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Abstract. This paper describes TableMiner, the first semantic Table Interpre-
tation method that adopts an incremental, mutually recursive and bootstrapping
learning approach seeded by automatically selected ‘partial’ data from a table.
TableMiner labels columns containing named entity mentions with semantic con-
cepts that best describe data in columns, and disambiguates entity content cells
in these columns. TableMiner is able to use various types of contextual infor-
mation outside tables for Table Interpretation, including semantic markups (e.g.,
RDFa/microdata annotations) that to the best of our knowledge, have never been
used in Natural Language Processing tasks. Evaluation on two datasets shows
that compared to two baselines, TableMiner consistently obtains the best perfor-
mance. In the classification task, it achieves significant improvements of between
0.08 and 0.38 F1 depending on different baseline methods; in the disambigua-
tion task, it outperforms both baselines by between 0.19 and 0.37 in Precision
on one dataset, and between 0.02 and 0.03 F1 on the other dataset. Observation
also shows that the bootstrapping learning approach adopted by TableMiner can
potentially deliver computational savings of between 24 and 60% against classic
methods that ‘exhaustively’ processes the entire table content to build features for
interpretation.

1 Introduction

Recovering semantics from tables on the Web is becoming a crucial task towards real-
izing the vision of Semantic Web. On the one hand, the amount of high-quality tables
containing useful relational data is growing rapidly to hundreds of millions [5, 4]; on
the other hand, classic search engines built for unstructured free-text perform poorly on
such data as they ignore the underlying semantics in table structures at indexing time
[12, 16]. Semantic Table Interpretation [12, 21–23, 16] aims to address this issue by
solving three tasks: given a well-formed relational table1 and a knowledge base defin-
ing a set of reference concepts and entities interlinked by relations, 1) recognize the
semantic concept (or a property of a concept) that best describes the data in a column
(i.e., classify columns); 2) identify the semantic relations between columns (i.e., rela-
tion enumeration); and 3) disambiguate content cells by linking them to existing (if any)
entities in the knowledge base (i.e., entity disambiguation). Essentially, the knowledge

1 Same as others, this work assumes availability of well-formed relational tables while methods
of detecting them can be found in, e.g., [5]. A typical relational table is composed of regular
rows and columns resembling those in traditional databases.
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base is a linked data set where resources are connected as triples. The outcome of se-
mantic Table Interpretation is semantically annotated tabular data, which does not only
enable effective indexing and search of the data, but ultimately can be transformed to
new triples (e.g., new instances of concepts and relations) to populate the Linked Open
Data (LOD) cloud.

The tasks resemble the classic Natural Language Processing tasks that have been
extensively researched for decades, i.e., Named Entity Classification [18], Relation Ex-
traction [19] and Named Entity Disambiguation [7]. However, classic approaches often
fails at tabular data since they are trained for well-formed, unstructured sentences which
are rare in table structures. Semantic Table Interpretation methods [12, 21–23, 16] typi-
cally depend on background knowledge bases to build features for learning. The typical
workflow involves 1) retrieving candidates matching table components (e.g., a column
header) from the knowledge base, 2) constructing features of candidates and model se-
mantic interdependence between candidates and table components, and among various
table components, and 3) applying inference to choose the best candidates.

This paper introduces TableMiner, designed to classify columns and disambiguate
the contained cells in an unsupervised way that is both efficient and effective, addressing
two limitations in existing works. First, existing methods have predominantly adopted
an exhaustive strategy to build the candidate space for inference, e.g., column classi-
fication depends on candidate entities from all cells in the column [12, 16]. However,
we argue this is unnecessary. Consider the table shown in Figure 1 as a snapshot of a
rather large table containing over 50 rows of similar data. One does not need to read the
entire table in order to label the three columns. Being able to make such inference using
partial (as opposed to the entire table) data can improve the efficiency of Table Interpre-
tation algorithms as the first two phases in the Table Interpretation workflow can cost
up to 99% of computation time [12]. Second, inference algorithms of state-of-the-art
are almost exclusively based on two types of features: those derived from background
knowledge bases (in generic form, triples from certain linked data sets) and those de-
rived from table components such as header text, and row content. This work notes
that the document context that tables occur in (i.e., around and outside tables e.g., cap-
tions, page titles) offers equally useful clues for interpretation. In particular, another
source of linked data - the pre-defined semantic markups within Webpages such as
RDFa/microdata2 annotations - provide important information about the Webpages and
tables they contain. However such data have never been used in Table Interpretation
tasks, even not in any NLP tasks in general.

TableMiner adopts a two-phase incremental, bootstrapping approach to interpret
columns. A forward-learning phase uses an incremental inference with stopping al-
gorithm (I-inf ) that builds initial interpretation on an iterative row-by-row basis un-
til TableMiner is ‘sufficiently confident’ (automatically determined by convergence)
about the column classification result. Next, a backward-update phase begins by using
initial results from the first phase (seeds) to constrain and guide interpretation of the
remaining data. This can change the classification results on a column due to the newly
disambiguated entity content cells. Therefore it is followed by a process to update clas-
sification and disambiguation results in the column in a mutually recursive pattern until

2 E.g., with the schema.org vocabulary
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they become stabilized. In both tasks, TableMiner uses various types of table context
(including pre-defined semantic markups within Webpages where available) to assist
interpretation.

Evaluation on two datasets shows that TableMiner significantly outperforms two
baselines in both classification (between 0.08 and 0.38 in F1) and disambiguation (be-
tween 0.19 and 0.37 Precision on one dataset based on manual inspection, and 0.02
to 0.03 F1 on another) tasks, and offers substantial potential to improve computational
efficiency.

The remainder of this paper is organized as follows: Section 2 discusses related
work, Section 3 introduces the methodology, Section 4 describes evaluation and dis-
cusses results, and Section 5 concludes this paper.

Fig. 1. Lakes in Central Greece (adapted from Wikipedia)

2 Related Work

This work belongs to the general domain of table information extraction covering a wide
range of topics such as table structure understanding [25] that aims to uncover struc-
tural relations underlying table layout in complex tables; relational table identification
that aims to separate tables containing relational data from noisy ones used for, e.g.,
page formatting, and then subsequently identifying table schema [5, 4, 1]; table schema
matching and data integration that aims to merge tables describing similar data [2, 3,
13]; and semantic Table Interpretation, which is the focus of this work. It also belongs
to the domain of (semi-)structured Information Extraction, where an extensive amount
of literature is marginally related.

2.1 Semantic Table Interpretation

Venetis et al. [22] annotate columns in a table with semantic concepts and identify re-
lations between the subject column (typically containing entities that the table is about)
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and other columns using a database mined with regular lexico-syntactic patterns such
as the Hearst patterns [9]. The database records co-occurrence statistics for each pair
of values extracted by such patterns. A maximum likelihood inference model is used to
predict the best concepts and relations from candidates using these statistics.

Similarly, Wang et al. [23] first identify a subject column in the table, then based on
subject entity mentions in the column and their corresponding values in other columns,
associate a concept from the Probase knowledge base [24] that best describes the table
schema (hence properties of the concept are used to label the columns). Essentially
this classifies table columns and identifies relations between the subject column and
other columns. Probase is a probabilistic database built in the similar way as that in
Venetis et al. [22] and contains an inverted index that supports searching and ranking
candidate concepts given a list of terms describing possible concept properties, or names
describing possible instances. Interpretation heavily depends on these features and the
probability statistics gathered in the database.

Limaye et al. [12] use factor graph to model a table and the interdependencies be-
tween its components. Table components are modeled as variables represented as nodes
on the graph; then the interdependencies among variables and between a variable and
its candidates are modeled by factors. The task of inference amounts to searching for
an assignment of values to the variables that maximizes the joint probability. A unique
feature of this method is it addresses all three tasks simultaneously. Although the key
motivation is using joint inference about each of the individual components to boost the
overall quality of the labels, later study showed that this does not necessarily guaran-
tee advantages over models that address each task separately and independently [22].
Furthermore, Mulwad et al. [16] argue that computing the joint probability distribution
in the model is very expensive. Thus built on their earlier work by [21, 17, 15], they
introduce a semantic message passing algorithm that applies light-weight inference to
the same kind of graphical model. TableMiner is similar in the way that the iterative
backward-update phase could also be considered a semantic message passing process
that involves fewer variables and factors, hence is faster to converge.

One limitation of the above methods is that the construction of candidate space and
their feature representation is exhaustive, since they require evidence from all content
cells of a column in order to classify that column. This can significantly damage the
efficiency of semantic Table Interpretation algorithms as it is shown that constructing
candidate space and their feature representations is the major bottleneck in Table In-
terpretation [12]. However, as illustrated before, human cognition does not necessarily
follow the similar process but can be more efficient as we are able to infer on partial
data.

Another issue with existing work is that many of them make use of non-generalizable,
knowledge base specific features. For example, Venetis et al. [22] and Wang et al. [23]
use statistics gathered during the construction of the knowledge bases, which is un-
available in resources such as Freebase3 or DBpedia4. Syed et al. [21] and Mulwad et
al. [17, 15, 16] use search relevance scores returned by the knowledge base that is also

3 http://www.freebase.com/
4 http://dbpedia.org/
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resource-specific and unavailable in, e.g., Freebase and DBpedia. TableMiner however,
uses only generic features present in almost every knowledge base.

2.2 Information Extraction in general

The three subtasks tackled by semantic Table Interpretation are closely related to Named
Entity Recognition (NER), Named Entity Disambiguation and Relation Extraction in
the general Information Extraction domain. State-of-the-art methods [20, 10] however,
are tailored to unstructured text content that is different from tabular data. The inter-
dependency among the table components cannot be easily taken into account in such
methods [14]. For NER and Relation Extraction, a learning process is typically required
for each semantic label (i.e., class or relation) that must be known a-priori and training
or seed data must be provided. In Table Interpretation however, semantic classes and
relations are unknown a-priori. Further, due to the large candidate space, it is infeasible
to create sufficient training or seed data in such tasks.

Wrapper induction [11, 8] automatically learns wrappers that can extract informa-
tion from structured Webpages. It builds on the phenomenon that the same type of
information are typically presented in similar structures in different Webpages and ex-
ploits such regularities to extract information. Technically, Wrapper induction can be
adapted to partially address Table Interpretation by learning wrappers able to classify
table columns. However, the candidate classes must be defined a-priori and training data
are essential to build such wrappers. As discussed above, these are infeasible in the case
of semantic Table Interpretation.

3 Methodology

This section describes TableMiner in details. T denotes a regular, horizontal, relational
table containing i rows of content cells (excluding the row of table headers) and j
columns, Ti denotes row i, Tj denotes column j, THj is the header of column j, and
Ti,j is a cell at row Ti and column Tj . X denotes different types of context used to
support Table Interpretation. Cj is a set of candidate concepts for column j. Ei,j is a
set of candidate entities for the cell Ti,j . Both Cj and Ei,j are derived from a reference
knowledge base, details of which is to be described below. Function l(o) returns the
string content if o is a table component (e.g., in Figure 1 l(T2,1) =‘Yliki’), or the
label if o is an annotation (i.e., any cj ∈ Cj or any ei,j ∈ Ei,j). Unless otherwise
stated, bow(o) returns a bag-of-words (multiset) representation of o by tokenizing l(o),
then normalizing each token by lemmatization and removing stop words. bowset(o)
is the de-duplicated set based on bow(o). w is a single token and freq(w, o) counts
the frequency of w in bow(o). | · | returns the size of a collection, either containing
duplicates or de-duplicated.

TableMiner firstly identifies table columns that contain mostly (> 50% of non-
empty rows) named entities (NE-columns). This is done by using regular expressions
based on capitalization and number of tokens in each content cell. The goal is to dis-
tinguish such columns from others that are unlikely to contain named entities (e.g.,
columns containing numeric data, such as column ‘Area’ in Figure 1 and thus do not
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Context
Webpage title out-table context
Table caption
Semantic markups if any
Surrounding paragraphs
Column header in-table context
Row content
Column content

Table 1. Table context elements

need classification. Then given an NE-column Tj , column interpretation proceeds in
a two-phase bootstrapping manner, where each phase deals with both column classi-
fication and cell entity disambiguation. The first forward-learning phase builds initial
interpretation based on partial data in the column, while the second backward-update
phase interprets remaining cells and iteratively updates annotations (concept and entity)
for the entire column until they are stablized.

3.1 Context

A list of the context types used for semantic Table Interpretation is shown in Table 1. A
key innovation in TableMiner is using context outside tables, including table captions,
Webpage title, surrounding paragraphs, and semantic markups inserted by certain
websites.

Table captions and the title of the Webpage may mention key terms that are likely to
be the focus concept in a table. Paragraphs surrounding tables may describe the content
in the table, thus containing clue words indicating the concepts or descriptions of en-
tities in the table. Furthermore, an increasing number of semantically annotated Web-
pages are becoming available under the heavily promoted usage of semantic markup
vocabularies (e.g., microdata format at schema.org) by major search engines [6]. An
example of this is IMDB.com, on which Webpages about movies contain microdata
annotations such as movie titles, release year, directors and actors, which are currently
used by Google Rich Snippet5 to improve content access. Such data provides important
clues on the ‘aboutness’ of a Webpage, and therefore tables (if any) within the Webpage.

3.2 The forward-learning phase

Algorithm 1 shows the incremental inference with stopping (I-inf ) algorithm used by
forward-learning. Each iteration disambiguates a content cell Ti,j by comparing can-
didate entities from Ei,j against their context and choosing the highest scoring (i.e.,
winning) candidate (Candidate search and Disambiguation). Then the concepts asso-
ciated with the entity are gathered to create Cj the set of candidate concepts for column
Tj , and each member cj ∈ Cj is scored based on its context and those already dis-
ambiguated entities (Classification). At the end of each iteration, Cj from the current

5 http://www.google.com/webmasters/tools/richsnippets
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iteration is compared with the previous to check for convergence, by which ‘satisfac-
tory’ initial annotations are created and forward-learning ends.

Algorithm 1 Forward learning
1: Input: Tj ; Cj ← ∅
2: for all cell Ti,j in Tj do
3: prevCj ← Cj

4: Ei,j ←disambiguate(Ti,j)
5: Cj ←updateclass(Cj , Ei,j)
6: if convergence(Cj , prevCj) then
7: break
8: end if
9: end for

Candidate search In this step, the text content of a cell l(Ti,j) is searched in a knowl-
edge base and entities whose labels l(ei,j) overlaps with l(Ti,j) is chosen as candi-
dates (Ei,j) for the cell (the number of overlapping words/tokens does not matter).
For example, ‘Trichonida’ will retrieve candidate named entities ‘Lake Trichonida’ and
‘Trichonida Province’. TableMiner does not use relevance-based rankings or scores re-
turned by the knowledge base as features for inference, while others [21, 17, 15, 16]
do.

Disambiguation (disambiguate(Ti,j)) Each content cell Ti,j is disambiguated by
candidate entity’s confidence score, which is based on two components: a context score
ctxe and a name match score nm.

The context score measures the similarity between each candidate entity and the
context of Ti,j , denoted as xi,j ∈ Xi,j . Firstly, a bow(ei,j) representation for each ei,j ∈
Ei,j is created based on triples containing ei,j as subject. Let <ei,j , predicate, object>
be the set of such triples retrieved from a knowledge base, then bow(ei,j) simply con-
catenates object from all triples, tokenizes the concatenated string, and normalizes the
tokens by lemmatization and stop words removal. For each xi,j , bow(xi,j) converts the
text content of the corresponding component into a bag-of-words representation follow-
ing the standard definition introduced before. Finally, to compute the similarity between
ei,j and xi,j , two functions are used. For each type of out-table context shown in Table
1, the similarity is computed using a frequency weighted dice function:

dice(ei,j , xi,j) =

2×
∑

w∈bowset(ei,j)∩bowset(xi,j)

(freq(w, ei,j) + freq(w, xi,j))

|bow(ei,j)|+ |bow(xi,j)|
(1)

For in-table context, the similarity is computed by ‘coverage’:
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coverage(ei,j , xi,j) =

∑
w∈bowset(ei,j)∩bowset(xi,j)

freq(w, xi,j)

|bow(xi,j)|
(2)

, because the sizes of bow(ei,j) and bow(xi,j) can be often different orders of mag-
nitude and Equation 1 may produce negligible values. Specifically, row content is the
concatenation of l(Ti,j′) for all columns j′, j ̸= j′ (e.g., for the cell ‘Yliki’ in Fig-
ure 1 this includes ‘Boeotia’,‘22,731’). Intuitively, these are likely to be attribute data
of the concerning entity. Column content is the concatenation of l(Ti′,j) for all rows
i′, i ̸= i′ (e.g., for the cell ‘Yliki’ in Figure 1 this includes ‘Trichonida’,‘Amvrakia’,
and ‘Lysimachia’). Intuitively, these are names of entities that are semantically similar.

Therefore, the similarity score between ei,j and each xi,j ∈ Xi,j is computed as
above and summed up to obtain the context score ctxe(ei,j).

The name match score examines the overlap between the name of the entity and the
cell content, to promote entities whose name matches exactly the content string:

nm(ei,j , Ti,j) =

√
2× |bowset(l(ei,j)) ∩ bowset(Ti,j)|
|bowset(l(ei,j))|+ |bowset(Ti,j)|

(3)

The final confidence score of a candidate entity, denoted by fse(ei,j), is the product
of ctxe(ei,j) and nm(ei,j , Ti,j).

Classification (updateclass(Cj)) In each iteration, the entity with the highest fse(ei,j)
score is selected for the current cell and its associated concepts are used to update the
candidate set of concepts Cj for the column. Each cj ∈ Cj is associated with a con-
fidence score fsc(cj) also consisting of two elements: a base score bs and a context
score ctxc.

The base score is based on the fse scores of the winning entities from already disam-
biguated content cells by the current iteration. Let disamb(cj) be the sum of fse(ei,j)
where ei,j is a winning entity from a content cell and is associated with cj , then bs(cj)
is disamb(cj) divided by the number of rows in T . Note that as additional content cells
are disambiguated in new iterations, new candidate concepts may be added to Cj ; or
for existing candidate concepts, their base scores can be updated if the winning entities
from newly disambiguated content cell also select them.

The context score is based on the overlap between l(cj) and its context, and is
computed in the similar way as the context score for candidate entities. Let xj ∈ Xj

denotes various types of context for the column header THj . All types of context shown
in Table 1 except row content is used. For each context xj ∈ Xj , a similarity score is
computed between cj and xj using the weighted dice function introduced before but
replacing ei,j with cj , and xi,j with xj . bow(cj) and bowset(cj) is created following
the standard definitions. Then the sum of the similarity scores becomes the context score
ctxc(cj).

The final confidence score of a candidate concept fsc(cj) adds up bs(cj) and ctxc(cj)
with equal weights.
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Convergence (convergence(Cj , prevCj)) Results of the two above operations at
each iteration may either create new concept candidates for the column, or resetting
the scores of existing candidates, thus changing the ‘state’ of Cj . TableMiner does not
exhaustively process every cell in a column. Instead, it automatically stops by detecting
the convergence of ‘entropy’ of the state of Cj at the end of an iteration as measured
below. Convergence happens if the difference between the current and previous state’s
entropy is less than a threshold of t.

entropy(Cj) = −
∑

cj∈Cj

P (cj) log2 P (cj) (4)

P (cj) =
fsc(cj)∑

c′j∈Cj
fsc(c′j)

(5)

The intuition is that when the entropy level stabilizes, the contribution by each
P (cj) to the state is also expected to stabilize. In other words, the relative confidence
score of cj to the collective sum (the denominator in Equation 5) changes little. As a
result, the ranking of candidate concepts also stabilizes, and so winning candidates will
surface.

3.3 The backward-update phase

The backward-update phase begins (i.e., first iteration) by taking the classification out-
come Cj from the forward phase as constraints on the disambiguation of remaining cells
in the same column. Let C+

j ⊂ Cj be the set of highest scoring classes (‘winning’ con-
cepts, multiple concepts with the same highest score is possible) for column j computed
by the forward phase. For each remaining cell in the column, disambiguation candidates
are restricted to entities whose associated concepts overlap with C+

j . Effectively, this
reduces the number of candidates thus improving efficiency. Disambiguation follows
the same procedure as in the forward phase, and its results may revise classification Cj

for the column, either adding new elements to Cj , or resetting scores of existing ones
(due to changes of fsc(cj)).

Thus after disambiguating the remaining cells, C+
j is re-selected. If the new C+

j is
different from the previous, a new update operation is triggered. It repeats the disam-
biguation and classification operations on the entire column, while using the new C+

j

as constraints to restrict candidate entity space. This procedure repeats until C+
j and the

winning entity in each cell stabilizes (i.e., no change), completing interpretation.
In theory, starting from the second iteration, new candidate entities may be retrieved

and processed due to the change in C+
j . Empirically, it is found that 1) in most cases the

update phase completes in one iteration; and 2) in cases where it doesn’t, it converges
fast and following iterations mostly re-selects from the pool of candidates that were
already processed in the beginning of the update phase (first iteration), thus incurring
little computational cost.
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4 Evaluation

TableMiner is evaluated by the standard Precision, Recall and F1 metrics in the column
classification and entity disambiguation tasks. It is compared against two baselines on
two datasets (shown in Table 2). The knowledge base used in this experiment is Free-
base. Freebase is currently the largest well-maintained knowledge base in the world,
containing over 2.4 billion facts about over 43 million topics (e.g., entities, concepts),
largely exceeding other popular knowledge bases such as DBpedia and YAGO.

4.1 Datasets

Limaye112 contains a randomly selected 112 tables from the Limaye dataset [12]. The
original dataset is annotated by Wikipedia article titles referring to named entities and
YAGO concepts and relations. The dataset contains about 90% of Wikipedia article
pages, while the other 10% are randomly crawled Webpages. Each Webpage contains
a ‘focus’ relational table to be interpreted, together with the context such as page ti-
tles, table captions, and paragraphs around it. These Webpages do not have Microdata
annotations. The dataset covers multiple domains, such as film, music, games, loca-
tion, organization, events etc. These tables must be re-annotated due to the significant
changes of such resources, also due to the usage of a different knowledge base in this
work.

To create the ground truth for the classification task, the NE-columns in these tables
are manually annotated following a similar process as Venetis et al. [22]. Specifically,
TableMiner and the baselines (Section 4.2) are ran on these tables and the candidate
concepts for all NE-columns are collected and presented to annotators. The annotators
mark each label as best, okay, or incorrect. The basic principle is to prefer the most
specific concept among all suitable candidates. For example, given a content cell ‘Pen-
rith Panthers’, the concept ‘Rugby Club’ is the best candidate to label its parent column
while ‘Sports Team’ and ‘Organization’ are okay. The annotators may also insert new
labels if none of the candidates are suitable.

The top ranked prediction by TableMiner is checked against the classification ground
truth. Each best label is awarded a score of 1 while each okay label is awarded 0.5.
Further, if there are multiple top-ranked candidates, each candidate considered correct
only receives a fraction of its score as score

#topranked . For example, if a column containing
film titles has two top-ranked concept candidates with the same score: ‘Film’ (best) and
‘Book’ (incorrect), this prediction receives a score of 0.5 instead of 1. This is to penalize
the situation where the Table Interpretation system fails to discriminate false positives
from true positives.

To create the ground truth for the disambiguation task, each Wikipedia article title
in the original tables is automatically mapped to a Freebase topic (e.g., an entity or a
concept) id by using the MediaWiki API6 and the Freebase MQL7 interface. As it will
be discussed later, evaluation of entity disambiguation on this dataset reveals that the
original dataset could be biased, possibly due to the older version of Wikipedia used in

6 http://www.mediawiki.org/wiki/API:Main page
7 http://www.freebase.com/query
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Limaye112 IMDB
Tables 112 7,354
Annotated columns 254 (119) 7,354
Annotated entity cells 2,089 92,317

Table 2. Datasets for evaluation. The number in bracket shows the number of annotated columns
for the corresponding 112 tables in the original Limaye dataset. The re-created dataset doubles
the size of annotations.

the original experiments. Therefore, a manual inspection of the output of TableMiner
and the baselines evaluation is carried out to further evaluate the different systems.

IMDB contains 7,354 tables extracted from a random set of IMDB movie Web-
pages. They are annotated automatically to evaluate entity disambiguation. Each IMDB
movie Webpage8 contains a table listing a column of actors/actresses and a column of
corresponding characters played. Cells in the actor/actress column are linked with an
IMDB item ID, which, when searched in Freebase, returns a unique (if any) mapped
Freebase topic. Thus these columns are annotated automatically in such a way. The
‘character’ column is not used since they are not mapped in Freebase.

4.2 Configuration and baseline

The convergence threshold in the I-inf algorithm is set to 0.01. Semantic markups are
only available in the IMDB dataset. To use this type of context for semantic Table In-
terpretation, Any239 is used to extract the microdata format annotations as RDF triples
and the objects of triples are concatenated as contextual text. Annotations within the
HTML <table> tags are excluded.

Two baselines are created. Baseline ‘first result’ (Bfirst) firstly disambiguates ev-
ery content cell in a column by choosing the top ranked named entity candidate in the
Freebase search result. Freebase implements a ranking algorithm for its Search API to
promote popular topics. TableMiner however, does not use such features. Then each
disambiguated cell casts a vote to the set of concepts the winning named entity belongs
to, and the concept that receives the majority vote is selected to label the column.

Baseline ‘similarity based’ (Bsim) uses both string similarity methods and a sim-
ple context-based similarity measure to disambiguate a content cell. Given a content
cell and its candidate named entities, it computes a string similarity score between a
candidate entity’s name and the cell content using the Levenshtein metric. It then uses
Equation 1 to compute a context overlap score between the bag-of-words representa-
tion of a candidate entity and the row context of its containing cell in the table. The two
scores are added together as the final disambiguation score for a candidate named en-
tity for the cell and the winning candidate is chosen for the cell. Candidate concepts for
the column are derived from winning named entity for each content cell, then the score
of a candidate concept is based on the fraction of cells that cast vote for that concept,
plus the string similarity (Levenshtein) between the label of the concept and the column

8 e.g., http://www.imdb.com/title/tt0071562/
9 https://any23.apache.org/
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Bfirst Bsim TableMiner
In-table context No Yes Yes
Out-table context No No Yes

Table 3. Use of context features in the three methods for comparison

Limaye112 IMDB
Precision Recall F1 Precision Recall F1

Bfirst 0.927 0.918 0.922 0.927 0.922 0.925
Bsim 0.907 0.898 0.902 0.937 0.932 0.935
TableMiner 0.923 0.921 0.922 0.96 0.954 0.956

Table 4. Disambiguation results on the two datasets. The highest F1 on each dataset is marked in
bold.

header text. Baseline Bsim can be considered as an ‘exhaustive’ Table Interpretation
method, which disambiguates every content cell before deriving column classification
and uses features from in-table context that are commonly found in state-of-the-art [12,
21, 17, 15, 16].

Table 3 compares the three methods in terms of the contextual features used for
learning.

4.3 Results and discussion

Effectiveness Table 4 shows disambiguation results obtained on the two datasets.
TableMiner obtains the best F1 on both datasets. It also obtains the highest Precision
and Recall on the IMDB dataset, and the highest Recall on the Limaye112 dataset. It
is surprising to note that even the most simplistic baseline Bfirst obtains very good
results: it achieves over 0.9 F1 on the IMDB dataset, while on the Limaye112 dataset
it obtains results that betters Bsim and equally compares to TableMiner. Note that the
figures are significantly higher than those reported originally by Limaye et al (in the
range of 0.8 and 0.85) [12].

The extremely well performance on the IMDB dataset could be attributed to the
domain and the Freebase search API. As mentioned before, the Freebase search API
assigns higher weights to popular topics. The result is that topics in the domains such
as movie, book, pop music and politics are likely to be visited and edited more fre-
quently, subsequently increasing their level of ‘popularity’. Therefore, by selecting the
top-ranked result, Bfirst is very likely to make the correct prediction.

To uncover the contributing factors to its performance on the Limaye112 dataset,
the ground truth is analyzed and it is found that, each of the 112 tables has on aver-
age only 1.1 (minimum 1, maximum 2) columns that are annotated with entities, while
TableMiner annotates on average 2.3 NE-columns. This suggests that the entity anno-
tations in the ground truth are sparse. Moreover, the average length of entity names by
number of tokens is 2.3, with the maximum being 12, and over 33% of entity names
have 3 or more tokens while only 22% have a single-token name. This could possibly
explain the extremely well performance by Bfirst as typically, short names are much
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Precision Precision either-or
Bfirst 0.265 0.431
Bsim 0.306 0.498
TableMiner 0.491 0.801

Table 5. Precision based on manual analysis of 932 entity annotations that the three systems
disagree on.

more ambiguous than longer names. By using a dataset that is biased toward entities
with long names, the strategy by Bfirst is very likely to succeed.

Hence to obtain a more balanced perspective, the results created by the three sys-
tems are manually inspected and re-annotated. To do so, for each method, the predicted
entity annotations that are already covered by the automatically created ground truth are
excluded. Then, in the remaining annotations, those that all three systems predict the
same are removed. The remainder (932 entity annotations, of which 572 is predicted
correctly by at least one system) are the ones that the three systems ‘disagree’ on, and
are manually validated. Table 5 shows the analysis results. TableMiner significantly
outperforms the two baseline. Manual inspection on 20% of the wrong annotations by
all three methods reveals that it is largely (> 80%) because the knowledge base does
not contain the correct candidate. When only annotations that are correct by any one
method are considered (Precision either-or), TableMiner achieves a precision of 0.8
while Bfirst 0.431 and Bsim 0.498.

Table 6 shows the classification result on the Limaye112 dataset. TableMiner almost
tripled the performance of Bfirst and significantly outperforms Bsim. Again surpris-
ingly, the superior performance by Bfirst on the disambiguation task does not trans-
late to equal performance on the classification task. Manual inspection shows that it is
significantly penalized by predicting multiple top-ranked candidate concepts. In other
words, it fails to discriminate true positives from false positives. It has been noted that
the state-of-the-art methods often use a concept hierarchy defined within knowledge
bases to solve such cases by giving higher weights to more specific concepts [12, 16].
However, concept hierarchies are not necessarily available in all knowledge bases. For
example, Freebase has a rather loose concept network instead of a hierarchy. Neverthe-
less, TableMiner is able to predict a single best concept candidate in most cases without
such knowledge. It also outperforms Bsim by a substantial margin, suggesting the us-
age of various table context is very effective and that exhaustive approaches may not
necessarily offer advantage but causes additional computation.

While not directly comparable due to the datasets and knowledge bases used, the
classification results by TableMiner is higher than 0.56 in [12], 0.6-0.65 (best or okay)
in [22], and 0.5-0.6 (best or okay) in [16].

Efficiency The potential efficiency improvement by TableMiner can be assessed by
observing the reduced number of candidate entities. As discussed earlier, candidate
retrieval and feature space construction account the majority (>90%) of computation
[12]. Experiments in this work show that retrieving candidate entities and their data
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best only best or ok
Precision Recall F1 Precision Recall F1

Bfirst 0.258 0.247 0.252 0.505 0.484 0.494
Bsim 0.487 0.481 0.484 0.667 0.658 0.662
TableMiner 0.646 0.618 0.632 0.761 0.729 0.745

Table 6. Classification result on the Limaye112 dataset. The highest F1 is marked in bold.

(triples) from Freebase accounts for over 90% of CPU time, indeed a major bottleneck
in semantic Table Interpretation.

TableMiner reduces the quantity of candidate entities to be processed by 1) gener-
ating initial interpretation (forward-learning) using partial instead of complete data as
an exhaustive method would otherwise do; and 2) using the initial interpretation out-
come to constrain further learning (backward-update). Compared against Bsim that ex-
haustively disambiguates every content cells in a table before classifying the columns,
TableMiner reduces the total number of candidate entities to be considered by disam-
biguation operations by 32% in the Limaye112 and 24% in the IMDB datasets respec-
tively. When only content cells processed in the backward-update phase are considered,
the figures amount to 38% and 61%.

Furthermore, Table 7 shows the convergence speed in the forward-learning phase.
Considering the column classification task only and using the Limaye112 dataset as
an example, it suggests that on average only 9 rows are needed to create initial clas-
sification labels on NE-columns, as opposed to using all rows in a table (average of
27) by an exhaustive method. The slowest convergence happens in a table of 78 rows
(converged at 46). The average fractions of rows that need not to be processed (i.e.,
savings) in the forward phase are 57% for Limaye112 and 43% for IMDB. Then In the
backward phase, the number of columns that actually need iterative update is 10% of
all columns in both datasets. The average number of iterations for those needing iter-
ative update is 3 for both datasets. To summarize again using the Limaye112 dataset,
TableMiner manages to produce ‘stable’ column classification for 90% of columns us-
ing only forward-learning with an average of 9 rows, resulting in a potential 57% of
savings than an exhaustive method for this very specific task.

Final remark In summary, by using various types of in- and out-table context in se-
mantic Table Interpretation, TableMiner obtains the best performance on both clas-
sification and disambiguation tasks. On the classification task, it delivers significant
improvement by between 8 and 38% over the baselines, none of which uses features
from out-table context. By adopting an incremental, bootstrapping pattern of learning,
TableMiner can potentially deliver between 24 and 60% computational savings com-
pared against exhaustive methods depending on tasks.

5 Conclusion

This paper introduced TableMiner, a Table Interpretation method that makes use of var-
ious types of context both within and outside tables for classifying table columns and
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Max Min Mean
Limaye112 42 2 9
IMDB 15 2 8

Table 7. Number of iterations until convergence in the forward learning phase.

disambiguating content cells, and learns in an incremental, bootstrapping, and mutually-
recursive pattern. TableMiner contributes to the state-of-the-art by introducing 1) a
generic Table Interpretation method able to be adapted to any knowledge bases; 2) a
generic model of using various table context in such task, the first that uses semantic
markups within Webpages as features; 3) an automatic method for determining sample
data to bootstrap Table Interpretation.

TableMiner is evaluated on two datasets against two baselines, one of which repre-
sents an exhaustive method that only uses features from within-table context. TableM-
iner consistently obtains the best results on both tasks. It significantly outperforms both
baselines in the classification task and on the re-annotated dataset (i.e., manual inspec-
tion and validation) in the disambiguation task.

One limitation of the current work is that the contribution of each type of out-table
and in-table context in the task is not extensively evaluated. This will be addressed in fu-
ture work. Further, future work will also focus on extending TableMiner to a full Table
Interpretation method addressing all three subtasks. Other methods of sample selection
will also be explored and compared.
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