Skip to content

Latest commit

 

History

History
57 lines (28 loc) · 3.92 KB

README.md

File metadata and controls

57 lines (28 loc) · 3.92 KB

Projekt

Entwicklung eines MOOC für den KI-Campus zum Einstieg in die Kausale Inferenz in Kooperation mit Julia Rohrer (Projektleitung), Universität Leipzig.

Details siehe z.B. FOM forscht Wissenschaftsblog.

Link zum Kurs auf den KI-Campus: https://ki-campus.org/courses/wwweki

Videos:

Hier fehlen auch die begleitenden Interviews mit angesehen Expert:innen aus unterschiedlichen Fachgebieten, die ihre kausalen Fragestellungen und Lösungsansätze vorstellen. Diese finden Sie unter https://wwweki.gitlab.io/interviews/.

Literatur:

  • Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27-42. https://doi.org/10.1177%2F2515245917745629

  • Lübke, K., Gehrke, M., Horst, J., & Szepannek, G. (2020). Why we should teach causal inference: Examples in linear regression with simulated data. Journal of Statistics Education, 28(2), 133-139. https://doi.org/10.1080/10691898.2020.1752859

Modulübersicht

  1. An der Weggabelung: Einen Weg gehen - und einen nicht (Potential Outcome und Counterfactual)

  2. Ein Pfeil zeigt die Richtung (Strukturelle kausale Modelle und Kausale Diagramme)

  3. Daten analysieren - mit welchem Ziel? (Datenanwendungen (Beschreibung, Vorhersage, Kausale Inferenz), Kausale Leiter (Assoziation, Intervention, Counterfactual))

  4. Es steht was zwischen uns (Kette)

  5. Von Störchen und Geburten (Gabel)

  6. Nett oder schön? – Warum nicht beides? (Umgedrehte Gabel)

  7. Warum Raumteilung keine gute Investition ist (Wiederholung Grundelemente Kausaler Diagramme, Unterschied (do(x) vs. X=x am Beispiel)

  8. Magie durch Zufall (Zufällige Stichprobe und zufällige Zuordnung im Rahmen eines Experiments und die Auswirkungen auf die Datenanwendungen (Beschreibung, Vorhersage, Kausale Inferenz) )

  9. Was wäre gewesen, wenn? (Counterfactual)

  10. Graphen zeichnen und lesen (Beispiel Gender-Pay-Gap)

  11. Schadet Rauchen bei Heranwachsenden? (Anwendungsbeispiel Kausale Inferenz in der Medizin.)

  12. Praktisches Daten hinterfragen (DAGs in der Anwendung, Ausblick)

Bitte melden Sie Fehler, Unklarheiten und Verbesserungsvorschläge hier.

Lizenz

Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz.

Förderung

Das Vorhaben Was, wie, warum? Einstiegskurs Kausale Inferenz (WWWEKI) wird mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 16DHBQP040 gefördert.

Logo BMBF