Col-Graph: Towards Writable and Scalable
Linked Open Data

Luis-Daniel Ibafiez!, Hala Skaf-Molli!, Pascal Molli', and Olivier Corby?

! LINA, University of Nantes
{luis.ibanez,hala.skaf,pascal.molli}@univ-nantes.fr
2 INRIA Sophia Antipolis-Méditerranée
olivier.corby@inria.fr

Abstract. Linked Open Data faces severe issues of scalability, avail-
ability and data quality. These issues are observed by data consumers
performing federated queries; SPARQL endpoints do not respond and
results can be wrong or out-of-date. If a data consumer finds an error,
how can she fix it? This raises the issue of the writability of Linked Data.
In this paper, we devise an extension of the federation of Linked Data
to data consumers. A data consumer can make partial copies of differ-
ent datasets and make them available through a SPARQL endpoint. A
data consumer can update her local copy and share updates with data
providers and consumers. Update sharing improves general data qual-
ity, and replicated data creates opportunities for federated query en-
gines to improve availability. However, when updates occur in an uncon-
trolled way, consistency issues arise. In this paper, we define fragments
as SPARQL CONSTRUCT federated queries and propose a correction
criterion to maintain these fragments incrementally without reevaluating
the query. We define a coordination free protocol based on the counting
of triples derivations and provenance. We analyze the theoretical com-
plexity of the protocol in time, space and traffic. Experimental results
suggest the scalability of our approach to Linked Data.

1 Introduction

The Linked Open Data initiative (LOD) makes millions of RDF-triples available
for querying through a federation of SPARQL endpoints. However, the LOD faces
major challenges including availability, scalability [3] and quality of data [I].
These issues are observed by data consumers when they perform federated
queries; SPARQL endpoints do not respond and results can be wrong or out-of-
date. If a data consumer finds a mistake, how can she fix it? This raises the issue
of the writability of Linked Data, as already pointed out by T. Berners-Lee [2].
We devise an extension of Linked Data with data replicated by Linked Data
consumers. Consumers can perform intensive querying and improve data qual-
ity on their local replicas. We call replicated subsets of data, fragments. First,
any participant creates fragments from different data providers and make them
available to others through a regular SPARQL Endpoint. Local fragments are

writable, allowing modifications to enhance data quality. Original data providers
can be contacted to consume local changes in the spirit of pull requests in Dis-
tributed Version Control Systems (DVCS). Second, the union of local fragments
creates an opportunistic replication scheme that can be used by federated query
engines to improve data availability [I3I17]. Finally, update propagation between
fragments is powered by live feeds as in DBpedia Live [14] or sparqlPuSH [I6].

Scientific issues arise concerning the consistency of these fragments. These
questions have been extensively studied in Collaborative Data Sharing Systems
(CDSS) [11], Linked Data with adaptations of DVCS [18/4] and replication tech-
niques [I0J25]. Existing approaches follow a total replication approach, i.e., full
datasets or their full histories are completely replicated at each participant or
they require coordination to maintain consistency.

In this paper, we propose Col-Graph, a new approach to solve the availability,
scalability and writability problems of Linked Data. In Col-Graph, we define
fragments as SPARQL CONSTRUCT federated queries, creating a collaboration
network, propose a consistency criterion and define a coordination-free protocol
to maintain fragments incrementally without reevaluating the query on the data
source. The protocol counts the derivations of triples for data synchronization
and keeps provenance information to make decisions in case of a conflict.

We analyze the protocol’s complexity and evaluate experimentally its effi-
ciency. The main factors that affect Col-Graph performance are the number of
concurrent insertions of the same data, the connectivity of the collaboration net-
work and the overlapping between the fragments. Experimentations show that
the overhead of storing counters is less than 6% of the fragment size, when-
ever there are up to 1,000 concurrent insertions or up to 10 x 10'6 simple paths
between the source and the dataset. Synchronization is faster than fragment
reevaluation up to when 30% of the triples are updated. We also report better
performance on synthetically generated social networks than on random ones.

Section [2| describes Col-Graph general approach and defines the correction
criterion. Section [formalizes Col-Graph protocol. Section [d]details the complex-
ity analysis. Section [5] details experimentations. Section [6] summarizes related
work. Finally, section [7] presents the conclusions and outlines future work.

2 Col-Graph Approach and Model

In Col-Graph, consumers create fragments, i.e., partial copies of other datasets,
based on simple federated CONSTRUCT queries, allowing them to perform in-
tensive queries locally on the union of fragments and make updates to enhance
data quality. In Figure [1, Consumer 1 copies fragments from DBPedia and
DrugBank, Consumer 2 copies fragments from DBPedia and MusicBrainz and
Consumer _3 copies fragments from Consumer 2 and Consumer 3.
Consumers publish the updated dataset, allowing others to also copy frag-
ments from them. They can also contact their data sources to ask them to incor-
porate their updates, in the spirit of DVCS pull requests. Updates at the frag-
ment’s source are propagated to consumers using protocols like sparqlPuSH [16]

DBpedia DrugBank MusicBrainz

|

Pull PR
. s

~~ Request [
- . :
: Replicated
Consumer_1 Consumer 2 Fragment

Pull \f 7) e e >
_Reguest [__ Live Feed Update,
Consumef 3 Spargl Push

Query Engine
contact
y- — N

Applications that consume Linked Data

Fig. 1: Federation of Writable Linked Data

-

1

CONSTRUCT WHERE { \
SERVICE <DBpedia> \
{?x BirthPlace ?y} }

A

or live feeds [14]. As replicated fragments could exist on several endpoints, ade-
quate federated query engines could profit to improve general data availability
and scalability [I3J17]. Following this approach, data providers can share the
query load and the data curation process with data consumers. Since data con-
sumers become also data providers, they can gain knowledge of queries targeting
their fragments.

We consider that each Linked Data participant holds one RDF-Graph and
exposes a SPARQL endpoint. For simplicity, we use P to refer to the RDF-Graph,
the SPARQL endpoint or the name of a participant when is not confusing. An
RDF-Graph is defined as a set of triples (s,p,0), where s is the subject, p is
the predicate and o is the object. We suppose that a participant wants to copy
fragments of data from other participants, i.e., needs to copy a subset of their
RDF-Graphs for a specific application [I9] as in Figure

Definition 1 (Fragment). Let S be a SPARQL endpoint of a participant, a
fragment of the RDF-Graph published by S, F[S], is a SPARQL CONSTRUCT
federated query [22] where all graph patterns are contained in a single SERVICE
block with S as the remote endpoint. We denote as eval(F[S]) the RDF-Graph
result of the evaluation of F[S].

A fragment F'[S] enables a participant T' to make a copy of the data of S that
answers the query. We denote the result of the evaluation of F[S] materialized
by a participant T as F[S]QT), i.e., a fragment of source S materialized at target
T. A fragment is partial if F[S]QT C S or full if F[S]QT = S. The local

data of a participant is composed of its own data union the fragments copied
from other participants. We call the directed labeled graph where the nodes are
the participants and the edges (S;T) labeled with fragments a Collaboration
Network, CN. A CN defines how data are shared between participants and how
updates are propagated. Participants can query and update the fragments they
materialize, e.g., Consumer_1 in figure[I] can modify the fragments copied from
DBPedia and DrugBank using SPARQL 1.1 Update [23]

When a source in a C'N updates its data, the materialized fragments may
become outdated. Fragments could be re-evaluated at the data source, but if
the data source has a popular knowledge base, i.e., many other participants
have defined fragments on it, the continuous execution of fragments would de-
crease the availability of the source’s endpoint. To avoid this, a participant may
synchronize its materialized fragment incrementally by using the updates pub-
lished by the source. Some popular data providers such as DBpedia Live [14]
and MusicBraianI publish live update feeds.

To track updates done by a participant, we consider an RDF-triple as the
smallest directly manageable piece of knowledge [15] and the insertion and dele-
tion of an RDF-triple as the two basic types of updates. Each update is globally
uniquely identifiable and it turns the RDF-Graph into a new state. SPARQL 1.1
updates are considered as an ordered set of deleted and/or inserted triples. Each
time we refer to an update, we implicitly refer to the inserted/deleted triple.
Blank nodes are considered to be skolemized, i.e., also globally identiﬁabldﬂ

Incrementally synchronizing a materialized fragment using only the updates
published by a data source and the locally materialized fragment without reeval-
uating the fragment on the data source requires to exclude join conditions from
fragments [§], therefore, we restrict to basic fragments [21], i.e., fragments where
the query has only one triple pattern.

Figure [2] illustrates a C N and how updates are propagated on it. P1 starts
with data about the nationality and KnownFor properties of M _Perey (pre-
fixes are omitted for readability). P2 materializes from P1 all triples with the
knownFor property. With this information and its current data, P2 inserts the
fact that M _Perey discovered Francium. On the other hand, P3 materializes
from P1 all triples with the nationality property. P3 detects a mistake (na-
tionality should be French, not French People) and promptly corrects it. P4
constructed a dataset materializing from P2 the fragment of triples with the
property discoverer the fragment of triples with the property nationality from
P3. P1 trusts P4 about data related to M _Perey, so she materializes the rele-
vant fragment, indirectly consuming updates done by P2 and P3.

Updates performed on materialized fragments are not necessarily integrated
by the source, e.g, the deletion done by P3 did not reach P1, therefore, equiv-
alence between source and materialized fragment cannot be used as consistency
criterion for C'Ns. Intuitively, each materialized fragment must be equal to the

3 http://musicbrainz.org/doc/MusicBrainz_Database#Live_Data_Feed
4 http://www.w3.org/TR/2014/REC-rdf11- concepts-20140225/
#section-skolemization

http://musicbrainz.org/doc/MusicBrainz_Database#Live_Data_Feed
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-skolemization
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-skolemization

P1:
+ (M_ Perey, nationality, French_ People)
+ (M_ Perey,knownFor, Francium,)
(M _ Perey,discoverer, Francium,)

(M _ Perey,nationality, French)

CONSTRUC{ %ONSTRUCT
WHERE { WHERE {
SERVICE <P1> { SERVICE <P1> {
2z knownFor %y }} 2z nationality 2y} }
P2: CONSTRUCT P3:
(M _ Perey,knownFor, Francium,) SERY/‘/I}CI}E];R?P{AI - M—PereynationalitisFrench—People)
+ (Francium,subject, Chemical_ Element) M Pere \Q\T 9;}§ + (M _ Perey,birthPlace,France)
+ (M_ Perey,discoverer, Francium,) - + (M _ Perey, nationality,French)
\CONSTRUCT CONSTRUC
WHERE { WHERE {
SERVICE <P2> { SERVICE <P3> {
2z discoverer ?y}} ?x ?y French}}

(M _ Perey, discoverer, Francium,)

P4:

(M_ Perey, nationality, French)

Fig.2: Collaboration network with Basic Fragments. Underlined triples are the
ones coming from fragments, triples preceded by a '+’ are the ones locally in-
serted, struck-through triples are the ones locally deleted.

evaluation of the fragment at the source after applying local updates, i.e., the
ones executed by the participant itself and the ones executed during synchro-
nization with other fragments.

Definition 2 (Consistency Criterion). Let CN = (P, E) be a collaboration
network. Assume each P; € P maintains an ordered set of uniquely identified
updates Ap, with its local updates and the updates it has consumed from the
sources of the fragments F[P;]QP; it materializes. Given a Ap, let Ag[s] be the
ordered subset of Ap such that all updates concern F[S], i.e., that match the
graph pattern in F[S]. Let apply(P;, A) be a function that applies an ordered set
of updates A on P;.

CN s consistent iff when the system is idle, i.e., no participant erecutes
local updates or fragment synchronization, then:

(VP,, P; € P : F[P)QP; = apply(eval (F[P)), AR\ Ap)

The AIFD,[P"] \ Ap, term formalises the intuition that we need to consider only
local updates when evaluating the consistency of each fragment, i.e., from the
updates concerning the fragment, remove the ones coming from the source.

Unfortunately, applying remote operations as they come does not always
comply with Definition [2] as shown in Figure Ba} P3 synchronizes with P1, ap-
plying the updates identified as P1#1 and P1#2, then with P2, applying the
updates identified as P2#1 and P2#2, however, the fragment materialized from
P2 is not consistent. Notice that, had P3 synchronized with P2 before than with
P1, its final state would be different ((s, p, 0) would exist) and the fragment ma-
terialized from P1 would not be consistent.

P1:

(s:,0) P (spo) 1 foproprt
o {85p707 $,q,0) — 1 -
(s,9,0) (5:9,0)
; P14#1 (s,p,0) — 1 P2#1 (s,p,0) — 1
P1#1 Ins(s,p,0) P2#1 Ins(s,p,0) Plj; ((5 50))(_> 1 P2#%§ (s(ppo))‘—> 1
P1#2 Ins(s,q,0) P2#2 Del(s,p,0) i i
* * *
*
P1#1 (s,p,0) — 1
P1#1 Ins(s,p,0) P3: Pl;:; ((s 50));) 1
P1#2 Ins(s,q,0) (s,p,0) — 1 P2/1 (s7p’o) 1
P2#1 Ins(s,p,0) (s,q,0) — 1 o (s 5 ;) S
P2#2 Del(s,p,0) il Gl

F[P1]@P3 =

F[P1]@P3 = F[P2]@P3 # appiy({(s.p.0) w5 1 F[P2]@P3 =
apply({(s, p,0), (s,q,0)}, apply(0, pp(g q 'O’)pj_> 1, apply(0,
(P2#1Ins(s,p,0), (P11 Ins(s,p,0))) (PZ#lv(s p,0) ;) 1 (P1#1 (s, p,0) = 1,
P2#2 Del(s, p,0))) P1#2Ins(s,q,0))) > P1#2 (s,q,0) — 1))

(P2#2 (s, p,0) — —1))

(a) Apply mng updates as they.COIjﬂe does not (b) The Annotated RDF-Graph enables a
comply with the correction criterion. consistent Collaboration Network

Fig. 3: Illustration of the consistency criterion. Rounded boxes represent the
graphs, and shaded boxes the sequences of updates. x represents a full fragment.

3 A Protocol for Synchronization of Basic Fragments

To achieve consistency in every case, we propose, in the spirit of [7], to count the
number of insertions and deletions of a triple, i.e., we annotate each RDF-triple
with positive or negative integers, positive values indicate insertions and nega-
tive values deletions. This allows a uniform representation of data and updates,
yielding a simple way to synchronize fragments.

Definition 3 (Annotated RDF-triple, Graph and Update).

1. Lett an RDF-triple and z € Z*. t — z is an annotated RDF-triple, with t
being the triple and z the annotation.

2. An annotated RDF-Graph G4 is a set of annotated RDF-triples such that
(Vt, 2|t =2 € GA:2>0)

3. An annotated update u? is represented by an annotated RDF-triple. More
precisely, t — 1 for insertion of t and t — —1 for deletion of t.

Annotations in RDF-Graphs count the number of derivations of a triple. An
annotation value higher than one indicates that the triple exists in more than one
source or there are several paths in CN leading from the source of the triple to
the participant. Annotations in updates indicate, if positive, that z derivations
of t were inserted; if negative, that z derivations of ¢ were deleted. For example,
an annotated RDF-triple ¢; < 2 means that either ¢; has been inserted by two
different sources or the same insert arrived through two different paths in the
CN. The annotated update to < —1 means that t5 was deleted at one source

or by some participant in the path between the source and the target; t3 — —2
means that either t3 was deleted by two sources or by some participant in the
path between two sources and the target.

To apply annotated updates to annotated RDF-Graphs, we define an Update
Integration function:

Definition 4 (Update Integration). Let A the set of all annotated RDF-
Graphs and B the set of all annotated updates. Assume updates arrive from
source to target in FIFO order. The Update Integration functionw : Ax B — A
takes an annotated RDF-Graph G* € A and an annotated update t — z € B:

GAU{t— z} if (Fw:t— we G
GAYt— 2= G\ {t = w} ift—weGANw+2<0
(GA\{t—>whUu{t—=w+z} ift—weGAAw+2>0

The first piece of the Update Integration function handles incoming updates
of triples that are not in the current state. As we are assuming FIFO in the
update propagation from source to target, insertions always arrive before corre-
sponding deletions, therefore, this case only handles insertions. The second piece
handles deletions, only if the incoming deletion makes the annotation zero the
triple is deleted from the current state. The third piece handles deletions that
do not make the annotation zero and insertions of already existing triples by
simply updating the annotation value.

We now consider each participant has an annotated RDF-Graph G4 and
an ordered set of annotated updates U#. SPARQL queries are evaluated on the
RDF-Graph {t |t — z € GA}. SPARQL Updates are also evaluated this way, but
their effect is translated to annotated RDF-Graphs as follows: the insertion of ¢ to
the insertion of ¢ < 1 and the deletion of ¢ to the deletion of the annotated triple
having ¢ as first coordinate. Speciﬁcationdetaﬂs the methods to insert/delete
triples and synchronize materialized fragments. Figure [3b| shows the fragment
synchronization algorithm in action. A proof of correctness follows the same
case-base analysis developed to prove [10].

3.1 Provenance for Conflict Resolution

In section [3] we solved the problem of consistent synchronization of basic frag-
ments. However, our consistency criterion is based on the mere existence of
triples, instead of on the possible conflicts between triples coming from differ-
ent fragments and the ones locally inserted. Col-Graph’s strategy in this case
is that each participant is responsible for checking the semantic correctness of
its dataset, as criteria often varies and what is semantically wrong for one par-
ticipant, could be right for another. Participants can delete/insert triples to fix
what they consider wrong. Participants that receive these updates can edit in
turn if they do not agree with them.

In the event of two triples being semantically incompatible, the main criteria
to choose which one of them delete is the provenance of the triples. With this

IRI Pip,
Annotated Graph G4,
Ordered Set APrp

Annotated Graph G*,
Ordered Set APip

void insert(t):
pre: t¢ {t'|t =z e G4}
G* =G Ut—1
Append(APrp,t < 1)

void insert(t):
pre: t¢ {t'|t =z G}
GA = GAUt‘—) Prp
Append(APID,t — P[D)

void delete(t):
pre: te {t'|t' =z e G}
G =G "Wt — —z
Append(APrp,t — —z)

void delete(t):
pre: tc {t'|t — € G}
G =Grwt— —m
Append(APrp,t < —m)

void sync(F[P,], AP;):
for t—ze€ AP,
if t—2¢ APip:
G =G Ytz
Append(APrp,t < z)

void sync(F[P.], AP,):
for t—>me AP,
if t‘—>m¢AP1D:
GY =G Wt —m
Append(APrp,t < m)

Specification 1.1: Class Participant
when triples are annotated with ele-
ments of Z.

Specification 1.2: Class Participant
when triples are annotated with ele-
ments of the monoid M.

information, the decision can be made based on the trust on its provenance.
As in [II], we propose to substitute the integer annotations of the triple by
an element of a commutative monoid that embeds (Z,+,0). We recall that a
commutative monoid is an algebraic structure comprised by a set K, a binary,
associative, commutative operation @ and an identity element O € K such
that (Vk € K|k ® 0x = k; a monoid M = (K,®,0k) embeds another monoid
M’ = (K',©,0k) iff there is a map f : K — K’ such that f(0x) = f(0x/) and
(Va,be K : fa®b) = f(a) @ f(b)). If we annotate with a monoid that embeds
(Z,+,0), only a minor change is needed in our synchronization algorithm to
achieve consistency. This monoid is used to encode extra provenance information.

Definition 5. Assume each participant in the collaboration network has a unique
ID, and let X be the set of all of them. Let M = (Z[X],®,0) be a monoid with:

1. The identity 0.
2. The set Z[X] of polynomials with coefficients in Z and indeterminates in X .
3. The polynomial sum @, for each monomial with the same indeterminate:
aX ®bX =(a+b)X
n
4. M embeds (Z,+,0) through the function f(a1 X1 ® -+ @ apXy) =Y. a;
1
Each time a participant inserts a triple, she annotates it with its ID with
coefficient 1. The only change in definition [4]is the use of @ instead of +. Speci-

P1:
(s,;p,0) = 1

P4: P3:
(s;p,r) = 1 (s,p,0) =2

Which (s,p,x)? : P5:
(s,p,0) or (s.:p,0) =3
A A P

(s,p.v) (s,p,v) — 2

(a) Without provenance, P5 only informa-
tion is the number of derivations. She does
not know the author of the facts.

Pl:
(s,p,0) — P1

P3:
4} {(s,p,o) r—>P1+P3}

P2:
(s,p,0) — P1
(s,p,v) — P2

P4:
(s,p,r) = P

P5:
(s,p,0) — 2P1 + P3
(s,p,r) — P4
(s,p,v) — P54+ P2

Which (s,p,x)?:
from P1 and P2 or
from P4 or
Mine and from P2
(b) With provenance, P5 also knows who inserted
what and if it was concurrent, enabling trust based

decisions to solve conflicts.

Fig. 4: Difference between annotating with Z versus annotating with M
(4b). All fragments are full.

fication describes the algorithm to insert/delete triples and synchronize frag-
ments with triples annotated with elements of M.

When annotating with Z, the only information encoded in triples is their
number of derivations. M adds (i) Which participant is the author of the triple.
A triple stored by a participant P with an annotation comprised by the sum of n
monomials indicates that the triple was inserted concurrently by n participants
from which there is a path in CN to P. (ii) The number of paths in the Collabo-
ration Network in which all edges concern the triple, starting from the author(s)
of the triple to this participant, indicated by the coefficient of the author’s ID.

Figure {4 compares annotations with Z versus annotations with M. In the
depicted collaboration network, the fact (s,p,0) is inserted concurrently by P1
and P3, (s,p,v) is inserted concurrently by P2 and P5 and (s,p,r) inserted only
by P4. When the synchronization is finished, P5 notices that it has three triples
with s and p as subject and predicate but different object values. If P5 wants to
keep only one of such triples based on trust, the Z annotations do not give
her enough information, while the M annotations give more information for
P5 to take the right decision. She can know that the triple (s, p, 0) was inserted
by two participants P1 and P3, while (s, p,) was only inserted by P4 and that
(s,p,v) was inserted by P2 and herself.

4 Complexity Analysis

In this section, we analyze the complexity in time, space and traffic of RDF-
Graphs annotated with M and their synchronization, to answer the question:
how much does it cost to guarantee the correctness of a collaboration network?.

Concerning time complexity, from specifications [I.I] and [I.2] we can see that
for the insert and delete methods is constant. For the synchronization of a frag-
ment F[P,]QP,, the complexity is n(z1 +x2) where n is the number of incoming
updates, 1 the complexity of checking if an update is in AP, (which can be

considered linear) and x5 the complexity of the W function. For Z annotations,
W is constant, for M is linear on the size of the largest polynomial.

Concerning space complexity, the overhead is the size of the annotations. For
an annotated triple ¢ at a participant P, the relevant factors are: (i) the set of
participants that concurrently inserted ¢ from which there is a path to P such
that all edges concern t, that we will denote §; (ii) the number of paths to P
in the collaboration network from the participants P; ... P, that concurrently
inserted t such that all edges concern ¢. For a participant P;, we denote this
number as pip,. Let sizeOf be a function that returns the space needed to
store an object. Assume that the cost of storing ids is a constant w. Then, for
t < z,z € Z[z] we have sizeOf(z) = |Bilw + >, sizeOf(pr—p,). Therefore,

P;epe
for each triple we need to keep a hash map from ids to integers of size |S;|. The
worst case for |8 is a strongly connected Collaboration Network CN where all
participants insert ¢ concurrently, yielding an array of size |[CN| . The worst
case for pi.p, is a complete network, as the number of different simple paths is
maximal and in the order of |CN|!

The size of the log at a participant P depends on two factors (i) the dynamics
of P, i.e., the number of local updates it does. (ii) the dynamics of the fragments
materialized by P, i.e., the amount of updates at the sources that concern them.

In terms of the number of messages exchanged our solution is optimal, only
one contact with the update log of each source is needed. In terms of message
size, the overhead is in principle the same as the space complexity. However,
many compression techniques could be applied.

The solution described so far uses an update log that is never purged. Having
the full update history of a participant has benefits like enabling historical queries
and version control. However, when space is limited and /or updates occur often,
keeping such a log could not be possible. To adapt our solution to data feeds we
need to solve two issues: (i) How participants materialize fragments for the first
time? (ii) How to check if an incoming update has been already received?

To solve the first issue, an SPARQL extension that allows to query the an-
notated RDF-Graph and return the triples and their annotations is needed, for
example the one implemented in [24]. To solve the second issue, we propose to
add a second annotation to updates, containing a set of participant identifiers ¢,
representing the participants that have already received and applied the update.
When an update u is created, ¢, is set to the singleton containing the ID of the
author, when u is pushed downstream, the receiving participant checks if his ID
is in ¢, if yes, u has already been received and is ignored, else, it is integrated,
and before pushing it downstream it adds its ID to ¢,. Of course, there is a price
to pay in traffic, as the use of ¢ increases the size of the update. The length of
¢, is bounded by the length of the longest simple path in the Collaboration-
Network, which in turn is bounded by the number of participants.

To summarize, the performance of our solution is mainly affected by the
following properties of the CN: (i) The probability of concurrent insertion of
the same data by many participants. The higher this probability, the number
of terms of the polynomials is potentially higher. (ii) Its connectivity. The more

connected, the more paths between the participants and the potential values of p
are higher. If the network is poorly connected, few updates will be consumed and
the effects of concurrent insertion are minimized. (iii) The overlapping between
the fragments. If all fragments are full, all incoming updates will be integrated
by every participant, maximizing the effects of connectivity and concurrent in-
sertion. If all fragments are disjoint, then all updates will be integrated only once
and the effects of connectivity and concurrent insertion will be neutralized.

5 Experimentations

We implemented specification on top of the SPARQL engine CoreseE| v3.1.1.
The update log was implemented as a list of updates stored in the file sys-
tem. We also implemented the ¢ annotation described in section [to check for
double reception. We constructed a test dataset of 49999 triples by querying
the DBpedia 3.9 public endpoint for all triples having as object the resource
http://dbpedia.org/resource/France. Implementation, test dataset, and in-
structions to repeat the experiments are freely availableﬂ

Our first experiment studies the execution time of our synchronization algo-
rithm. The goal is to confirm the linear complexity derived in section [4] and to
check its cost w.r.t fragment re-evaluation. We defined a basic fragment with the
triple pattern ?z :ontology/birthPlace ?z (7972 triples 15% of the test dataset’s
size). We loaded the test dataset in a source, materialized the fragment in a
target and measured the execution time when inserting and when deleting 1, 5,
10, 20, 30, 40 and 50% of triples concerning the fragment. As baseline, we set up
the same datasets on two RDF-Graphs and measured the time of clearing the
target and re-evaluating the fragment. Both source and target were hosted on
the same machine to abstract from latency.

We used the Java MicroBenchmark Harnesq'| v. 0.5.5 to measure the average
time of 50 executions across 10 JVM forks with 50 warm-up rounds, for a total
of 500 samples. Experiments were run on a server with 20 hyperthreaded cores
with 128Gb of ram an Linux Debian Wheezy. Figure [§] shows a linear behaviour,
consistent with the analysis in section [4} Synchronization is less expensive than
re-evaluation up to approx. 30% of updates. We believe that a better implemen-
tation that takes full advantage of streaming, as Corese does by processing data
in RDF /XML, could improve performance. Basic fragments are also very fast to
evaluate, we expect than in future work, when we can support a broader class
of fragments, update integration will be faster in most cases.

Our second experiment compares the impact on annotation’s size produced
by two of the factors analyzed in section [d} concurrent insertions and collabora-
tion network connectivity, in order to determine which is more significant. We
loaded the test dataset in: (i) An RDF-Graph. (ii) An annotated RDF-Graph,
simulating n concurrent insertions of all triples, at n annotated RDF-Graphs

® http://wimmics.inria.fr/corese
S https://code.google.com/p/live-1linked-data/wiki/ColGraphExperiments
"http://openjdk.java.net/projects/code-tools/jmh/

http://dbpedia.org/resource/France
http://wimmics.inria.fr/corese
https://code.google.com/p/live-linked-data/wiki/ColGraphExperiments
http://openjdk.java.net/projects/code-tools/jmh/

——>—— Reevaluation ——>—— Reevaluation

———— Synchronization ——K—— Synchronization
o o
g 140 r——+—T g 250 r—r——— ’
120 R L 7
.ﬂé 100 ¥ ’ é 200
= 80 7 & 150 E
E Fgow *
E 20 | {1 = 50 r T
8 0 1 1 1 1 § O 1 1 1 1
%
< 1510 20 30 40 50 H 1510 20 30 40 50
% of the fragment deleted % of the fragment inserted
(a) Deletion Times (b) Insertion Times

Fig. 5: Comparison of execution time (ms) between synchronization and fragment
reevaluation. Error bars show the error at 95%.

with id http://participant.topdomain.org/i, with ¢ € [0,n] (iii) An an-
notated RDF-Graph, simulating the insertion of all triples in other graph with id
“http://www.example.org/participant”, arriving to this one through m different
simple paths, and measured their size in memory on a Macbook Pro running
MacOS Lion with java 1.7.0 10-ea-b13 and Java HotSpot(TM) 64-Bit Server
VM (build 23.6-b04, mixed mode).

Figure [6] shows the results. Both cases represent nearly the same overhead,
between 5 and 6 percent. Concurrency makes annotation’s size grow sub-linearly.
With respect to path number, annotation’s size grows even slower , however, after
10x10'7 paths, the long type used in our implementation overflows, meaning that
in scenarios with this level of connectivity, the implementation must use BigInt
arithmetics. In conclusion, after paying the initial cost of putting annotations in
place, Col-Graph can tolerate a high number of concurrent inserts and a high
network connectivity.

The goal of our final experiment is to study the effect of network’s topology on
Col-Graph’s annotation’s size. We argue that the act of materializing fragments
and sharing updates is socially-driven, therefore, we are interested in analyzing
the behaviour of Col-Graph on social networks. We generated two sets of 40
networks with 50 participants each, all edges defining full fragments, one follow-
ing the random Erdos-Renyi model [5] and other following the social-network
oriented Forest Fire model [12]. Each networkset is composed of 4 subsets of
10 networks with densities {0.025,0.05,0.075,0.1}. Table [1| shows the average of
the average node connectivity of each network set. Social networks in are less
connected than random ones, thus, we expect to have better performance.

We loaded the networks on the Grid5000 platform (https://www.grid5000.
fr/)) and made each participant insert the same triple to introduce full concur-
rency, thus, fixing the overlapping and concurrency parameter in their worst
case. Then, we let them synchronize repeatedly until quiescence with a 1 hour
timeout. To detect termination, we implemented the most naive algorithm: a

http://participant.topdomain.org/i
https://www.grid5000.fr/
https://www.grid5000.fr/

13'5 T T T T T T T T T 13'6 T T T T T T T T T T T
134 L] BT -3 S ——
© | | < 134 |} i
=} 13.3 =) a3 L 1
- 132 1 - 1B
3 il] 8 132t 1
@ b @ 131 b .
& 1213] R 1
£ 12 1 £ 129 | i
© 128 L g O 12.8 L i
12.7 1 1 1 1 1 1 1 1 1 12.7 1 1 1 1 1 1 1 1 1 1 1
PG1 2 3 456 7 8 910 PG1 2345678 910
Number of paths (10 x 10%) Concurrent insertions (z x 100)
(a) Simulation of one insertion arriving (b) Simulation of concurrent insertions arriv-
through multiple paths. ing through one path.

Fig. 6: Space Overhead of the Annotated Graph w.r.t a plain graph (PG). Both
Concurrency and Connectivity represent approx. 6% of overhead each.

central overlord controls the execution of the whole network . We measured the
maximum and average coefficient values and the maximum and average number
of terms of annotations.

Figure [7]shows the results for Forest Fire networks. The gap between the av-
erage and maximum values indicates that topology has an important effect: only
few triples hit high values. From the Erdos-Renyi dataset, only networks with
density 0.025 and finished before timeout without having a significant difference
with their ForestFire counterparts. These results suggest that high connectivity
affects the time the network takes to converge, and, as the number of rounds
to converge is much higher, the coefficient values should also be much higher.
We leave the study of convergence time and the implementation of a better
termination detection strategy for future work.

0.025| 0.05 | 0.075| 0.1

Forest Fire |0.0863]0.2147|0.3887|0.5543
Erdos-Renyi| 0.293 [1.3808|2.5723(3.7378
Table 1: Average node connectivities of the experimental network sets

6 Related Work

Linked Data Fragments (LDF) [2I] proposes data fragmentation and replication
as an alternative to SPARQL endpoints to improve availability. Instead of an-
swering a complex query, the server publishes a set of fragments that corresponds
to specific triple patterns in the query, offloading to the clients the responsibil-
ity of constructing the result from them. Col-Graph allows clients to define the

—+—— Average —+—— Average

g -——>X---- Maximum -—-->¢-—- Maximum

(]

= w

@ =

2 100000 : — 240 . p—

= 10000 F e S BRI > i

E 1000 - x7] g %8 - :

= 100 b~ + RN]
E = 10 ’/‘/,/»/’,*

wf g 10f ,

k3] 1 L L g 0 I I

E:Eg 0.025 0.05 0.075 0.1 Z5 0.025 0.05 0.075 0.1

© Network Density Network Density

(a) Average and maximum coefficient value (b) Average and maximum number of terms

Fig. 7: Performance of the synchronization algorithm when applied on networks
generated with the Forest Fire model

fragments based on their needs, offloading also the fragmentation. Our proposal
also solves the problem of writability, that is not considered by LDF.

[418] adapt the Distributed Version Control Systems Darcs and Git princi-
ples and functionality to RDF data. Their main goal is to provide versioning to
Linked Data, they do not consider any correctness criterion when networks of
collaborators copy fragments from each other, and they do not allow fragmen-
tation, i.e., the full repository needs to be copied each time.

[10/25] use eventual consistency as correctness criterion. However, this re-
quires that all updates to be eventually delivered to all participants, which is
not compatible with fragmentation nor with socially-generated collaboration net-
work. [19] proposes a partial replication of RDF graph for mobile devices using
the same principles of SVN with a limited lifetime of local replica checkout-
commit cycle. Therefore, it is not possible to ensure synchronization of partial
copies with the source since a data consumer has to checkout a new partial graph
after committing changing to the data provider.

[9] formalizes an OWL-based syndication framework that uses description
logic reasoning to match published information with subscription requests. Sim-
ilar to us, they execute queries incrementally in response to changes in the
published data. However, in their model consumers do not update data, and
connection between consumers and publishers depends on syndication brokers.

Provenance models for Linked Data using annotations have been studied
in [26l6] and efficiently implemented in [24], showing several advantages with
respect to named graphs or reification. The model in [6] is based on provenance
polynomials and is more general than the one we used, however, as basic frag-
ments are a restricted class of queries, the M monoid suffices.

Collaborative Data Sharing Systems (CDSS) like Orchestra [11] use Z-Relations
and provenance to solve the data exchange problem in relational databases.
CDSS have two requirements that we do not consider: support for full relational
algebra in the fragment definition and strong consistency. However, the price to

pay is limited scalability and the need of a global ordering on the synchronization
operation, that becomes blocking [20]. Both drawbacks are not compatible with
Linked Data requirements of scalability and participant’s autonomy. Col-Graph
uses the same tools to solve the different fragment synchronization problem, with
an opposite trade-off: scalability and autonomy of participants in exchange of
weaker consistency and limited expressiveness of fragment definitions.

7 Conclusions and Future Work

In this paper, we proposed to extend Linked Data federation to data consumers
in order to improve its availability, scalability and data quality. Data consumers
materialize fragments of data from data providers and put them at disposal of
other consumers and clients. Adequate federated query engines can use these
fragments to balance the query load among federation members. Fragments can
be updated to fix errors, and these updates can be consumed by other members
(including the original sources) to collaboratively improve data quality.

We defined a consistency criterion for networks of collaborators that copy
fragments from each other and designed an algorithm based on annotated RDF-
triples to synchronize them consistently. We analyzed the complexity of our
algorithm in time, space and traffic, and determined that the main factors that
affect performance are the probability of concurrent insertion, the connectivity
of the collaboration network and the fragment overlapping.

We evaluated experimentally the incurred overhead using a 50k real dataset
on our open source implementation, finding that in space, concurrency and con-
nectivity represent approximately 6% of overhead each, and that it grows sub-
linearly; in time, our algorithm is faster than the reevaluation up to 30% of
updated triples without taking in account latency. We also found that our algo-
rithm performs better in socially generated networks than in random ones.

Future works include a large scale evaluation of Col-Graph focused on the
effect of fragment overlapping, and using real dataset dynamics. We also plan
to benchmark replication-aware federated query engines [I3I17] on collaboration
networks using Col-Graph to quantify the availability boost of our solution, and
extend our model to handle dynamics on the fragment definitions themselves.

Acknowledgements: Some of the experiments presented in this paper were
carried out using the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several Universities as well
as other organizations. This work is supported by the French National Research
agency (ANR) through the KolFlow project (code: ANR-10-CONTINT-025).

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowd-
sourcing linked data quality assessment. In: ISWC (2013)

2. Berners-Lee, T., O’Hara, K.: The read-write linked data web. Philosophical Trans-
actions of the Royal Society (2013)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: Sparql web-
querying infrastructure: Ready for action? In: ISWC (2013)

Cassidy, S., Ballantine, J.: Version control for rdf triple stores. In: ICSOFT (2007)
Erdos, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat.
Kutaté Int. Kozl 5 (1960)

Geerts, F., Karvounarakis, G., Christophides, V., Fundulaki, I.: Algebraic struc-
tures for capturing the provenance of sparql queries. In: ICDT (2013)

Green, T.J., Ives, Z.G., Tannen, V.: Reconcilable differences. Theory of Computer
Systems 49(2) (2011)

Gupta, A., Jagadish, H., Mumick, I.S.: Data integration using self-maintainable
views. In: EDBT (1996)

. Halaschek-Wiener, C., Kolovski, V.: Syndication on the web using a description

logic approach. J. Web Sem. 6(3) (2008)

Ibanez, L.D., Skaf-Molli, H., Molli, P., Corby, O.: Live linked data: Synchronizing
semantic stores with commutative replicated data types. International Journal of
Metadata, Semantics and Ontologies 8(2) (2013)

Karvounarakis, G., Green, T.J., Ives, Z.G., Tannen, V.: Collaborative data sharing
via update exchange and provenance. ACM TODS (August 2013)

Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM TKDD 1(1) (march 2007)

Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Fedra: Query Processing for
SPARQL Federations with Divergence. Tech. rep., Université de Nantes (May 2014)
Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: Dbpedia and the
live extraction of structured data from wikipedia. Program: electronic library and
information systems 46(2), 157-181 (2012)

Ognyanov, D., Kiryakov, A.: Tracking changes in rdf(s) repositories. In: EKAW
(2002)

Passant, A., Mendes, P.N.: sparqlpush: Proactive notification of data updates in
rdf stores using pubsubhubbub. In: Sixth Workshop on Scripting and Development
for the Semantic Web (SFSW) (2010)

Saleem, M., Ngomo, A.C.N., Parreira, J.X., Deus, H.F., Hauswirth, M.: Daw:
Duplicate-aware federated query processing over the web of data. In: ISWC (2013)
Sande, M.V.; Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., de Walle, R.V..:
R&wbase:git for triples. In: LDOW (2013)

Schandl, B.: Replication and versioning of partial rdf graphs. In: ESWC (2010)
Taylor, N.E., Ives, Z.G.: Reliable storage and querying for collaborative data shar-
ing systems. In: ICDE (2010)

Verborgh, R., Sande, M. V., Colpaert, P., Coppens, S., Mannens, E., de Walle, R.V.:
Web-scale querying through linked data fragments. In: LDOW (2014)

W3C: SPARQL 1.1 Federated Query (march 2013), http://www.w3.org/TR/
sparqlll-federated-query/

W3C: SPARQL 1.1 Update (Mar 2013), |http://www.w3.org/TR/
sparqlll-update/

Wylot, M., Cudre-Mauroux, P., Groth, P.: Tripleprov: Efficient processing of lin-
eage queries in a native rdf store. In: WWW (2014)

Zarzour, H., Sellami, M.: srce: a collaborative editing of scalable semantic stores
on p2p networks. Int. J. of Computer Applications in Technology 48(1) (2013)
Zimmermann, A., Lopes, N.; Polleres, A., Straccia, U.: A general framework for
representing, reasoning and querying with annotated semantic web data. Web Se-
mant. 11 (Mar 2012)

http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/

	Col-Graph: Towards Writable and Scalable Linked Open Data

