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Abstract. Most existing approaches to Twitter sentiment analysis assume that sen-
timent is explicitly expressed through affective words. Nevertheless, sentiment is
often implicitly expressed via latent semantic relations, patterns and dependencies
among words in tweets. In this paper, we propose a novel approach that automat-
ically captures patterns of words of similar contextual semantics and sentiment
in tweets. Unlike previous work on sentiment pattern extraction, our proposed
approach does not rely on external and fixed sets of syntactical templates/patterns,
nor requires deep analyses of the syntactic structure of sentences in tweets. We
evaluate our approach with tweet- and entity-level sentiment analysis tasks by us-
ing the extracted semantic patterns as classification features in both tasks. We use
9 Twitter datasets in our evaluation and compare the performance of our patterns
against 6 state-of-the-art baselines. Results show that our patterns consistently
outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5%
at the entity-level in average F-measure.
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1 Introduction

Sentiment analysis on Twitter has established itself in the past few years as a solid
research area, providing organisations and businesses with efficient tools and solutions
for monitoring their reputation and tracking the public opinion on their brands and
products.

Statistical methods to Twitter sentiment analysis rely often on machine learning
classifiers trained from syntactical and linguistic features such as word and letter n-
grams, part-of-speech tags, prior sentiment of words, microblogging features, etc [2, 5,
13]. However, merely relying on the aforementioned features may not lead to satisfactory
sentiment detection results since sentiment is often context-dependent. Also, people tend
to convey sentiment in more subtle linguistic structures or patterns [16]. Such patterns
are usually derived from the syntactic [16] or semantic relations [6] between words in
text. For example, the adjective word “mean” when preceded by a verb, constitutes
a pattern of negative sentiment as in: “she said mean things”. Also, the word
“destroy” formulates a positive pattern when occurs with the concept “invading
germs”.

Both syntactic and semantic approaches to extracting sentiment patterns have proven
successful when applied to documents of formal language and well-structured sentences
[16, 8]. However, applying either approach to Twitter data faces several challenges.



Firstly, tweets data are often composed of sentences of poor grammatical and syntactical
structures due to the the extensive use of abbreviations and irregular expressions in
tweets [20]. Secondly, both approaches function with external knowledge sources. Most
syntactic approaches rely on fixed and pre-defined sets of syntactic templates for pattern
extraction. On the other hand, semantic approaches rely on external ontologies and
common sense knowledge bases. Such resources, although useful, tend to have fixed
domains and coverages, which is especially problematic when processing general Twitter
streams, with their rapid semiotic evolution and language deformations [19].

In this paper, we propose a novel approach for automatically extracting semantic
sentiment patterns of words on Twitter. We refer to these patterns from now on as SS-
Fatterns. Unlike most other approaches, our proposed approach does not rely on the
syntactic structure of tweets, nor requires pre-defined syntactic templates. Instead, it
extracts patterns from the contextual semantic and sentiment similarities between words
in a given tweet corpus [19]. Contextual semantics (aka statistical semantics) are based
on the proposition that meaning can be extracted from words co-occurrences [28, 26].

We apply our approach to 9 different Twitter datasets, and validate the extracted
patterns by using them as classification features in two sentiment analysis tasks: (i) tweet-
level sentiment classification, which identifies the overall sentiment of individual tweets,
and (ii) entity-level sentiment classification, which detects sentiment towards a particular
entity (e.g., Obama, Cancer, iPad). To this end, we train several supervised classifiers
from SS-Patterns and compare the sentiment classification performance against models
trained from 6 state-of-the-art sets of features derived from both the syntactic and
semantic representations of words.

Our results show that our SS-Patterns consistently outperform all our baseline feature
sets, on all 9 datasets, in both tweet-level and entity-level sentiment classification tasks.
At the tweet level, SS-Patterns improve the classification performance by 1.94% in accu-
racy and 2.19% in F-measure on average. Also, at the entity level, our patterns produce
6.31% and 7.5% higher accuracy and F-measure than all other features respectively.

We also conduct quantitative and qualitative analyses on a sample of the patterns
extracted by our approach and show that the effectiveness of using SS-Patterns as
additional features for classifier training is attribute to their ability in capturing words
with similar contextual semantics and sentiment. We also show that our extraction
approach is able to detect patterns of controversial sentiment (strong opposing sentiment)
expressed by people towards certain entities.

The main contributions of this paper can be summarised as follows:

— Propose a novel approach that automatically extracts patterns from the contextual
semantic and sentiment similarities of words in tweets.

— Use patterns as features in tweet- and entity-level sentiment classification tasks,
and compare the classification performance against 6 state-of-the-art baselines on
9 Twitter datasets in order to avoid the bias that any single dataset or baseline may
introduce.

— Perform a cross comparison between the syntactic and semantic baseline feature sets
used in our work and show the effectiveness of the latter for tweet-level sentiment
classification over the former.



— Conduct quantitative and qualitative analyses on a sample of our extracted semantic
sentiment patterns and show the potential of our approach for finding patterns of
entities of controversial sentiment in tweets.

The remainder of this paper is structured as follows. Related work is discussed in Section
2. The proposed approach to extracting semantic sentiment patterns is presented in
Section 3. Experimental setup and results are presented in Sections 4 and 5 respectively.
Our pattern analysis study is described in Section 6. Discussion and future work are
covered in Section 7. Finally, we conclude our work in Section 8.

2 Related Work

Much work on Twitter sentiment analysis follows the statistical machine learning ap-
proach by training supervised classifiers (e.g., Naive Bayes, Maximum Entropy and
Support Vector Machines) from features extracted from tweets such as word and letter
n-grams [9, 15, 2], lexicon features (i.e., prior sentiment of words in sentiment lexicons)
[5], microblogging features [10], POS tags [1] and several combinations of them [13].
Classifiers trained from these types of features have produced relatively high performance
on various Twitter datasets with accuracies raging between 80% and 86%. However, it
has been argued that sentiment in text is not always associated with individual words,
but instead, through relations and dependencies between words, which often formulate
sentiment [16].

In previous work, these relations are usually complied as a set of syntactic patterns
(i.e., Part-of-Speech patterns) [25, 16, 24], common sense concepts [6], semantic concepts
[21, 8], or statistical topics [20, 11].

For example, Riloff et al. [16] proposed extracting sentiment patterns from the syntac-
tic relations between words in sentences. To this end, they used a fixed set of pre-defined
POS templates, e.g., <subject> passive-verb which maps to the opinionated
sentence “<customer> was satisfied”and <subject> active-verb that
maps to “<she> complained”. The extracted patterns were then incorporated into
high-precision classifiers (HP-Subj and HP-Obj) in order to increase their recall.

One limitation of the syntactic extraction methods is that they are usually limited
to the number of the syntactic templates they use. Moreover, these methods are often
semantically weak, that is, they do not consider the semantics of individual words in
their patterns. This may constitute a problem when trying, for example, to identify
context-sensitive sentiment (e.g., <beer> is coldand <weather> is cold).

Conceptual semantic sentiment methods, on the other hand, utilize both syntactic
and semantic processing techniques in order to capture the latent conceptual semantic
relations in text that implicitly convey sentiment. For example, Cambria and Hussain
[6] proposed Sentic Computing, a sentiment analysis paradigm, in which common sense
concepts (e.g., “happy birthday”, “simple 1ife”) are extracted from texts and
assigned to their sentiment orientations using semantic parsing and affective common
sense knowledge sources. Gangemi et al. [8] further investigated the syntactic structure
of sentences in order to detect more fine grained relations between the different semantic
parts within it. For example, their approach is able to detect not only the sentiment in
text, but also the opinionated topics, subtopics, the opinion holders and their sentiment.

The semantic methods, therefore, are more sensitive to the latent semantic relations
between words in texts than syntactic methods. Nevertheless, in the above works, neither



syntactic nor semantic methods are tailored to Twitter due to the lack of language
formality and well structured sentences in tweets. Moreover, Semantic methods are
usually limited to the scope of their underlying knowledge bases, which is especially
problematic when processing general Twitter streams, with their rapid semiotic evolution
and language deformations.

Contextual or statistical semantic methods extract patterns of semantically similar
words by looking at the words’ co-occurrence patterns in a given corpus [28,26]. LDA
is a state-of-the-art method that have been widely used to this end [4].> For example,
Lin et al. [11] propose JST, a topic generative model based on LDA. JST extracts, not
only the patterns (topics) of words in text, but also their associated sentiment. The topics
along with their associated sentiment have been evaluated in our previous work [20] and
proven valuable for sentiment analysis on Twitter. However, these methods usually rely
on the bag-of-words representation, and therefore are often unable to handle negations
and other patterns that strongly influence sentiment.

In order to overcome the aforementioned limitations of the above methods, we
design our sentiment pattern extraction approach in a way that captures patterns based
on the contextual semantic and sentiment similarities between words in a Twitter corpus.
Our approach does not rely on the syntactic structures in tweets, nor requires using
pre-defined syntactic template sets or external semantic knowledge sources.

3 Semantic Sentiment Patterns of Words

Semantic sentiment patterns, by definition, are clusters of words which have similar
contextual semantics and sentiment in text. Based on this definition, the problem of
capturing these patterns in tweets data breaks down into three phases as illustrated in
Figure 1. In the first phase, tweets in a given data collection are syntactically processed
in order to reduce the amount of noise and language informality in them. In the second
phase we apply the SentiCircle representation model [19] on the processed tweets to
capture the contextual semantics and sentiment of words in the tweets. In the third
step, the semantic sentiment patterns are formed by clustering words that share similar
semantics and sentiment (i.e., similar SentiCircles).

ﬁ S —
Tweets I Sentiment Lexicon
Bag of Bag of

<’ < SentiCircles SS-Patterns
N . N Capturing Contextual Extracting Semantic
Syntactical Preprocessing /] Semantics & Sentiment Sentiment Patterns

Fig. 1: The systematic workflow of capturing semantic sentiment patterns from Twitter data

In the subsequent sections we further describe each of the aforementioned phases in
some more details:

3.1 Syntactical Preprocessing

Tweets are usually composed of incomplete, noisy and poorly structured sentences due
to the frequent presence of abbreviations, irregular expressions, ill-formed words and

3 Patterns extracted by LDA are usually called Topics



non-dictionary terms. Such noisy nature of tweets has been shown to indirectly affect
the sentiment classification performance [20]. This phase therefore, aims at reducing the
amount of noise in the tweets by applying a series of pre-processing steps as follows:
— All URL links in the corpus are replaced with the term “URL”
— Remove all non-ASCII and non-English characters
— Revert words that contain repeated letters to their original English form. For example,
the word “maaadddd” will be converted to “mad” after processing.
— Process contraction and possessive forms. For example, change “he’ s” and “friend’ s
to “he” and “friend”
Note that we do not remove stopwords from the data since they tend to carry sentiment
information as shown in [18].
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3.2 Capturing Contextual Semantics and Sentiment of Words

SS-patterns are formed from the contextual semantic similarities among words. There-
fore, a key step in our pipeline is to capture the words’ contextual semantics in tweets.
To this end, we use our previously proposed semantic representation model, SentiCircle
[19].

Briefly speaking, the SentiCircle model ex-

tracts the contextual semantics of a word from its A+t
. . . Very Positiv Positive
co-occurrences with other words in a given tweet
corpus. These co-occurrences are then represented Y
. . . . fi
as a geometric circle which is subsequently used 4
to compute the contextual sentiment of the word L \ }*i x Neutrari

Region '

by applying simple trigonometric identities on it.
In particular, for each unique term m in a tweet
collection, we build a two-dimensional geometric
circle, where the term m is situated in the centre  Very Negative — Negative
of the circle, and each point around it represents a r, = TDOC(C)
context term ¢; (i.e., a term that occurs with m in &= Prior_Sentiment (C)

. . Fig. 2: SentiCircle of a term m
the same context). The position of ¢;, as illustrated
in Figure 2, is defined jointly by its Cartesian coordinates x;, y; as:

x; = 1icos(0; x ) y; = 1;sin(6; * )

Where 6; is the polar angle of the context term c; and its value equals to the prior
sentiment of ¢; in a sentiment lexicon before adaptation, r; is the radius of ¢; and its
value represents the degree of correlation (tdoc) between ¢; and m, and can be computed
as:

N
r; = tdoc(m, ¢;) = f(c;,m) X log N

where f(c;, m) is the number of times ¢; occurs with m in tweets, N is the total number
of terms, and V., is the total number of terms that occur with c¢;. Note that all terms’
radii in the SentiCircle are normalised. Also, all angles’ values are in radians.

The rational behind using this circular representation shape is to benefit from the
trigonometric properties it offers for encoding the contextual semantics of a term as
sentiment orientation and sentiment strength. Y-axis defines the sentiment of the term,
i.e., a positive y value denotes a positive sentiment and vice versa. The X-axis defines



the sentiment strength of the term. The smaller the = value, the stronger the sentiment.*
This, in turn, divides the circle into four sentiment quadrants. Terms in the two upper
quadrants have a positive sentiment (sin § > 0), with upper left quadrant representing
stronger positive sentiment since it has larger angle values than those in the top right
quadrant. Similarly, terms in the two lower quadrants have negative sentiment values
(sin @ < 0). Moreover, a small region called the “Neutral Region” can be defined. This
region, as shown in Figure 2, is located very close to X-axis in the “Positive” and the
“Negative” quadrants only, where terms lie in this region have very weak sentiment (i.e,
|6] = 0).

The Sentiment Median of SentiCircle In summary, the SentiCircle of any term
m is composed by the set of (x,y) Cartesian coordinates of all the context terms
of m. An effective way to compute the overall sentiment of m is by calculating the
geometric median of all the points in its SentiCircle. Formally, for a given set of n
points (p1, pa, ..., pn) in a SentiCirlce {2, the 2D geometric median g is defined as:
g = argmingegz Y _;; ||pi —g||2. The boundaries of the neutral region can be computed
by measuring the density distribution of terms in the SentiCircle along the Y-axis. In
this paper we use similar boundary values to the ones in [19] as we use the same
evaluation datasets. We call the geometric median g the SentiMedian as its position in
the SentiCircle determines the total contextual-sentiment orientation and strength of m.

3.3 Extracting Patterns from SentiCircles

At this stage all the unique words in the tweet collection have their contextual semantics
and sentiment extracted and represented by means of their SentiCircles. It is very likely
to find words in text which share similar contextual semantics and sentiment. In other
words, finding words with similar SentiCircles. Therefore, this phase seeks to find such
potential semantic similarities in tweets by building clusters of similar SentiCircles. The
output of this phase is a set of clusters of words, which we refer to as the semantic
sentiment patterns of words (SS-Patterns).

SentiCircles Clustering We can capture patterns that emerge from the similarity
of word’s sentiment and contextual semantics by clustering the SentiCircles of those
words. In particular, we perform a clustering task fed by dimensions that are provided
by SentiCircles; density, dispersion, and geometry. Density and dispersion usually
characterise terms and entities that receive controversial sentiment in tweets as will be
further explained and validated in Section 6. Geometry, on the other hand, preserves the
contextual sentiment orientation and strength of terms. Once we extract the vectors that
represent these three dimensions from all the terms’ SentiCircles, we feed them into a
common clustering method; k-means.

In the following, we describe the three dimensions we extract from each term’s
SentiCircle {2 along with the components they consist of:

— Geometry: includes the X - and Y-component of the SentiMedian g(x4,y,) € £2

— Density: includes the total density of points in the SentiCircle {2 and its computed
as: density(§2) = N/M, where N is the total number of points in the SentiCircle
and M is the total number of points in the SentiCircles of all terms.

* This is because cos @ < 0 for large angles.



We also compute five density components, representing the density of each sentiment
quadrant in the SentiCircle (i.e., positive, very positive, negative and very negative
quadrants) along with the density of its neutral region. Each of these components
is computed as density(Q) = P/N where P is the total number of points in the
sentiment quadrant Q.

— Dispersion: the total dispersion of a SentiCircle refers to how scattered or condensed
the points (context terms) in the circle. To calculate the value of this component, we
use the median absolute deviation measure (MAD), which computes the dispersion
of {2 as the median of the absolute deviations from the SentiCircle’s median point
(i.e., the SentiMedian g,,) as:

mad(£2) = (_2 1pi — gml)/N

Similarly, using the above equation, we calculate the dispersion of each sentiment
quadrant and the neutral region in the SentiCircle. We also calculate the dispersion
of the active region in SentiCircle (i.e., The SentiCircle after excluding points in the
neutral region)

The last step in our pipeline is to apply k-means on all SentiCircles’ dimensions’
vectors. This results in a set of clusters K = (kq, k2, ..., k) where each cluster consists
of words that have similar contextual semantics and sentiment. We call C as the pattern
set and and k; € I the semantic sentiment pattern.

In the subsequent section we describe how to determine the number of patterns
(clusters) in the data and how to validate the extracted patterns by using them as features
in two sentiment classification tasks.

4 Experimental Setup

Our proposed approach, as shown in the previous section, extracts patterns of words
of similar contextual semantics and sentiment. We evaluate the extracted SS-patterns
by using them as classification features to train supervised classifiers for two sentiment
analysis tasks, tweet- and entity-level sentiment classification. To this end, we use 9
publicly and widely used datasets in Twitter sentiment analysis literature [17]. Nine
of them will be used for tweet-level evaluation and one for entity-level evaluation. As
for evaluation baselines, we use 6 types of classification features and compare the
performance of classifiers trained from our SS-patterns against those trained from these
baseline features.

4.1 Tweet-Level Evaluation Setup

The first validation test we conduct on our SS-patterns is to measure their effectiveness
as features for binary sentiment analysis of tweets, i.e., classifying the individual tweets
as positive or negative. To this end, we use SS-patterns extracted from a given Twitter
dataset to train two supervised classifiers popularly used for tweet-level sentiment
analysis, Maximum Entropy (MaxEnt) and Naive Bayes (NB) from Mallet.”> We use
9 different Twitter datasets in our validation in order to avoid any bias that a single
dataset can introduce. Numbers of positive and negative tweets within these datasets are
summarised in Table 1, and detailed in the references added in the table.

Shttp://mallet.cs.umass.edu/



Dataset Tweets #Negative #Positive #Unigrams

Stanford Twitter Test Set (STS-Test) [9] 359 177 182 1562
Sanders Dataset (Sanders) [17] 1224 654 570 3201
Obama McCain Debate (OMD) 7] 1906 1196 710 3964
Health Care Reform (HCR) [22] 1922 1381 541 5140
Stanford Gold Standard (STS-Gold) [17] 2034 632 1402 4694

Sentiment Strength Twitter Dataset (SSTD) [23] 2289 1037 1252 6849
The Dialogue Earth Weather Dataset (WAB) [3] 5495 2580 2915 7485
The Dialogue Earth Gas Prices Dataset (GASP) [3] 6285 5235 1050 8128
Semeval Dataset (Semeval) [14] 7535 2186 5349 15851

Table 1: Twitter datasets used for tweet-level sentiment analysis evaluation. Instructions on how to
obtain these datasets are provided in [17].

4.2 Entity-Level Evaluation Setup

In the second validation test, we evaluate the usefulness of SS-Patterns as features for
entity-level sentiment analysis, i.e., detecting sentiment towards a particular entity. To
this end, we perform a 3-way sentiment classification (negative, positive, neutral) on a
dataset of 58 named entities extracted from the STS-Gold dataset and manually labelled
with their sentiment class. Numbers of negative, positive and neutral entities in this
dataset are listed in Table 2 along with five examples of entities under each sentiment
class. Details of the extraction and the annotation of these entities can be found in [17].

Negative Entities |Positive Entities|Neutral Entities
Total Number 13 29 16
Cancer Lakers Obama
Lebron James Katy Perry Sydney
Examples Flu Omaha iPhone
Wii Taylor Swift Youtube
Dominique Wilkins| Jasmine Tea Vegas

Table 2: Numbers of negative, positive and neutral entities in the STS-Gold Entity dataset along
with examples of 5 entities under each sentiment class.

The entity sentiment classifier we use in our evaluation is based on maximum
likelihood estimation (MLE). Specifically, we use tweets in the STS-Gold dataset to
estimate the conditional probability P(c|e) of an entity e assigned with a sentiment
class ¢ € {Positive, Negative} as: as P(cle) = N(e,c)/N(e) where N (e, c) is the
frequency of an entity e in tweets assigned with a sentiment class ¢ and N (e) is the
frequency of the entity e in the whole corpus.

We incorporate our SS-Pattern features and other baseline features (Section 4.3) into
the sentiment class estimation of e by using the following back-off strategy:

L {P(c|e) if N(e,c) #0 )
P(c|f) ifN(e,c)=0

where f is the incorporated feature (e.g., the SS-Pattern of e) and P(c|f) is the condi-
tional probability of the feature f assigned with a sentiment class ¢ and it can be also
estimated using MLE. The rationale behind the above back-off strategy is that some
entities might not occur in tweets of certain sentiment class, leading therefore, to zero
probabilities. In such cases we resort to the sentiment of the latent features associated
with these entities in the dataset.
The final sentiment of e can be derived from the ratio R, = P(c = Positive|e)/P(c =

Negative|e). In particular, the sentiment is neutral if R, is less than a threshold +, oth-
erwise the sentiment is negative if R, < 1 or positive if R, > 1.



We determine the value of y by plotting the ratio R, for all the 58 entities and check
where the plot converges. In our case, the ratio plot converged with v = 0.3.

4.3 Evaluation Baselines

The baseline model in our evaluation is a sentiment classifier trained from word unigram
features. Table 1 shows the number of unique unigram features extracted from our
datasets.

In addition to unigrams, we propose comparing our SS-Pattern features against the
below described five state-of-the-art types of features in sentiment analysis. Amongst
them, two sets of features are derived from the syntactical characteristics of words in
tweets (POS features, and Twitter features), one is based on the prior sentiment orienta-
tion of words (Lexicon features) and two are obtained from the semantic representation
of words in tweets (Semantic Concept features and LDA-Topic features):

1. Twitter Features: refer to tokens and characters that are popularly used in tweet
messages such as hashtags (e.g., “#smartphone”), user mentions (e.g, “G@obama”),
the tweet reply token (“RT”) and emoticons (e.g., “:) :D <3 0.0").

2. Part-of-Speech Features: refer to the part-of-speech tags of words in tweets (e.g.,
verbs, adjectives, adverbs, etc). We extract these features using the TweetNLP POS
tagger.6

3. Lexicon Features: these features are formed from the opinionated words in tweets
along with their prior sentiment labels (e.g., “good_-positive”, “bad_negative”,
“nice_positive”, etc.). We assign words with their prior sentiments using both
Thelwall [23] and MPQA [27] sentiment lexicons.

4. Semantic Concept Features: This type of features refers to the semantic con-
cepts (e.g., “person”, “company”, “city”) that represent entities (e.g., “Obama”,
“Motorola”, “Vegas”) appearing in tweets. To extract the entities and their associated
concepts in our datasets we use AlchemyAPI,” which we have previously evaluated its
semantic extraction performance on Twitter data [21]. The number of extracted concepts
in each dataset is listed in Table 3.

Dataset STS-Test|Sanders|OMD|HCR |STS-Gold |SSTD|WAB|GASP|Semeval
No. of Concepts| 299 1407 |2191(1626| 1490 699 |1497| 3614 | 6875

Table 3: Numbers of the semantic concepts extracted from all datasets

5. LDA-Topic Features: These features denote the latent topics extracted from tweets
using the probabilistic generative model, LDA [4]. LDA assumes that a document is
a mixture of topics and each topic is a mixture of probabilities of words that are more
likely to co-occur together under the topic. For example the topic “iPhone” is more
likely to generate words like “display” and “battery”. Therefore, LDA-Topics
represent groups of words that are semantically related. To extract these latent topics
from our datasets we use an implementation of LDA provided by Mallet. LDA requires
defining the number of topics to extract before applying it on the data. To this end, we ran
LDA with different choices of numbers of topics (e.g., 1 topic, 10 topics, 20 topics, 30
topics, etc). Among all choices, 10 topics was the opitmal number that gave the highest

®http://www.ark.cs.cmu.edu/TweetNLP/
"http://www.alchemyapi.com



sentiment classification performance when the topics were incorporated as additional
features into the feature space.

Note that all the above sets of features are combined with the original unigram
features when training the baseline sentiment classifiers for both entity- and tweet-levels.

4.4 Number of SS-Patterns in Data

As described earlier, extracting SS-patterns is a clustering problem that requires determin-
ing beforehand the number of clusters (patterns) to extract. To this end, we run k-means
for multiple times with % varying between 1 and 100. We then plot the within-cluster sum
of squares for all the outputs generated by k-means. The optimum number of clusters is
found where an “elbow” appears in the plot [12]. For example, Figure 4 shows that the
optimum number of clusters for the GASP dataset is 17, which in other words, represents
the number of SS-Patterns features that our sentiment classifiers should be trained from.
Table 4 shows the number of SS-Patterns extracted by our model for each dataset.

GASP

100000 140000
I I

60000
I

Within—groups sum-of-squares
|

20000
I

T T T T T T
0 20 40 60 80 100

Number of clusters

Fig. 3: Within-cluster sum of squares for different numbers of clusters (SS-Patterns) in the GASP
dataset.

Dataset STS-Test|{Sanders| OMD|HCR |STS-Gold |SSTD |WAB |GASP|Semeval
No. of SS-Patterns 18 20 23 | 22 26 24 17 17 19

Table 4: Numbers of SS-Patterns extracted from all datasets

5 Evaluation Results

In this section, we report the results from using our proposed SS-Patterns as features for
tweet- and entity-level sentiment classification tasks and compare against the baselines
described in Section 4.3. All experiments in both evaluation tasks are done using 10-fold
cross validation.

5.1 Sentiment Patterns for Tweet-Level Sentiment Classification
The first task in our evaluation aims to asses the usefulness of SS-Patterns as features

for binary sentiment classification of tweets (positive vs. negative).> We use NB and

8 Unlike entity-level, we do not perform 3-way classification (positive, negative, netrual) in this
task since not all the 9 datasets contain tweets of neutral sentiment.



MaxEnt classifiers trained from word unigrams as the starting baseline models (aka,
unigram models). We then compare the performance of classifiers trained from other
types of features against these unigram models.

Table 5 shows the results in accuracy and average F1 measure of both unigram
models across all datasets. The highest accuracy is achieved on the GASP dataset using
MaxEnt with 90.49%, while the highest average F-measure of 84.08% is obtained on the
WAB dataset. On the other hand, the lowest performance in accuracy is obtained using
NB on the SSTD dataset with 72.36%. Also, NB produces the lowest F1 of 66.69% on
the HCR dataset. On average, MaxEnt outperforms NB by 1.04% and 1.35% in accuracy
and F1 respectively. Hence, we use MaxEnt only to continue our evaluation in this task.

Dataset | STS-Test|Sanders | OMD | HCR | STS-Gold | SSTD | WAB | GASP | SemEval | Average
MaxEnt Acc 77.82 | 83.62 |82.90(77.02] 86.02 |72.84(84.12{90.49 | 82.11 81.88

F1 77.94 | 83.58 |81.34|69.10| 83.10 |72.27|84.08|81.81| 77.03 | 78.91
NB Acc 81.06 | 82.66 |81.57(|74.27| 84.22 [72.36(82.79|88.16| 80.44 | 80.84

F1 81.07 | 82.52 |79.93]|66.69| 80.46 |72.20|82.74|78.15| 74.35 | 77.57

Table 5: Accuracy and the average harmonic mean (F1 measure) obtained from identifying positive and negative sentiment
using unigram features, where Acc is the classification accuracy.

Table 6 shows the results of MaxEnt classifiers trained from the 5 baseline sets of
features (See Section 4.3) as well as MaxtEnt trained from our proposed SS-patterns,
applied over all datasets. The table reports the average results in three sets of minimum,
maximum, and average win/loss in accuracy and F-measure relating to the results of
the unigram model in Table 5. For simplicity, we refer to MaxEnt classifiers trained
from any syntactic feature set as syntactic models and we refer to those trained from any
semantic feature set as semantic models.

It can be observed from these results in Table 6 that all syntactic and semantic
models outperform on average the unigram model in both accuracy and F-measure.
However, MaxEnt trained from our SS-Patterns significantly outperforms those models
trained from any other set of features. In particular, our SS-Patterns produce on average
3.05% and 3.76 % higher accuracy and F1 than the unigram model. This is 2% higher
performance than the average performance gain of all syntactic and semantic models.
Moreover, we get a maximum improvement in accuracy and F-measure of 9.87% and
9.78% respectively over the unigram model when using our SS-Patterns for training.
This is at least 3.54% and 3.61% higher than any other model. It is also worth noting that
on the GASP dataset, where the minimum performance gain is obtained, MaxEnt trained
from SS-Patterns gives a minimum improvement of 0.70%, while all other models suffer
a performance loss of -0.45% averagely.

Finally, we notice that syntactic features, and more specifically the lexicon ones
are highly competitive features to the semantic type of features. For example, lexicon
features slightly outperform concept and LDA-Topic features. However, from the average
performance in Table 6 of both types of features, we can see that semantic models are
still bypassing syntactic models in both accuracy and F-measure by 0.71% and 0.75%
on average respectively.

5.2 Results of Entity-Level Sentiment Classification

In this section, we report the evaluation results of using our SS-Patterns for entity-
level sentiment classification on the STS-Gold Entity dataset using the entity sentiment



MaxEnt Classifier
Features Accuracy F-Measure
Minimum| Maximum| Average| Minimum| Maximum| Average
Twitter Features| -0.23 3.91 1.24 -0.25 4.53 1.62
Syntactic POS -0.89 2.92 0.79 -0.91 5.67 1.25
Lexicon -0.44 4.23 1.30 -0.38 5.81 1.83
Average -0.52 3.69 1.11 -0.52 533 1.57
Concepts -0.22 2.76 1.20 -0.40 4.80 1.51
Semantid LDA-Topics -0.47 3.37 1.20 -0.68 6.05 1.68
SS-Patterns 0.70 9.87 3.05 1.23 9.78 3.76
Average 0.00 5.33 1.82 0.05 6.88 2.32

Table 6: Win/Loss in Accuracy and F-measure of using different features for sentiment classifica-
tion on all nine datasets.

classifier described in Section 4.2. Note that STS-Gold is the only dataset among the
other 9 that provides named entities manually annotated with their sentiment labels
(positive, negative, neutral). Therefore, our evaluation in this task is done using the
STS-Gold dataset only.

Features Accuracy Positive Sentiment | Negative Sentiment || Neutral Sentiment Average
P R F1 P R F1 P R F1 P R F1
Unigrams 4828 (92 7931 8519 [6.67 7.69 7.14 |[[22.2225 23.53 40.3 37.33 38.62
LDA-Topics 58.62 927931 8519 |[31.82 5385 40 |[36.3625 29.63 |[53.39 52.72 51.6
Semantic Concepts| 55.17 |92 79.31  85.19 25 3846 303 [[30.77 25 27.59 |[]|49.26 47.59 47.69
SS-Patterns 60.34 927931 85.19 |34.78 61.54 44.44 || 40 25 30.77 ||55.59 55.28 53.47
Table 7: Accuracy and averages of Precision, Recall, and F measures of entity-level sentiment classification using different

features.

Table 7 reports the results in accuracy, precision (P), recall (R) and F1 measure of
positive, negative and neutral sentiment classification performances from using unigrams,
semantic concepts, LDA-Topics and SS-Patterns features. Generally, our SS-Patterns
outperform all other features including word unigrams in all measures. In particular,
merely using word unigrams for classification gives the lowest performance of 48.24%
and 38.62% in accuracy and average F1. However, augmenting the feature space with
SS-Patterns improves the performance significantly by 12.06% in accuracy and 14.85%
in average F1. Our SS-Patterns also outperform LDA-Topics and semantic concepts
features by at least 1.72% and 1.87% in accuracy and average F1.

As for per-class sentiment classification performance, we observe that all features
produce high and similar performances on detecting positive entities. This is because
classifiers trained from either feature set fail in detecting the sentiment of the same
entities. Moreover, it seems that detecting negative and neutral entities are much more
difficult tasks than detecting positive ones. For example, unigrams perform very poorly
in detecting negative entities with a F1 less then 8%. Although the performance improves
a lot by using SS-Patterns, it is still much lower than the positive classification perfor-
mance. For neutral sentiment classification the performance is the lowest with unigrams
(F1 = 23.53%) while it is the highest with SS-Patterns (F1 = 30.77%). Such varying
performance might be due to the uneven sentiment class distribution in the entity dataset.
As can be noted from Table 2, positive entities constitute 50% of the total number of
entities while the neutral and negative entities form together the other 50%.



6 Within-Pattern Sentiment Consistency

Our approach, by definition, seeks to find SS-Patterns of terms of similar contextual
semantics and sentiment. Therefore, SS-Patterns are best when they are consistent with
the sentiment of their terms, that is, they consist mostly of terms of similar contextual
sentiment orientations. In this section, we further study the sentiment consistency of
our patterns on a set of 14 SS-Patterns extracted from the 58 annotated entities in the
STS-Gold dataset. These number of patterns was determined based on the elbow method
as explained in Section 4.4.

Table 8 shows four of the extracted patterns along
Patternl

with the top 5 entities within them and the entities’ gold- patterns 0% Patterna
standard sentiment. Patterns 3, 12 and 11 are strongly Pattern2 "~ onf pattern?
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sentiment consistency of a given SS-Pattern k; as: Pattern13
Fig. 4: Within-Cluster sentiment consisten-
cies of in the STS-Gold Entity dataset
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consistency(k;) = arg rgleagc ] 2)

where s € § = {Positive, Negative, Neutral} is the sentiment label, E is the
number of entities of sentiment s and £’ is the total number of entities within K.

Figure 4 depicts the sentiment consistency of the 14 SS-Patterns. 9 patterns out of
14 are perfectly consistent with the sentiment of their entities while two patterns have
a consistency higher than 77%. Only patterns 2,5 and 6 have a consistency lower than
70%. Overall, the average consistency value across the 14 patterns reaches 88%.

Pattern.3 (Neutral) Pattern.12 (Positive) Pattern.5 (Mixed) Pattern.11 (Positive)
Entity True Sentiment | Entity True Sentiment|Entity True Sentiment|Entity True Sentiment
Brazil Neutral Kardashian Positive Cancer Negative  |Amy Adams Positive
Facebook Neutral Katy Perry Positive Fever Negative Dallas Positive
Oprah Neutral Beatles Positive Headache Negative Riyadh Positive
Sydney Neutral Usher Positive McDonald Neutral Sam Positive
Seattle Neutral Pandora Positive Xbox Neutral Miley Cyrus Positive

Table 8: Example of three strongly consistent SS-Patterns (Patterns 3, 11, and 12) and one inconsistent SS-Pattern (Pattern
5), extracted from the STS-Gold Entity dataset

Sentiment Consistency vs. Sentiment Dispersion

From the above, we observed that patterns 2,5 and 6 have low sentiment consistency.
Looking at characteristics of entities in these patterns, we notice that the average disper-
sion of their SentiCircles is 0.18 on average. This is twice higher than the dispersion of
the entities within the other 11 strongly consistent patterns. Overall, we found a negative
correlation of -0.42 between the sentiment consistency of SS-Patterns and the dispersion
of their entities’ SentiCircles. This indicates that SS-Patterns that contain entities of
high dispersed SentiCircles are more likely to have low sentiment consistency. Based
on the SentiCircle model (Section 3), these high dispersed entities either occur very
infrequently or occur in different contexts of different sentiment in the tweet corpus.



= < H#negative

\

c
©
o

£

x
»

C
vegas
xbox

= == H#positive

macheist g#
eadache

maryjane
ginormica
university

@ncer

#neutral

pride_and_pr f#

/fever
h
ip
mcdon
starbucks

pancreatic_ca

223 Pattern 2 Pattern 5 Pattern 6

Fig. 5: Number of times that entities in Pattern 2, 5 and 6 receive negative, positive and neutral
sentiment

To validate our above observation, we analyse the human sentiment votes on the 58
entities in STS-Gold dataset.” Figure 5 shows entities under patterns 2,5 and 6 along with
number of times they receive negative, positive and neutral sentiment in tweets according
to the three human coders. We observe that entities in patterns 2 and 6 occur very
infrequently in tweets, yet with consistent sentiment. On the other hand, most entities in
Pattern 5 occur more frequently in tweets. However, they receive strong and controversial
sentiment (i.e., opposite sentiment). For example, the entity “McDonald’ s” occurs 3,
4 and 8 times with negative, positive and neutral sentiment respectively.

The above analysis shows the potential of our approach for generating patterns of
entities that indicate sentiment disagreement or controversy in tweets.

7 Discussion and Future Work

We showed the value of our proposed approach in extracting semantic sentiment patterns
of words and exploiting them for sentiment classification of tweets and entities. Our
patterns, by definition, are based on words’ similarities in a given context in tweets, which
make them relevant to that specific context. This means that they might need updating
more frequently than context-independent patterns, i.e., patterns derived based on pre-
defined syntactic templates [16] or common-sense knowledge bases [6]. Hence, potential
gain in performance may be obtained by combining context-independent patterns with
our patterns, which constitutes a future task to this work.

For tweet-level sentiment classification, SS-Patterns were evaluated on 9 Twitter
datasets with different results. For example, our SS-Patterns produced the highest perfor-
mance improvement on the STS-Test dataset (+9.78% over the baseline) while the lowest
improvement was obtained on the GASP dataset (+1.23%). Different factors might be
behind such variance. For example our datasets differ in their sizes, sparsity degrees
and sentiment classification distributions. We plan to further study the impact of these
factors on (i) the quality of the extracted patterns and (ii) the sentiment classification
performance.

For entity sentiment classification, evaluation was performed on one dataset and by
using a single classifier. We noticed that detecting positive entities was much easier than
detecting neutral or negative entities. This might be due to (i) the choice of the classifier
we use or (ii) the large number of positive entities in this dataset. Therefore, as future

° Human votes on each entity are available to download with the STS-Gold dataset under
http://tweenator.com.



work, we intend to continue experimenting with our patterns on multiple and balanced
entity datasets and using several and more advanced entity sentiment classifiers.

We showed that our approach was able to discover patterns of terms and entities
that could indicate sentiment disagreement, instability, or controversy in tweets. Those
patterns have also shown low consistency with the sentiment of entities within them.
Thus, one may expect terms under these patterns to have low contribution to the sentiment
classification performance, and therefore, remove them from the feature space for
sentiment classification. We are currently investigating this issue and its impact on
the classification performance.

8 Conclusions

We proposed a novel approach for extracting patterns of words of similar contextual
semantics and sentiment on Twitter. Our approach does not rely on the syntactical
structure of tweets, nor uses external syntactic templates for pattern extraction.

We applied our approach on 9 Twitter datasets and validated the extracted patterns by
incorporating them as classification features for sentiment classification of both tweets
and entities. For tweet level sentiment classification, we used two supervised classifiers,
NB and MaxEnt while for entity level we proposed a sentiment classifier based on
Maximum Likelihood Estimation.

In both sentiment classification tasks and on all datasets, classifiers trained from our
SS-Patterns showed a consistent and superior performance over classifiers trained from
other 4 syntactical and 2 semantic sets of features.

We conducted an analysis of our SS-Patterns and showed that our patterns are strongly
consistent with the sentiment of the terms within them. Also, the analysis showed that
our approach was able to derive patterns of entities of controversial sentiment in tweets.
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