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Abstract. Mobile devices are becoming a central data integration hub
for personal information. Thus, an up-to-date, comprehensive and con-
solidated view of this information across heterogeneous personal informa-
tion spaces is required. Linked Data offers various solutions for integrat-
ing personal information, but none of them comprehensively addresses
the specific resource constraints of mobile devices. To address this issue,
this paper presents a unified data integration framework for resource-
constrained mobile devices. Our generic, extensible framework not only
provides a unified view of personal data from different personal infor-
mation data spaces but also can run on a user’s mobile device without
any external server. To save processing resources, we propose a data nor-
malisation approach that can deal with ID-consolidation and ambiguity
issues without complex generic reasoning. This data integration approach
is based on a triple storage for Android devices with small memory foot-
print. We evaluate our framework with a set of experiments on different
devices and show that it is able to support complex queries on large per-
sonal data sets of more than one million triples on typical mobile devices
with very small memory footprint.
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1 Introduction

The availability of an up-to-date, comprehensive and consolidated view of a
user’s social context not only enables novel applications such as distributed social
networks [16], semantic life [8], or a semantic desktop [18] but is increasingly
becoming an essential requirement for many mobile applications. As an example,
consider a typical mobile user who has access to contact information of his
acquaintances via Facebook, LinkedIn, Google+ and his phonebook. Each of
these data sources may contain different types of information about this user,
e.g., personal and professional information, phone numbers or message and call
histories, and they may exhibit different levels of quality. Consequently, a contact
management application should be able to link and integrate all this information
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and automatically extract and integrate the right pieces of information from the
whole set of data sources available. Similarly, a messaging widget should be able
to integrate the messages from different services in order to track the user’s
conversations across all messaging service platforms.

However, the creation and continuous maintenance of such a view is a chal-
lenging task. The reason for this is twofold: First, despite the steady increase in
computation and communication capabilities, mobile devices are battery pow-
ered. As a result, developers typically spend a considerable fraction of their
development time on minimizing the amount of computation and bandwidth
utilization to reduce the impact of their applications on the device’s energy
profile. Second, despite the popularity of some mainstream social networking
services, the creation of a truly comprehensive view on the user’s context usu-
ally requires the integration of considerable amounts of data from a user-specific
set of services. As a result, developers must provide mechanisms to deal with the
integration of complementary as well as overlapping and possibly inconsistent
data sets.

Existing solutions typically use one of the following two approaches: Either
they may use a powerful and well-connected cloud infrastructure to perform the
data integration [12] or they may focus on the integration of an application-
specific set of data types from a (possibly) limited set of services [13]. The first
approach requires the provisioning of access credentials to the centralised/cloud-
based data integration infrastructure which may then access, process and store
the user’s information. This remotely processing approach for mobile applica-
tions raises several privacy and security concern as security credentials leave
the device and privacy is given up (entrusted to the cloud/remote servers with-
out control by the users and without means to enforce it). Therefore, granting
access on the mobile device is under the full control of the user is desired in
ongoing security and privacy debates in many countries in respect to the cloud.
To this end, the second approach is the preferable choice. However, it is not
cost-effective as it requires developers to repeatedly make complicated design
decisions. Furthermore, it may be also inefficient, especially in cases where mul-
tiple applications require access to the same data resulting in duplicate data
retrieval and integration.

In this paper, we present an alternative approach for data integration by
introducing a comprehensive framework that takes care of data retrieval, identity
consolidation, disambiguation, storage and access, locally on mobile devices. To
reduce privacy and security concerns, the framework does not require any remote
storage and processing. It is solely executed on the mobile device of a user. In
contrast to application-specific approaches, our framework is generic with respect
to the supported types of data. It is extensible with respect to the supported
services and it is open with respect to application support. To achieve this,
the framework (1) leverages Linked Data to facilitate the storage of arbitrary
types of data, (2) employs a plug-in model to connect to different services and
(3) provides a generic query processor with support for SPARQL to be open
with respect to application support. As a validation of the usefulness of the
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framework and to verify the efficiency of the framework, we present the results
of an extensive experimental evaluation.

The remainder of this paper is structured as follows: In the next section we
describe our approach for data consolidation and integration on mobile devices.
After that we present the design and implementation of our framework, and
evaluate its performance. Finally, we discuss related work and finish the paper
with our conclusions and discuss directions for possible future work.

2 Integration of heterogeneous personal information

To integrate the personal data from different data sources, several approaches
proposed a unified data model for transforming heterogeneous data formats to
RDF driven by agreed-upon vocabularies (FOAF, SIOC, vCard,etc) [2]. RDF
statements are used to link and describe people, their social relationships, the
content objects relevant to them, etc. However, a person can have multiple iden-
tifiers (IDs) on different data spaces. When they are integrated in a single data
space, these IDs have to be interlinked and unified to represent a unique person.
To uniquely identify someone across various data spaces, there are some rules
that have to be set to infer and ensure uniqueness of that person. Along with
some explicit properties like owl:sameAs, there are some implicit rules defined
from properties indicating that two IDs are “talking” about the same person [2].
For instance, in practical, an “inverse-identification” property is used as an in-
direct identifier, e.g., foaf:phone, foaf:mbox sha1sum. Therefore, having multiple
identifiers poses several challenges for aggregating personal data from heteroge-
neous data spaces to store in RDF and to make it useful on resource constrained
devices.
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“GAMBAS” 
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Fig. 1: Simple RDF graph integrated from data silos

To demonstrate why it is challenging to enable a unified, integrated view
of heterogeneous personal information sources on mobile devices, let us take a
closer look on the example depicted in Figure 1. The data shown in this figure
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is acquired and transformed to RDF from Facebook, Google+, LinkedIn and
phone contacts of a user’s mobile phone in a similar fashion as proposed in [16,
2].

The explicit owl:sameAs statements are added to link a user’s IDs from dif-
ferent data spaces. In addition, two RDF nodes, facebook:Anh (Facebook iden-
tifiers) and gplus:Anh (Google+ identifiers), represent one person because they
have the same inverse-identification property foaf:phone with the same value
< phone : +35389... >. Similarly, two RDF nodes, linkedin:Gregor (LinkedIn
identifier) and phone:Gregor (identifier given by the phone’s contact applica-
tion) also represent one person because the sha1sum value of his email has the
same value as his foaf:mbox sha1sum in LinkedIn. In essence, this RDF graph
implicitly represents “different” pieces of information of three people who have
different RDF statements attached with different RDF nodes representing each
of them. However, if we store the simple RDF reification1 of this graph in a
standard RDF store, the SPARQL query processor will not be able to return
complete information about a person. For instance, the query ”SELECT ?friends
WHERE {phone:me foaf:knows ?friend}” can only return one friend with the
identifier contact:Gregor from the explicit statement in the phone contacts. Stan-
dard SPARQL is not able to infer the implicit statement {phone:me foaf:knows
facebook:Anh} because phone:me and facebook:me is the same person.

cg:me 
“Danh Le 

Phuoc” 

LinkedIn:Danh 

gplus:Danh 

facebook:photo2 

gplus:photo1 

Cg:Anh 

foaf:name 

Tel:+35386... 
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cg:Gergor 
<http:..> 

OWL:SameAs 

taggedin 

foaf:knows 

foaf:img 

tagged 

cg:me 

cg:Anh 

foaf:knows 

OWL:SameAs 

tag:tagged 

<http:..> 

“xxyyzz”” 

“GAMBAS” 

tel:353… 

gplus:Anh 

facebook:Danh 

phone:me 

cg:Gergor LinkedIn:Gergor 

phone:Gergor 

OWL:SameAs 

Consolidated graph SameAs Graph 
Fig. 2: Consolidated and SameAs graph

The solution for this problem is to use entailment regimes2 instead of sim-
ple entailment in the above graph. This requires a modification in the SPARQL
query processor to employ a reasoner to infer implicit RDF statements for basic
graph pattern matching operators. However, this approach is not practical be-
cause it needs a considerable amount of memory and a fairly powerful CPU for

1 http://www.w3.org/TR/rdf-primer/
2 http://www.w3.org/TR/sparql11-entailment/
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the reasoning process. Another alternative solution is to use an ID consolidation
approach [12, 6] to compute all implicit RDF statements, then store them in an
RDF store and query it with a standard SPARQL query processor. However,
this approach is hard to adopt for resource constrained mobile devices. On top
of that, having all possible explicit RDF statements in an RDF store is expensive
for both updating and querying the data stored in the storage. It is even more
expensive for incrementally updating the RDF store because the data needs to
be synchronized with the original data sources [15, 17].

To remedy these problems, we propose to create a unified integration view by
managing additional graphs to query all personal information desired. Firstly,
we manage a “consolidated graph” that contains the aggregated personal infor-
mation from different data spaces. As illustrated on the left of Figure 2, the
consolidated graph provides an aggregated view of personal information, so that
a standard SPARQL query processor can provide complete answers relevant
to a person. Note that, this consolidated graph uses only one ID scheme that
provides a single ID for one person. However, the integration view also has a
SameAs graph that links consolidated IDs with their counterparts given in other
data spaces as shown on the right of Figure 2.

To store and manage the provenance information of the data acquired from
difference data spaces, the integration view also stores the data from each data
space as a named graph. This enables queries to correlate the consolidated graph
with a graph containing information from a particular data space. For instance,
the following query is used to query all friends in Facebook that are tagged with
“me in a photo” posted in Google+ or Facebook or other data spaces.

SELECT ?fbfriend
FROM NAMED ds:facebook
FROM NAMED ds:cg
FROM NAMED ds:sameas
WHERE{
GRAPH ds:facebook{fb:me foaf:knows ?fbfriend}
GRAPH ds:cg{? cgfriend pim:tagged ?photo. ?cgme pim:tagged ?photo.}
GRAPH ds:sameas {? cgfriend owl:sameAs ?fbfriend. ?cgme owl:sameAs fb:me.}}

To relieve the user of the burden of using the proper identifiers corresponding
to the data spaces and writing such a long query involving the SameAs graph,
it should be possible to use the user identifiers in queries as all identifiers will be
translated to the proper ID scheme based on the context given by the GRAPH
keyword. For instance, a Facebook ID Facebook:me will be translated to the
corresponding one in the consolidated graph by the query processor. The above
query could be written in a shorter form as follows:

SELECT ?fbfriend
FROM NAMED ds:facebook
FROM NAMED ds:cg
WHERE{
GRAPH ds:facebook{fb:me foaf:knows ?fbfriend .}
GRAPH ds:cg{? cgfriend pim:tagged ?photo. fb:me pim:tagged ?photo .}}

To create and maintain the unified view composed from such graphs, we
would need a data integration platform that requires several features specifically
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designed for mobile devices. The first feature is the data aggregation from het-
erogeneous data sources. After data is aggregated, it has to be consolidated to
create constituent graphs for the integrated view. To store and query data from
these graphs, the platform also needs a fully-fledged RDF store tailored to the
needs of resource-constrained devices. On top of that, the data in this RDF store
has to be accessed in a controlled manner to meet the security and privacy con-
cerns of personal data. These requirements drives the design and implementation
decisions of our framework in the following section.

3 System design and implementation

To enable querying heterogeneous personal information with the unified view
described in previous section, we design the system architecture to meet afore-
mentioned requirements in following. We also describe the implementation of
the core component, RDF store for mobile devices, that dictates the expected
performance of the whole system in context of resource constraints.

3.1 System Architecture

Figure 3 shows the overall system architecture which we will discuss in the
following.

System'Architecture'(Overview)'

RDF'Store'

Data'Consolidator'

Connector'Manager'

Query'Manager' ID'Resolver'

Secure'Access'Manager'

Google'Facebook' Mobile'
Phone'

Facebook'
Connector'

Phone'
Content'
Connector'

Calendar'
Connector'

…'

…'

…'Local'App' Local'App' Remote'App'

Fig. 3: System architecture overview

As discussed before, there are different sources for personal information like
Facebook or Google Calendar that developers should be able to integrate into
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our framework. To do so, our framework allows developers to create Connec-
tor classes and plug them into the framework using the Connector Manager.
Each Connector is tailored towards a specific information source. So far, we
provide a core set of Connectors, namely for Facebook, Google+, Google Cal-
endar,LinkedIn and the local mobile phone content. If developers need to access
additional information sources, they can easily implement new connectors for
them using the existing ones as a blueprints.

Each connector pulls relevant information from its information source and
pushes it towards the Data Consolidator. The Data Consolidator consolidates
and integrates data from different connectors into the corresponding RDF graphs
for each data source. The Data Consolidator also computes the aggregated graph
and SameAs graph as described in Section 2. These RDF graphs are stored as
an integrated view into the RDF Store.

The RDF Store is a core component of our system as it manages triple data
directly on the mobile phone instead of on an external server. RDF triples can
be stored, indexed and retrieved. The store contains the actual personal data as
well as all metadata needed for data consolidation, e.g., user IDs in different data
sources and how they relate to each other. The RDF Store has major influence
on our system performance and thus must be highly efficient both in terms of
execution speed and memory usage. We therefore implemented a RDF store
that is specifically tailored towards mobile devices instead of using a feature
reduced version of a well known system like Jena. We will discuss the design and
implementation of our RDF Store in more detail later in this section.

To access the RDF Store, clients can use two system components, the Query
Manager and the ID Resolver. The Query Manager can handle standard SPARQL
queries on the data in the RDF Store. In addition to standard query planning
and execution, the Query Manager is also responsible for rewriting queries if
necessary. This is the case if the query contains an ID for a user that originates
in one of the original data sources, e.g., the ID of a user in Facebook. The Query
Manager detects this and rewrites the query such that a consolidated ID is used.
This allows clients to place queries without knowing about the data consolida-
tion. From the client’s point of view it can use the data as if all of it was available
on Facebook. The ID Resolver offers an alternative way of dealing with multi-
ple IDs. It allows a client to request information about a user’s ID in different
data sources. As an example, a client can ask for the IDs of a user for which it
provides the Facebook ID. The ID Resolver looks up the necessary metadata in
the RDF Store and returns all IDs for this user, the consolidated ID as well as
the user’s ID in Google+, etc.

Clearly, security and privacy are major factors when designing a system that
manages personal data. Therefore, we chose to add an additional system com-
ponent, the Secure Access Manager, which is responsible for ensuring that all
client accesses are done in a secure and privacy-preserving manner. The Secure
Access Manager receives requests from local as well as remote client applications.
It authenticates the requesting clients and checks their authorisation to access
private data. Authorisation is given by the local user using so-called privacy
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policies. If access is granted, the Secure Access Manager forwards the request to
either the Query Manager or the ID Resolver. It also forwards any results to the
requesting client.

To ensure secure communication with remote clients, the Secure Access Man-
ager uses the PIKE approach for secure peer to peer communication establish-
ment for mobile devices [1]. PIKE includes mechanisms to initiate a secure key
exchange and to establish a secure network connection with it. It is also able to
set up an ad-hoc communication network between mobile devices if necessary.

3.2 High performant and low memory consumption RDF store

As presented in Section 2, our solution for maintaining a unified integration view
of heterogeneous personal information is to manage a consolidated graph for the
aggregated data from different spaces and a sameAs graph to link the consol-
idated ID with their counterparts. Applying this approach on mobile devices
requires a mobile RDF store component which is designed for update-intensive
operations. To this end, we built a native and fully-fledged, persistent RDF stor-
age and SPARQL query processor for Android devices, called RDF On the Go
(RDF-OTG) 3. RDF-OTG has been extensively used for managing semantic con-
textual information on mobile devices in PECES 4 and GAMBAS 5 projects. In
our implementation, we focused on minimizing the memory footprint and design-
ing data structures tightly coupled with the storage mechanism of mobile devices
to achieve maximum efficiency in terms of low memory consumption and high
update frequency. In the following we briefly describe our main optimisations
to maximise performance and scalability for personal information management
applications on mobile devices. A full analysis of the performance gains is given
in Section 4.

Reducing memory consumption is one of the critical key targets in mobile
DBMS design [10] since most mobile devices have (relatively) limited memory.
To achieve that, we reduce the memory footprint of data operations on RDF
data by using dictionary encoding, similar to the implementations of JenaTDB
or Sesame. Each RDF node is mapped to a compact 32-bit integer with 9 bit to
encode the node type and the remaining 23 bit encoding a string identifier which
is kept separately on the flash memory instead of in main memory. Most oper-
ations on nodes, e.g., matchings during a query execution, can be performed on
these node identifiers without accessing the actual string representation. Thus,
only one integer must be kept in memory for each node, while string represen-
tations can be stored on the flash memory. This leads to a memory footprint of
just up to 12 bytes per triple. This is considerably low compared to 450 bytes
per triple for the Jena Memory Model as reported by the memory profiler. Note
that the compact integer format is used for optimising millions rather than bil-
lions of RDF nodes which we believe this is the common scale of most mobile
personal information applications. For instance,1.5 million triples are required

3 RDF-OTG is open-sourced at https://code.google.com/p/rdfonthego/
4 http://www.nes.uni-due.de/research/projects/peces/
5 http://www.gambas-ict.eu/
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to represent the information of 1200 user profiles (cf., Section 4). However, if
necessary, this restriction could be easily removed.

Mobile devices are equipped flash memory as the secondary storage. Flash
memory has no mechanical latency, reading is faster than writing and the storage
is organized in memory blocks. Instead of reading or writing individual bytes,
the I/O unit always reads/writes a whole block. That leads to its erase-before-
write limitation when writing a single byte in a block, i.e., the whole block must
be read, modified and written again. Thus to achieve the writing requirement,
our RDF store needs to optimize writing efficiency rather than reading effiency.
To simplify the writing process we use the simplest version of multiple indexing
framework of RDF data [4]. It contains only three cyclic orderings of a triple’s
components with respect to subject(S), predicate(P) and object(O): SPO, POS
and OSP. Each indexing order of triples is stored in a separate table.

Due to the impact of flash memory, unmodified versions of traditional data
structures do not perform well. On the other hand, flash-aware indexing structure
do not work well with “narrow and long” tables as resulting from the above
indexing approach. Thus, we use a two-layer indexing approach to manage these
tuples of three encoded integers in their corresponding tables. In each table,
tuples are sorted lexicographically, partitioned and compressed into individual
fixed-size and same-length blocks to the flash I/O block size of the device. The
second index layer is a sparse index, small enough to fit into main memory to
enable fast lookup for the triples contained in each block. The index holds the
lowest and highest node identifier in each sorted block. We also use an in-memory
caching mechanism which maintains a limited number of frequently used index
blocks.

If a new triple is added, it must be added to the indexes. To do so, the system
loads the required index blocks into the cache. Then the triple must be allocated
at the right position in the index. This is trivial if the triple should be added
at the end of an existing block that still has open space. Otherwise, we would
need to move all triples by one position, resulting in a large number of writes.
To further reduce the number of read/write accesses, when we need to remove
a block from the cache and write it back to flash, our strategy chooses a block
that has thehighest chance of not being changed in the future.

4 Experimental evaluation

The approach for data integration presented in Section 2 avoids reasoning tasks
by modifying RDF triples and then storing them in a unified integration view.
This solution is suitable for mobile devices since it does not require much memory
for executing the reasoning tasks but it requires a highly performant mobile RDF
store when the graphs have to be modified frequently to maintain the unified
view. Thus, performance of the system described in Section 3 heavily depends
on the performance of the back-end mobile RDF store used. In this section, we
present a thorough experimental evaluation6 of our system’s performance and

6 The description of how to reproduce the results can be found at https://code.

google.com/p/rdfonthego/wiki/SocialNetworkEvaluation



10 Danh Le Phuoc et al.

scalability in terms of data updating and querying. The evaluation uses two
system configurations with different mobile RDF stores to evaluate its impact
on system’s performance and to measure the efficiency gained through our RDF
store. In the following we first describe the setup of the experiments and then
present and discuss the results obtained from the results.

4.1 Evaluation Setup

Our evaluation setup is as follows: To evaluate the impact of our special triple
store on system performance, we compare two different system configurations.
The first one uses our system as described in the last section, i.e., it uses our triple
store, RDF On The Go (RDF-OTG). The original implementation of RDF-OTG
was presented in [9]. Since then RDF-OTG has been completely redesigned and
reimplemented for maximum performance in Section 3.2. In the experiments we
use the most recent version. In the second configuration we replaced RDF-OTG
by TDBoid,7 the Android version of Jena TDB. The rest of the system remained
unchanged.

To evaluate how different device profiles with different resources and capabil-
ities impact on the performance, we use three classes of Android devices in the
experiments: a HTC desire, a Samsung Galaxy Nexus, and a Nexus 7 Tablet.
Their configuration details are described in Table 1.

HTC desire Samsung Galaxy Nexus Nexus 7 Tablet

AndroidOS 2.3.3 AndroidOS 4.2.2 AndroidOS 4.2.2
998Mhz CPU 1200Mhz CPU 1300Mhz CPU
404MB physical RAM 694MB physical RAM 974MB physical RAM
32MB DVM heap size 96MB of DVM heap size 64MB of DVM heap size

Table 1: Android devices

For the evaluation dataset, we use a social network data generator [11] to
generate three social networks, one for Facebook, one for Google+ and one
for LinkedIn. From these we extract relevant data profiles for a person, i.e.,
the profiles of that person and his/her friends, and feed them into our sys-
tem. The data generator generates random inverse-identification properties, e.g,
mbox sha1sum, phone from the same dictionary for three social networks so
the overlaps are random. With this dataset, we conducted the following four
experiments:

Update throughput: In the first experiment we tested how much new data
the system can incrementally update with a certain underlying RDF store corre-
sponding to each hardware configuration. We simulated the process of data grow-
ing by gradually adding more data to the system. We measured the throughput
of inserting data (triples/second) until the system crashed or until we reach 1
million triples (whichever happened first).

Query processor comparison: In the second experiment we tested the perfor-
mance and functionalities of TDBoid and RDF-OTG using 8 typical queries with
on the maximum data sizes that both TDBoid and RDF-OTG could support.
The queries are chosen to cover all query patterns and different complexities.

7 https://code.google.com/p/androjena/
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Note that, each query accesses to the aggregated view which already involves
data from multi-sources and queries 7 and 8 are to show the ability to refer back
to the original data sources. The list of the queries in SPARQL language is given
in the Appendix.

Memory consumption: In the third experiment, we measured the memory
consumption of two system configurations while performing the queries. The
experimental application ran the different queries repeatedly and recorded the
maximum memory heap that the operating system allocated for it. To evaluate
the impact of the data size on memory consumption, the test was conducted
on the Nexus 7 Tablet with five datasets with different sizes. Note that the
memory consumption is device-independent. We used the same queries set as in
the second experiment.

Scalability: In the last experiment we evaluated the scalability of RDF-OTG
by measuring the query response time of the above 8 queries on the maximum
data sizes that each of the above devices could store.

4.2 Evaluation Results
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Fig. 4: Updating throughputs

Figure 4 shows the results of our first experiment, in which we measured the
update performance of RDF-OTG and TDBoid when adding more and more
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triples to the store. As we can see, in general, the writing throughput of RDF-
OTG is roughly twice as high as TDBoid’s. This shows the advantage of our
optimizations for flash memory compared to the design used in TDBoid, which
was originally designed for normal magnetic disks.

In addition, while throughput decreases for larger data sizes in the store,
RDF-OTG is able to add more triples to the store for all scenarios with ac-
ceptable rates (approx. 200 triples/sec for the HTC Desire and approx. 500
triples/sec for the two more powerful devices), even if nearly one million triples
were already in the store. TDBoid on the other hand, is not only slower, but
it also cannot cope at all with such data sizes and reaches its upper capacity
limit at 100k triples on the HTC Desire, 220k triples on the Galaxy Nexus and
around 200k triples on the Nexus 7.

In our second experiment we measured the performance of evaluating differ-
ent queries (as discussed earlier) on existing data sets. The results are shown in
Figure 5. Unfortunately, TDBoid does not return any results for Query 7 and 8
because it does not support queries involving named graphs. Therefore, we omit-
ted these two queries from the graphs below. In addition, due to the limitation
in the number of triples that TDBoid can handle, we had to reduce the number
of profiles contained in the test data for each of the devices: 45 profiles for the
HTC Desire, 180 profiles for the Galaxy Nexus and 112 profiles for the Nexus 7.
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Fig. 5: Comparing the query response times of RDF-OTG and TDBoid

The results show that the query performance of RDF-OTG is much higher
than TDBoid’s for the Galaxy Nexus and the Nexus 7. However, for the HTC
Desire, the performance is comparable or even worse for RDF-OTG. The reason
for this is that we specifically optimized our system for flash memory. However,
the HTC Desire uses an external SD card for storing data instead of internal
flash memory. This induces a much higher cost to I/O operations on the HTC
Desire. Since TDBoid is originally designed for (relatively slow) magnetic disks,
it is able to handle this better than RDF-OTG. However, to do so, TDBoid uses
a lot of main memory, which explains its restricted scalability.

The results of the third experiment for measuring the memory consumption
for querying are presented in Table 2. Due to the limited scalability of TDBoid
exhibited in the inserting throughput test, the tests with TDBoid could only
be executed on data sizes of 100,000 and 200,000 triples. The results of the
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experiment demonstrate the great improvement in memory footprint optimiza-
tion of our system. With the same dataset, RDF-OTG requires only one third
of the memory that TDBoid needs. For instance, RDF-OTG requires 4MB for
the 100,000 triple dataset and 8MB for 200,000 triples to perform the queries
while TDBoid requires 11MB and 26MB for the same setup. The efficiency in
memory usage also enables RDF-OTG to support much larger datasets. Even
with a dataset of 1.5 million triples, the heap size of a system configured with
RDF-OTG is lower than 64MB (the JVM maximum heap size of the Nexus 7
tablet).

100k 200k 500k 1m 1.5m

RDF-OTG 4MB 9MB 17MB 34MB 46MB

TDBOID 11MB 26MB N/A N/A N/A

Table 2: Memory consumption of mix queries/size of data

Our last experiment evaluated the scalability of our system. Due to the scal-
ability limitations that we found in earlier experiments, we omitted TDBoid in
this experiment and focused on RDF-OTG. Table 3 shows the query response
times of the 8 queries on the three devices. As we can see, our system is able
to handle datasets of 1 million triples (900 profiles) on the HTC Desire, and
1.5 million triples (1200 profiles) on the Galaxy Nexus and Nexus 7 without
any problems. For simple queries like Query 1 and Query 3, it takes less than
1 second to answer the query on datasets of more than one million triples on
all devices. More complicated queries such as Query 4, Query 5 and Query 6,
take less than 10 seconds, except for Query 5 on the HTC Desire. For this query
RDF-OTG crashes with an out of memory error. The HTC’s maximum heap
size of 32MB is not enough for RDF-OTG to handle the large number of inter-
mediate results generated for this query from the one million triple dataset.8 We
plan to look into this matter further in the future to solve this problem. For the
rest of the queries, it takes 10-25 seconds to answer the query. This is due to
the time spent for fetching a big set of output results and is determined by the
query, so developers have to be careful to “ask the right queries.”

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q 8

HTC (900 Prof/1M tr) 0.114 19.035 0.402 3.714 failed 6.093 22.652 24.345

GALAXY (1.2K Prof/1.5M tr) 0.322 14.705 0.341 3.490 7.858 1.713 16.111 19.223

NEXUS 7 (1.2K Prof/1.5M tr) 0.113 11.638 0.242 2.458 6.649 1.579 12.769 17.044

Table 3: Query response time (seconds) on maximum datasets for RDF-OTG

5 Related work

Semantic Web and RDF have long been used as a solution for modeling and in-
tegrating heterogeneous personal data. Many works have aimed to better allow a
user’s access to multiple data silos by using Semantic Web technologies to satisfy
the requirements of data portability in terms of identification, personal profiles
and friend networks [2]. SemanticLife [8] is one of the early attempts to employ

8 34MB would be required as shown in our third experiment.
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ontologies for modeling personal digital information. Then there is a series of
work on Semantic Desktop such as the Gnowsis Semanic Desktop [14] or the So-
cial Semantic Desktop [5] to provide semantic Personal Information Management
(PIM) tools. Additionally, other integrated platforms such as Haystack [12] and
Semex [6] provide a wide range of tools and functionalities for PIM. However,
they all aim at a standard computer environment and do not take into account
mobile devices and their specific problems.

Since then several works have tried to achieve the same functionalities on
mobile devices. But the adaptations necessary for the mobile setting proved
to be challenging. The first line of work followed the approach of connecting
mobile devices to a centralized infrastructure where all processing and storages
are delegated to [3, 4]. This line of early work has a lot of security, connection
and performance issues. To address them, there are emerging efforts to ship
processing and storage of personal information to mobile devices. For instance,
[16] tries to store the personal data retrieved from distributed social networks
on the phone. However, most of these works still have certain dependencies and
use unsecured data exchanges with intermediate parties.

However, these early works have shown the clear interest of using Semantic
Web technologies for integrating personal data on mobile devices and the also
have shown the need for mobile RDF data processing engines. But these existing
works ignore the fact that existing triple storage technologies from normal com-
puters can not be directly applied to the mobile setting. For example, the early
adoption of Jena to J2ME [7] is micro-Jena 9 which only works on in-memory
data on Symbian mobiles. The Android version of Jena, TDBoid, is far better
due to newer hardware capabilities but it has a lot of limitations in respect to
performance and scalability as we have shown in our experiments in Section 4.
We believe this paper is the first to systematically investigate and address the
issues of security, integration, performance and scalability of integrating hetero-
geneous personal information data.

6 Conclusions

In this paper, we presented a comprehensive framework for the integration of
personal data from heterogeneous data sources, such as different social networks,
on mobile devices. Our framework builds upon Linked Data technologies to be
generic with respect to the supported data types and data requests, offers a plug-
in model to be extensible for additional data sources and relies solely on a user’s
mobile device, without the need for storing or processing any data on an external,
possibly untrusted, server infrastructure. The performance and scalability issues
are addressed by our RDF triple store for Android devices, RDF On the Go,
which is specifically optimised for mobile devices and flash memory usage. It
offers full support for RDF triples and SPARQL queries and is able to handle
more than a million triples on typical mobile devices efficiently. Complex queries
are supported and can be executed in reasonable time, even for such large data
sets but with very small memory footprint.
9 http://poseidon.ws.dei.polimi.it/ca/?page_id=59
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Appendix: Queries used in the experiments

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
SELECT ?per ?property ?info
WHERE {?per foaf:mbox ’mailto:Thierry59@gmx.com ’. ?per ?property ?info.}

Query 1: Return all information of a person by given mbox

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
PREFIX db: <http :// dbpedia.org/resource/>
SELECT ?firstname ?lastname ?mbox ?friend ?birthday ?gender
WHERE {

?person foaf:based_near db:Bulgaria. ?person foaf:firstName ?firstname.
?person foaf:lastName ?lasttname. ?person foaf:mbox ?mbox.
?person foaf:birthday ?birthday .? person foaf:gender ?gender. }

Query 2: Extract some informations of people who are nearby Bulgaria

PREFIX sibv: <http :// www.ins.cwi.nl/sib/vocabulary/>
PREFIX sioc: <http :// rdfs.org/sioc/ns#>
PREFIX dbpo: <http :// dbpedia.org/ontology/>
PREFIX fbp: <http :// www.facebook.com/person/>
SELECT DISTINCT ?location
WHERE { ?user sioc:account_of fbp:p151.

?photo sibv:usertag ?user.
?photo dbpo:location ?location. }

Query 3: Request all the locations that a person has taken a photo

SELECT DISTINCT ?properties
WHERE {? person rdf:type foaf:Person. ?subject ?predicate ?person .}

Query 4: Request incoming property of a person

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
SELECT DISTINCT ?properties
WHERE {{? person rdf:type foaf:Person. ?subject ?predicate ?person .}
UNION {? person rdf:type foaf:Person. ?person ?predicate ?object .}}

Query 5: Request incoming and outcoming properties of person

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX sioc: <http :// rdfs.org/sioc/ns#>
PREFIX sibv: <http ://www.ins.cwi.nl/sib/vocabulary/>
PREFIX fbp: <http :// www.facebook.com/person/>
SELECT DISTINCT ?photo
WHERE{
fbp:p39 foaf:knows ?person. ?user sioc:account_of ?person.
?user sibv:like ?photo. ?photo rdf:type sibv:Photo.}

Query 6: Request all the photos that are liked by a person

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX sioc: <http :// rdfs.org/sioc/ns#>
PREFIX fbph: <http ://www.facebook.com/photoalbum/>
SELECT ?per {
GRAPH <facebook > {?per rdf:type foaf:Person .}
GRAPH <master > {?user sioc:account_of ?per. ?user sioc:creator_of fbph:pa103 .}}

Query 7: Request the photo on Facebook by LinkedIn account
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PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX sioc: <http :// rdfs.org/sioc/ns#>
PREFIX sibv: <http ://www.ins.cwi.nl/sib/vocabulary/>
SELECT ?user ?c
{
GRAPH <facebook > {?c rdf:type sibv:Comment. ?user sioc:creator_of ?c.}
GRAPH <master > {?user sioc:account_of <http :// linkedin.com/person/p174 >}
}

Query 8: Request the LinkedIn account of a friend on Facebook
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