-
Notifications
You must be signed in to change notification settings - Fork 10
/
template_dataset.py
75 lines (62 loc) · 3.43 KB
/
template_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""Dataset class template
This module provides a template for users to implement custom datasets.
You can specify '--dataset_mode template' to use this dataset.
The class name should be consistent with both the filename and its dataset_mode option.
The filename should be <dataset_mode>_dataset.py
The class name should be <Dataset_mode>Dataset.py
You need to implement the following functions:
-- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options.
-- <__init__>: Initialize this dataset class.
-- <__getitem__>: Return a data point and its metadata information.
-- <__len__>: Return the number of images.
"""
from data.base_dataset import BaseDataset, get_transform
# from data.image_folder import make_dataset
# from PIL import Image
class TemplateDataset(BaseDataset):
"""A template dataset class for you to implement custom datasets."""
@staticmethod
def modify_commandline_options(parser, is_train):
"""Add new dataset-specific options, and rewrite default values for existing options.
Parameters:
parser -- original option parser
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
Returns:
the modified parser.
"""
parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option')
parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values
return parser
def __init__(self, opt):
"""Initialize this dataset class.
Parameters:
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
A few things can be done here.
- save the options (have been done in BaseDataset)
- get image paths and meta information of the dataset.
- define the image transformation.
"""
# save the option and dataset root
BaseDataset.__init__(self, opt)
# get the image paths of your dataset;
self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root
# define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function
self.transform = get_transform(opt)
def __getitem__(self, index):
"""Return a data point and its metadata information.
Parameters:
index -- a random integer for data indexing
Returns:
a dictionary of data with their names. It usually contains the data itself and its metadata information.
Step 1: get a random image path: e.g., path = self.image_paths[index]
Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB').
Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image)
Step 4: return a data point as a dictionary.
"""
path = 'temp' # needs to be a string
data_A = None # needs to be a tensor
data_B = None # needs to be a tensor
return {'data_A': data_A, 'data_B': data_B, 'path': path}
def __len__(self):
"""Return the total number of images."""
return len(self.image_paths)