-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_lincls.py
487 lines (392 loc) · 17.4 KB
/
main_lincls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#!/usr/bin/env python
# Adapted from MoCo, He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning."
import os
import time
import json
import torch
import random
import shutil
import warnings
import argparse
import torch.optim
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.distributed as dist
from torchvision import datasets
import clipdistiller.models as models
import torch.utils.data.distributed
from tools.dataset import TSVDataset
import torch.backends.cudnn as cudnn
from tools.logger import setup_logger
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR',
help='path to dataset')
parser.add_argument('--output', metavar='DIR',
help='path to output folder')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs')
parser.add_argument('--lr', '--learning-rate', default=30., type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[60, 80], nargs='*', type=int,
help='learning rate schedule (when to drop lr by a ratio)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0., type=float,
metavar='W', help='weight decay (default: 0.)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--pretrained', default='', type=str,
help='path to pretrained checkpoint')
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
best_acc1 = 0
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env:https://')
cudnn.benchmark = True
os.makedirs(args.output, exist_ok=True)
global logger
logger = setup_logger(output=args.output, distributed_rank=dist.get_rank(), color=False,
name="SEED Linear Evaluation")
if dist.get_rank() == 0:
path = os.path.join(args.output, "config.json")
with open(path, 'w') as f:
json.dump(vars(args), f, indent=2)
logger.info("Full config saved to {}".format(path))
logger.info('world size: {}'.format(dist.get_world_size()))
logger.info('dist.get_rank(): {}'.format(dist.get_rank()))
logger.info('local_rank: {}'.format(args.local_rank))
main_worker(args, logger)
def main_worker(args, logger):
global best_acc1
# create model
logger.info("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
# freeze all layers but the last fc
for name, param in model.named_parameters():
if name not in ['fc.weight', 'fc.bias']:
param.requires_grad = False
# init the fc layer
model.fc.weight.data.normal_(mean=0.0, std=0.01)
model.fc.bias.data.zero_()
# load from pre-trained, before DistributedDataParallel constructor
if args.pretrained:
if os.path.isfile(args.pretrained):
logger.info("=> loading checkpoint '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained, map_location="cpu")
# rename pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only encoder student up to before the embedding layer
if k.startswith('module.student') and not k.startswith('module.student.fc'):
# remove prefix
state_dict[k[len("module.student."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
msg = model.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
logger.info("=> loaded pre-trained model '{}'".format(args.pretrained))
else:
logger.info("=> no checkpoint found at '{}'".format(args.pretrained))
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[args.local_rank], broadcast_buffers=False)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
# optimize only the linear classifier
parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
assert len(parameters) == 2 # fc.weight, fc.bias
args.lr_mult = args.batch_size / 256
args.warmup_epochs = 5
optimizer = torch.optim.SGD(parameters,
lr=args.lr_mult * args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
# tensorboard
if dist.get_rank() == 0:
summary_writer = SummaryWriter(log_dir=args.output)
else:
summary_writer = None
cudnn.benchmark = True
# Data loading code
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
logger.info("=> loading dataset")
train_dataset = datasets.ImageFolder(
os.path.join(args.data, 'train'),
transform=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
assert args.batch_size // dist.get_world_size() == args.batch_size / dist.get_world_size(),\
'Batch size is not divisible by num of gpus.'
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size // dist.get_world_size(),
shuffle=(train_sampler is None),
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(os.path.join(args.data, 'val'),
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size // dist.get_world_size(),
shuffle=False,
num_workers=args.workers,
pin_memory=True)
logger.info("=> loaded dataset")
if args.evaluate:
validate(val_loader, model, criterion, args)
return
for epoch in range(args.start_epoch, args.epochs):
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
logger.info("=> Epoch {} start.".format(epoch))
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if summary_writer is not None:
# tensorboard logger
summary_writer.add_scalar('lincls_acc1', acc1, epoch)
summary_writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], epoch)
if dist.get_rank() == 0:
# save_checkpoint({
# 'epoch': epoch + 1,
# 'arch': args.arch,
# 'state_dict': model.state_dict(),
# 'best_acc1': best_acc1,
# 'optimizer': optimizer.state_dict(),
# },
# is_best,
# filename=os.path.join(args.output, 'lincls_checkpoint_{:04d}.pth.tar'.format(epoch)))
if epoch == args.start_epoch:
# if epoch == 0:
sanity_check(model.state_dict(), args.pretrained)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('T', ':5.3f')
data_time = AverageMeter('DT', ':5.3f')
losses = AverageMeter('Loss', ':5.3f')
top1 = AverageMeter('Acc@1', ':5.2f')
top5 = AverageMeter('Acc@5', ':5.2f')
lr = ValueMeter('LR', ':5.3f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, lr, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
def get_learning_rate(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
lr.update(get_learning_rate(optimizer))
"""
Switch to eval mode:
Under the protocol of linear classification on frozen features/models,
it is not legitimate to change any part of the pre-trained model.
BatchNorm in train mode may revise running mean/std (even if it receives
no gradient), which are part of the model parameters too.
"""
model.eval()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda()
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':5.3f')
losses = AverageMeter('Loss', ':5.3f')
top1 = AverageMeter('Acc@1', ':5.2f')
top5 = AverageMeter('Acc@5', ':5.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
logger.info(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def sanity_check(state_dict, pretrained_weights):
"""
Linear classifier should not change any weights other than the linear layer.
This sanity check asserts nothing wrong happens (e.g., BN stats updated).
"""
logger.info("=> loading '{}' for sanity check".format(pretrained_weights))
checkpoint = torch.load(pretrained_weights, map_location="cpu")
state_dict_pre = checkpoint['state_dict']
for k in list(state_dict.keys()):
# only ignore fc layer
if 'fc.weight' in k or 'fc.bias' in k:
continue
# name in pretrained model
k_pre = 'module.student.' + k[len('module.'):] if k.startswith('module.') else 'module.student.' + k
assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
'{} is changed in linear classifier training.'.format(k)
logger.info("=> sanity check passed.")
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ValueMeter(object):
"""stores the current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
def update(self, val):
self.val = val
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '}'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logger.info(' '.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr * args.lr_mult
if epoch < args.warmup_epochs:
# warm up
lr = args.lr + (args.lr * args.lr_mult - args.lr) / args.warmup_epochs * epoch
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()