_errors - wait for writeback without clearing errors
* @mapping: address space structure to wait for
*
* Walk the list of under-writeback pages of the given address space
* and wait for all of them. Unlike filemap_fdatawait(), this function
* does not clear error status of the address space.
*
* Use this function if callers don't handle errors themselves. Expected
* call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
* fsfreeze(8)
*/
void filemap_fdatawait_keep_errors(struct address_space *mapping)
{
loff_t i_size = i_size_read(mapping->host);
if (i_size == 0)
return;
__filemap_fdatawait_range(mapping, 0, i_size - 1);
}
/**
* filemap_fdatawait - wait for all under-writeback pages to complete
* @mapping: address space structure to wait for
*
* Walk the list of under-writeback pages of the given address space
* and wait for all of them. Check error status of the address space
* and return it.
*
* Since the error status of the address space is cleared by this function,
* callers are responsible for checking the return value and handling and/or
* reporting the error.
*/
int filemap_fdatawait(struct address_space *mapping)
{
loff_t i_size = i_size_read(mapping->host);
if (i_size == 0)
return 0;
return filemap_fdatawait_range(mapping, 0, i_size - 1);
}
EXPORT_SYMBOL(filemap_fdatawait);
int filemap_write_and_wait(struct address_space *mapping)
{
int err = 0;
if (mapping->nrpages) {
err = filemap_fdatawrite(mapping);
/*
* Even if the above returned error, the pages may be
* written partially (e.g. -ENOSPC), so we wait for it.
* But the -EIO is special case, it may indicate the worst
* thing (e.g. bug) happened, so we avoid waiting for it.
*/
if (err != -EIO) {
int err2 = filemap_fdatawait(mapping);
if (!err)
err = err2;
}
} else {
err = filemap_check_errors(mapping);
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait);
/**
* filemap_write_and_wait_range - write out & wait on a file range
* @mapping: the address_space for the pages
* @lstart: offset in bytes where the range starts
* @lend: offset in bytes where the range ends (inclusive)
*
* Write out and wait upon file offsets lstart->lend, inclusive.
*
* Note that `lend' is inclusive (describes the last byte to be written) so
* that this function can be used to write to the very end-of-file (end = -1).
*/
int filemap_write_and_wait_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
int err = 0;
if (mapping->nrpages) {
err = __filemap_fdatawrite_range(mapping, lstart, lend,
WB_SYNC_ALL);
/* See comment of filemap_write_and_wait() */
if (err != -EIO) {
int err2 = filemap_fdatawait_range(mapping,
lstart, lend);
if (!err)
err = err2;
}
} else {
err = filemap_check_errors(mapping);
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait_range);
/**
* replace_page_cache_page - replace a pagecache page with a new one
* @old: page to be replaced
* @new: page to replace with
* @gfp_mask: allocation mode
*
* This function replaces a page in the pagecache with a new one. On
* success it acquires the pagecache reference for the new page and
* drops it for the old page. Both the old and new pages must be
* locked. This function does not add the new page to the LRU, the
* caller must do that.
*
* The remove + add is atomic. The only way this function can fail is
* memory allocation failure.
*/
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
int error;
VM_BUG_ON_PAGE(!PageLocked(old), old);
VM_BUG_ON_PAGE(!PageLocked(new), new);
VM_BUG_ON_PAGE(new->mapping, new);
error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
if (!error) {
struct address_space *mapping = old->mapping;
void (*freepage)(struct page *);
struct mem_cgroup *memcg;
unsigned long flags;
pgoff_t offset = old->index;
freepage = mapping->a_ops->freepage;
page_cache_get(new);
new->mapping = mapping;
new->index = offset;
memcg = mem_cgroup_begin_page_stat(old);
spin_lock_irqsave(&mapping->tree_lock, flags);
__delete_from_page_cache(old, NULL, memcg);
error = page_cache_tree_insert(mapping, new, NULL);
BUG_ON(error);
/*
* hugetlb pages do not participate in page cache accounting.
*/
if (!PageHuge(new))
__inc_zone_page_state(new, NR_FILE_PAGES);
if (PageSwapBacked(new))
__inc_zone_page_state(new, NR_SHMEM);
spin_unlock_irqrestore(&mapping->tree_lock, flags);
mem_cgroup_end_page_stat(memcg);
mem_cgroup_replace_page(old, new);
radix_tree_preload_end();
if (freepage)
freepage(old);
page_cache_release(old);
}
return error;
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);
static int __add_to_page_cache_locked(struct page *page,
struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask,
void **shadowp)
{
int huge = PageHuge(page);
struct mem_cgroup *memcg;
int error;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(PageSwapBacked(page), page);
if (!huge) {
error = mem_cgroup_try_charge(page, current->mm,
gfp_mask, &memcg);
if (error)
return error;
}
error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
if (error) {
if (!huge)
mem_cgroup_cancel_charge(page, memcg);
return error;
}
page_cache_get(page);
page->mapping = mapping;
page->index = offset;
spin_lock_irq(&mapping->tree_lock);
error = page_cache_tree_insert(mapping, page, shadowp);
radix_tree_preload_end();
if (unlikely(error))
goto err_insert;
/* hugetlb pages do not participate in page cache accounting. */
if (!huge)
__inc_zone_page_state(page, NR_FILE_PAGES);
spin_unlock_irq(&mapping->tree_lock);
if (!huge)
mem_cgroup_commit_charge(page, memcg, false);
trace_mm_filemap_add_to_page_cache(page);
return 0;
err_insert:
page->mapping = NULL;
/* Leave page->index set: truncation relies upon it */
spin_unlock_irq(&mapping->tree_lock);
if (!huge)
mem_cgroup_cancel_charge(page, memcg);
page_cache_release(page);
return error;
}
/**
* add_to_page_cache_locked - add a locked page to the pagecache
* @page: page to add
* @mapping: the page's address_space
* @offset: page index
* @gfp_mask: page allocation mode
*
* This function is used to add a page to the pagecache. It must be locked.
* This function does not add the page to the LRU. The caller must do that.
*/
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
return __add_to_page_cache_locked(page, mapping, offset,
gfp_mask, NULL);
}
EXPORT_SYMBOL(add_to_page_cache_locked);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
void *shadow = NULL;
int ret;
__set_page_locked(page);
ret = __add_to_page_cache_locked(page, mapping, offset,
gfp_mask, &shadow);
if (unlikely(ret))
__clear_page_locked(page);
else {
/*
* The page might have been evicted from cache only
* recently, in which case it should be activated like
* any other repeatedly accessed page.
*/
if (shadow && workingset_refault(shadow)) {
SetPageActive(page);
workingset_activation(page);
} else
ClearPageActive(page);
lru_cache_add(page);
}
return ret;
}
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
#ifdef CONFIG_NUMA
struct page *__page_cache_alloc(gfp_t gfp)
{
int n;
struct page *page;
if (cpuset_do_page_mem_spread()) {
unsigned int cpuset_mems_cookie;
do {
cpuset_mems_cookie = read_mems_allowed_begin();
n = cpuset_mem_spread_node();
page = __alloc_pages_node(n, gfp, 0);
} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
return page;
}
return alloc_pages(gfp, 0);
}
EXPORT_SYMBOL(__page_cache_alloc);
#endif
/*
* In order to wait for pages to become available there must be
* waitqueues associated with pages. By using a hash table of
* waitqueues where the bucket discipline is to maintain all
* waiters on the same queue and wake all when any of the pages
* become available, and for the woken contexts to check to be
* sure the appropriate page became available, this saves space
* at a cost of "thundering herd" phenomena during rare hash
* collisions.
*/
wait_queue_head_t *page_waitqueue(struct page *page)
{
const struct zone *zone = page_zone(page);
return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
}
EXPORT_SYMBOL(page_waitqueue);
void wait_on_page_bit(struct page *page, int bit_nr)
{
DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
if (test_bit(bit_nr, &page->flags))
__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_on_page_bit);
int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
if (!test_bit(bit_nr, &page->flags))
return 0;
return __wait_on_bit(page_waitqueue(page), &wait,
bit_wait_io, TASK_KILLABLE);
}
int wait_on_page_bit_killable_timeout(struct page *page,
int bit_nr, unsigned long timeout)
{
DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
wait.key.timeout = jiffies + timeout;
if (!test_bit(bit_nr, &page->flags))
return 0;
return __wait_on_bit(page_waitqueue(page), &wait,
bit_wait_io_timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
/**
* add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
* @page: Page defining the wait queue of interest
* @waiter: Waiter to add to the queue
*
* Add an arbitrary @waiter to the wait queue for the nominated @page.
*/
void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
{
wait_queue_head_t *q = page_waitqueue(page);
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, waiter);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);
/**
* unlock_page - unlock a locked page
* @page: the page
*
* Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
* Also wakes sleepers in wait_on_page_writeback() because the wakeup
* mechanism between PageLocked pages and PageWriteback pages is shared.
* But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
*
* The mb is necessary to enforce ordering between the clear_bit and the read
* of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
*/
void unlock_page(struct page *page)
{
VM_BUG_ON_PAGE(!PageLocked(page), page);
clear_bit_unlock(PG_locked, &page->flags);
smp_mb__after_atomic();
wake_up_page(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);
/**
* end_page_writeback - end writeback against a page
* @page: the page
*/
void end_page_writeback(struct page *page)
{
/*
* TestClearPageReclaim could be used here but it is an atomic
* operation and overkill in this particular case. Failing to
* shuffle a page marked for immediate reclaim is too mild to
* justify taking an atomic operation penalty at the end of
* ever page writeback.
*/
if (PageReclaim(page)) {
ClearPageReclaim(page);
rotate_reclaimable_page(page);
}
if (!test_clear_page_writeback(page))
BUG();
smp_mb__after_atomic();
wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);
/*
* After completing I/O on a page, call this routine to update the page
* flags appropriately
*/
void page_endio(struct page *page, int rw, int err)
{
if (rw == READ) {
if (!err) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
} else { /* rw == WRITE */
if (err) {
struct address_space *mapping;
SetPageError(page);
mapping = page_mapping(page);
if (mapping)
mapping_set_error(mapping, err);
}
end_page_writeback(page);
}
}
EXPORT_SYMBOL_GPL(page_endio);
/**
* __lock_page - get a lock on the page, assuming we need to sleep to get it
* @page: the page to lock
*/
void __lock_page(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_page);
int __lock_page_killable(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
return __wait_on_bit_lock(page_waitqueue(page), &wait,
bit_wait_io, TASK_KILLABLE);
}
EXPORT_SYMBOL_GPL(__lock_page_killable);
/*
* Return values:
* 1 - page is locked; mmap_sem is still held.
* 0 - page is not locked.
* mmap_sem has been released (up_read()), unless flags had both
* FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
* which case mmap_sem is still held.
*
* If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
* with the page locked and the mmap_sem unperturbed.
*/
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags)
{
if (flags & FAULT_FLAG_ALLOW_RETRY) {
/*
* CAUTION! In this case, mmap_sem is not released
* even though return 0.
*/
if (flags & FAULT_FLAG_RETRY_NOWAIT)
return 0;
up_read(&mm->mmap_sem);
if (flags & FAULT_FLAG_KILLABLE)
wait_on_page_locked_killable(page);
else
wait_on_page_locked(page);
return 0;
} else {
if (flags & FAULT_FLAG_KILLABLE) {
int ret;
ret = __lock_page_killable(page);
if (ret) {
up_read(&mm->mmap_sem);
return 0;
}
} else
__lock_page(page);
return 1;
}
}
/**
* page_cache_next_hole - find the next hole (not-present entry)
* @mapping: mapping
* @index: index
* @max_scan: maximum range to search
*
* Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
* lowest indexed hole.
*
* Returns: the index of the hole if found, otherwise returns an index
* outside of the set specified (in which case 'return - index >=
* max_scan' will be true). In rare cases of index wrap-around, 0 will
* be returned.
*
* page_cache_next_hole may be called under rcu_read_lock. However,
* like radix_tree_gang_lookup, this will not atomically search a
* snapshot of the tree at a single point in time. For example, if a
* hole is created at index 5, then subsequently a hole is created at
* index 10, page_cache_next_hole covering both indexes may return 10
* if called under rcu_read_lock.
*/
pgoff_t page_cache_next_hole(struct address_space *mapping,
pgoff_t index, unsigned long max_scan)
{
unsigned long i;
for (i = 0; i < max_scan; i++) {
struct page *page;
page = radix_tree_lookup(&mapping->page_tree, index);
if (!page || radix_tree_exceptional_entry(page))
break;
index++;
if (index == 0)
break;
}
return index;
}
EXPORT_SYMBOL(page_cache_next_hole);
/**
* page_cache_prev_hole - find the prev hole (not-present entry)
* @mapping: mapping
* @index: index
* @max_scan: maximum range to search
*
* Search backwards in the range [max(index-max_scan+1, 0), index] for
* the first hole.
*
* Returns: the index of the hole if found, otherwise returns an index
* outside of the set specified (in which case 'index - return >=
* max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
* will be returned.
*
* page_cache_prev_hole may be called under rcu_read_lock. However,
* like radix_tree_gang_lookup, this will not atomically search a
* snapshot of the tree at a single point in time. For example, if a