Analyzing Schema.org

Peter F. Patel-Schneider

Nuance Communications
pfpschneider@gmail.com

Abstract. Schema.org is a way to add machine-understandable information to
web pages that is processed by the major search engines to improve search per-
formance. The definition of schema.org is provided as a set of web pages plus a
partial mapping into RDF triples with unusual properties, and is incomplete in a
number of places. This analysis of and formal semantics for schema.org provides
a complete basis for a plausible version of what schema.org should be.

Schema.org1 “provides a collection of schemas, i.e., html tags, that webmasters can use
to [mark up] their pages in ways recognized by major search providers.”> The major
search engine providers, including Bing, Google, Yahoo!, and Yandex use schema.org
markup to improve the display of search results and schema.org has been designed by
and is controlled by these organizations. This makes schema.org markup an important
kind of machine-understandable data in the web. Not only are there many web pages
with schema.org information, but this information is used in important ways.

Aside from being a collection of schemas, schema.org is a language for represent-
ing information on the Web, different from other languages used for this purpose, such
as RDF [1,2], OWL [3,4], and the language underlying Freebase [5]. Using this lan-
guage, the schema.org schemas are organized into a simple taxonomy by generalization
relationships and other ontolological aspects of schema.org information are specified.

The publicly available definition of schema.org is, however, incomplete and contra-
dictory. It is only provided as English text on various web pages in schema.org, plus
mappings of the collection of schemas? into RDF (http./schema.org/docs/full_md.htmi)
and OWL (http://schema.org/docs/schemaorg.owl). The RDF mapping centrally uses
non-RDFS properties, such as http://schema.org/domainincludes, so it is not possible
to determine the meaning of schema.org constructs from the RDF mapping. The OWL
mapping is somewhat better, as domains and ranges employ OWL unions, but the map-
ping is only a translation of part of what defines schema.org. The lack of a complete
definition of schema.org limits the possibility of extracting the correct information from
web pages that have schema.org markup.

This paper provides a full basis for schema.org as it should be, filling in the holes
in the available descriptions of schema.org and fixing up discrepancies. The paper
provides both a pre-theoretic analysis of schema.org and an abstract syntax and for-
mal model-theoretic semantics for schema.org. This paper does not, however, draw on

! Throughout this paper schema.org refers to the general idea and schema.org refers to the
collection of documents available at the https://schema.org web site.

% From https://schema.org, as of 1 April 2014.

3 See http://schema.org/docs/datamodel.html.

the use of schema.org on web pages. Researchers can use the basis provided here to
further investigate the properties of schema.org and schema.org markup. Providers of
schema.org data can use this basis to reliably determine the meaning of the schema.org
data they create. Developers can use this basis to build software that uses schema.org
markup as information in a way that is compatible with the description of schema.org.

Description of Schema.org at schema.org

The description of schema.org in this section of the paper is taken from information on
the web pages in schema.org, as of 1 April 2014. It ignores most of the surface syntax
aspects of schema.org, concentrating on the underlying concepts and their intent.

Schema.org information is about items, e.g., the movie Avatar. [tems can have types,
e.g., the type identified by the URL http.//schema.org/Movie. Items can have asso-
ciated property-value pairs, e.g., the property identified by http.//schema.org/director
with value "James Cameron". The value in a property value pair can be text, i.e., a
Unicode string; a literal, e.g., a number or date; a URL, which identifies an item; or
another item. There is no requirement that properties have only a single value for an
item. Items can have associated URLs, e.g., http://www.avatarmovie.com/index.htm/ and
http://en.wikipedia.org/wiki/Avatar_(2009_film), each of which identifies the item.

Schema.org provides a collection of types, via pages in schema.org, organized in a
multi-parent generalization hierarchy. Each type is identified by the URL of the page
that provides its definition. Each type has a set of parents, i.e., more-general types. Each
type, except for datatypes, has a set of allowable properties for the type.

The types that are more specific than http.//schema.org/Enumeration are enumera-
tion types that also specify a set of URLs identifying all the items that are instances
of the type. Datatypes are the types more specific than http:/schema.org/Datatype and
implicitly provide a set of non-item data values for them and a mapping from text to
these values.

Schema.org also provides a collection of properties, again from schema.org, which
may be also organized in a multi-parent generalization hierarchy.* Each property is
identified by the URL of the page that provides its definition. Each property may have
one or more types as domains, and can be used on items belonging to any of these types.
Each property has one or more types as ranges, and values for the property belong to
one or more of these types. However, property values can always be provided as just
text.

There is a description of an extension mechanisms for schema.org, which only per-
mits very simple extensions. It appears that the extension mechanism exists only to
further subdivide existing schema.org properties, classes, and enumeration items and
that these extensions are ignored within schema.org.

The translations of the type and property definitions of schema.org into RDF and
OWL abide by the above description, except that there is no translation for the property
hierarchy. These translations provide no extra information beyond what is given here.

4 At the time of writing of this paper there was no general notation of the property hi-
erarchy. While this paper was in review, the property hierarchy was officially announced
(http://lists.w3.org/Archives/Public/public-vocabs/2014Jun/0095. html).

Analysis of schema.org as a Description of Schema.org

There are quite a number of aspects of schema.org and schema.org markup that are left
unspecified in schema.org, are unclear, or raise issues. This section describes these as-
pects and provides extra assumptions that will be used in the account for schema.org
presented here. The extra assumptions have been made in a way that is congruent with
the information on schema.org, that make sense in an environment where there are large
central consumers of large amounts of data, and that generate a reasonable representa-
tion formalism. (In several places, the comments in schema.org do not match the actual
class or property, for example, instances of http.//schema.org/StructuredValue are not
strings, but this sort of mismatch is not the subject of this paper.)

It is unclear whether types and properties can also be items. However, items work
quite differently from types and properties, and having arbitrary web pages being able
to modify the types and properties of schema.org leads to difficulties, such as not being
able to determine when a property is valid for an item until after all item information
has been processed, so this account treats types and properties as being different from
items. In particular, in this account different URLs that identify the same item do not
identify the same type or the same property. Data values also act differently from items,
so this account treats them as being disjoint from types, properties, and items. The
identifiers of types and properties are different in schema.org, as URLs for types have
initial capitals and URLs for properties do not, so it is fairly obvious that types are
disjoint from properties.

Schema.org uses URLSs as identifiers. URLs can be used to retrieve web pages, and
this aspect of URLSs is a main basis of schema.org. URLSs officially can include fragment
ids, and such URLs then identify parts of web pages. Although fragment identifiers
are not currently used for any types and properties in schema.org, there is nothing
technical preventing their use, and so they will be allowed in the account herein for
types, properties, and items.

It is unclear whether schema.org types and properties must be identified by URLs
in schema.org, but all current schema.org types and properties are so identified. This
account does not formally make the assumption that types and properties must be iden-
tified by URLs in schema.org, but some of the pragmatic analysis does make the as-
sumption that type and property definitions change infrequently, as is the case for types
and properties identified by URLSs in schema.org.

The mechanisms for working with datatypes are underspecified in schema.org. This
account adds in a formal mechanism for determining the set of values for a datatype and
a formal method for determining the data value corresponding to a text string for the
datatype.

The name of the most general datatype in schema.org is http.//schema.org/Datatype.
This is an unfortunate name—http.//schema.org/Literal would be much better—but the
schema.org name will be used in this account. The name of the datatype for float-
ing point numbers in schema.org is http://schema.org/Float. http://schema.org/Float and
http://schema.org/Integer both have generalization http.//schema.org/Number. This can
lead to problems because floating point numbers are imprecise whereas integers are
precise. This account, however, does not address the issue.

It is unclear whether the instances of an enumeration have to be items, or can also
be data values. This account assumes that the instances of an enumeration are given as
URLSs, as is the case for all examples currently in schema.org, and thus that instances
of an enumeration are items, not data values.

Some examples in schema.org only make sense if different but similar URLs iden-
tify different items. This is particularly the case for URLs that make up enumerations.
This account assumes that different URLs in an enumeration identify different items,
but does not otherwise assume that different URLs in the same namespace, e.g., dif-
ferent Wikipedia URLs, or in the same document identify different items. This extra
assumption would be easy to add.

The domains of a property are specified both as part of types and as part of prop-
erties in schema.org. In all the examples there is no divergence between the two spec-
ifications, but the possibility of divergence is not ruled out. This account treats the
specification in the type as the actual specification, as that seems to make more sense
for disjunctive domains.

Because several properties indicate that they are subproperties of other properties,
this account incorporates a multi-parent property hierarchy. There are some additions
to the account herein that have to be made to support the property hierarchy.

Both domains and ranges of properties are disjunctive. This is different from most
other representation formalisms, such as description logics [6] and RDF [2]. The stated
rationale for this decision is that it reduces the need for general types that exist only to
be domains or ranges. However, disjunctive domains and ranges mean that additions to
a collection of schema.org information can be non-monotonic. The disjunctive nature
of domains and ranges is fully explored in this account, including how it interacts with
the property hierarchy.

Several aspects of the predominant syntaxes for schema.org markup obscure the
workings of schema.org. This account transforms these aspects of surface syntax into a
different abstract syntax.

Several types and properties are used as part of the foundations of schema.org in
schema.org. Nearly all uses of these types and properties as general types or properties
undermines the foundations of schema.org, so their use is disallowed in this account.
The extension mechanism for schema.org is of very limited utility and appears to not
have any effect on the processing of schema.org markup, so it is ignored in this account.

Description of Schema.org as It Should Be

This section contains a pre-theoretic description of schema.org and schema.org content
as it should be, consonant with the discussion in the previous section. This description
is designed to say how schema.org could work in a way that can be easily turned into a
formal definition of schema.org, as is done in the following section of this paper.
Throughout this account, a URL is a uniform resource locator, optionally including
a fragment part. The document (fragment) at that URL is (the appropriate fragment of)
the document obtained by the usual web mechanisms for retrieving a document given
a URL. URLs will be generally written as CURIES [7], with the prefixes s expanding

to http://schema.org/ and w expanding to http://en.wikipedia.org/wiki/, and the prefixes
rdf, rdfs, and ow! expanding to their usual expansions. The constituents of schema.org
information are types, properties, data values, and items.

There is a collection of types, in a multi-parent generalization taxonomy, with two
roots, s:Thing and s:Datatype. Each type is identified by a unique URL. The document
(fragment) at that URL defines the type, listing:

1. some types that are more general than it (its parents), and
2. for non-datatypes, its properties (see below).

Parents and properties, and information about instances where appropriate, are the only
information about a type obtainable from its defining document (fragment).

Each type has as a generalization (not necessarily directly specified in its defining
document) either s:Thing or s:Datatype, but not both.

The types with strict generalization s:Datatype are datatypes. All the data values be-
longing to the datatype are described in the datatype’s defining document (fragment), as
is a way of transforming text strings into these data values. The datatypes are s:Boolean,
s:Date, s:DateTime, s:Number, s:Float, s:Integer, s:Text (Unicode strings), s:URL, and
s:Time. The details of these datatypes do not matter for this account, except for s:Text,
and are not described here.

The type s:Enumeration has s:Thing as a parent.> Those types with strict generaliza-
tion s:Enumeration are enumeration types. All those items with the enumeration type
as a direct type are listed in the type’s defining document (fragment). Different URLSs
identify different items in an enumeration.

The type s:Thing has properties s:description and s:name.

There is a collection of properties, disjoint from types, in a multiple-parent gener-
alization taxonomy with multiple roots. Each property is identified by a unique URL.
The document (fragment) at that URL defines the property, providing:

1. types that its values belong to (its ranges), and
2. some properties that are more general than it (its parents).

Ranges and parents are the only information about a property obtainable from its defin-
ing document (fragment).

For each parent of the property for each range of the property the parent must have
a range that is the same as or a generalization of the range. This condition on property
ranges means that the validity of a property value can be checked by looking only at the
range types of the property itself.

The properties s:description and s:name both have range s:Text.

Data values belong to one or more datatypes, and are disjoint from types and prop-
erties. Data values are written as a combination of a URL identifying a datatype and a

> Enumeration actually has a different supertype on schema.org but this account removes the
unneeded supertype.

® There are several other properties for s:Thing on schema.org, but these do not play a role in
this account and are ignored here.

text string. The mapping in the datatype turns the text string into a value of the datatype.
Every data value belongs to s:Datatype. If a data value belongs to a datatype then it be-
longs to the parents of the datatype.

Items are things in the world, including information things, and are disjoint from
types, properties, and data values. Items belong to (one or more) non-datatype types.
Items have zero or more URLs identifying them. Items are associated with (other) items
and data values via properties. Every item belongs to s:Thing. If an item belongs to a
type then it belongs to the parents of the type.

If an item or data value is associated with an item via a property then the item or
data value is also associated with the item via each parent of the property. For each item
or data value associated with an item via a property,

1. one of the item’s types has the property as one of its properties, and
2. the item or data value belongs to one of the ranges of the property.

The documents (document fragments) at the URLs identifying an item provide in-
formation about the item, including types for the item as well as items and data values
associated with the item via properties.

Bare text can be used as if it was the value for any property. If the property does
not have s:Text or s:Datatype as one of its ranges, but does have one or more datatypes
as a range that have a data value that can be written as the bare text then the actual
value for the property is one of these data values. If the property does not have s:Text or
s:Datatype as one of its ranges, and does not have any suitable datatypes as a range, but
does have one or more non-datatypes as a range, then the actual value for the property is
some item that has a type that is one of these ranges and this item has the text as a value
of its s:description property. (The property s:description is used instead of s:name, as
the text might not truly be a name for the value.) Otherwise the actual value for the
property is the bare text itself.

Any surface syntax must provide ways to write all possible data values (as long as
they are not too big). Any surface syntax must have ways to provide items with any
number of types, including none, and values for any property of any of the provided
types or their generalizations or s:Thing, including allowing multiple values for a prop-
erty. Any surface syntax must provide ways for writing items with no identifying URLSs.
Any surface syntax must specially process syntax that would otherwise produce values
for s:additionalType, turning the values into types; and s:url and s:sameAs, turning the
values into identifying URLs.

The following URLS are not used to identify types or properties: s:Class, s:Property,
s:domainincludes, s:rangelncludes, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, rdfs:type, rdfs:Class, rdf:Property, and owl:Class. If they are used in a surface
syntax to provide information about an item they and their values must be ignored.
The following URLs are not used to identify properties: s:additionalType, s:url, and
s:sameAs.

Formal Definition for Schema.org

This definition for schema.org defines an abstract syntax for schema.org, abstracting
away from the details of the various surface syntaxes, and a model-theoretic seman-
tics, that provides a formal meaning for schema.org. It conforms to the pre-theoretic
description above.

Abstract Syntax

Surface syntaxes for schema.org are transformed into an abstract syntax, in a process not
fully described here. The abstract syntax plays a similar role as triples do for RDF [2],
but is more complicated, as it makes distinctions between definitions and information
about items. The abstract syntax removes artifacts of the surface syntaxes that make a
formal account difficult, but transforming schema.org surface syntaxes into this abstract
syntax is simple.

The gathering of information from Web documents is performed when building the
abstract syntax. Constructs in the abstract syntax that start with a URL (or set of URLs)
may be constructed from the document at the URL (or documents at one or more of the
URLs), although they need not be.

Definition 1. A URL in this document is a URL with optional fragment identifier, as
defined in the W3C Working Draft on URLs [8]. A text string is a sequence of Unicode
characters [9]. A literal is a pair consisting of a URL, the datatype identifier of the
literal, and a text string.

One part of schema.org information consists of definitions—of regular types, of
enumerated types, of datatypes, and of properties.

Definition 2. A (regular) type definition is a triple, (U, S, P), where U is a URL, the
identifier of the type; S is a set of URLSs, the supertypes of the type; and P is another
set of URLSs, the properties of the type.

For example, the type definition for movies could be’

(s:Movie, { s:CreativeWork},
{s:actor, sxdirector, s:producer, s:duration, s:musicBy,
s:productionCompany, s:trailers:author, s:copyrightYear})

indicating that movie is a subtype of creative work and has eight locally-specified prop-
erties.
The type of actions that update a collection would be

(s:UpdateAction, { s:Action}, { s:collection})
indicating that update actions are actions and have only one locally-specified property.

7 This definition of movies ignores the legacy properties for movies in schema.org, and adds in
some properties from s:CreativeWork for illustrative purposes.

Definition 3. An enumerated type definition is a quadruple, (U, S, P, E), where U, S,
and P are as in a regular type definition, and E is yet another set of URLs, the direct
instances of the enumerated type.

For example, the enumerated type definition for book formats would be

(s:BookFormatType, {s:Enumeration}, {},
{s:EBook, s:Hardcover, s:Paperback})

indicating that there are three different book formats.

Definition 4. A datatype definition is a quadruple, (U, S, W, I), where U and S are as
in a regular type definition, W is a set of values for the datatype, and I is a partial
mapping from text strings into W.

For example, the datatype for URLs would be
(s:URL, {s:Text}, U,id"")

where U is the set of Unicode strings that are valid URLSs and idV is the string identity
function restricted to valid URLSs, indicating that URL values are those text strings that
are valid URLs.

It is a bit unusual to include formal datatype definitions in an abstract syntax. It
would be more usual to pull these out into some sort of side definition. However, this
way of defining datatypes puts all aspects of the definition in one place, as is done for
other type and property definitions.

Definition 5. A property definition is a triple, (U, S, R), where U is a URL, the identi-
fier of the property; S is a set of URLSs, the superproperties of the property;, and R is a
non-empty set of URLs, the ranges of the property.

For example, the s:collection property (used in update actions), a subproperty of
the s:object property with range s:Thing, would be written as the first of the following
property definitions:

(s:collection, { s:object}, {s:Thing}),
(s:actor, {}, {s:Person}),

(s:director, {}, {s:Person}),
(s:copyrightYear, {}, {s:Number}),
(s:author, { }, { s:Organization, s:Person}).

Definition 6. A type definition is either a regular type definition, an enumerated type
definition, or a datatype definition. A definition is either a type definition or a property
definition A definition is said to be a definition for its identifier.

Type and property definitions define separate generalization partial orders on types
and properties, building up from the supertypes and superproperties of type definitions
and property definitions.

Definition 7. A type (property) definition, D, is a child of another, D', if D’ is one of
the supertypes (superproperties) of D. A type (property) definition, D, is a descendant
of another, D', in a set of definitions, if there is a chain of child relationships from D to
D', in the set of definitions.

Definition 8. A URL, U, is a type (property) descendant of another, U’, in a set of
definitions, written U < U’, if U is the identifier of a type (property) definition that is a
descendant of a type (property) definition that is identified by U’

The other part of schema.org information consists of information about items, pro-
viding types and property values for items. Note that this information is not called
definitions, as there is no requirement that different items in the abstract syntax provide
information about different resources.

Definition 9. A property value pair, (U, V'), consists of U, a URL identifying the prop-
erty, and V', a text string or a literal or a URL or an item, indicating the value.

Definition 10. An item is a triple, (N, T, PV'), where N is a (possibly empty) set of
URLs, identifiers of the item; T is a (possibly empty) set of URLSs, identifiers of types of
the item; and PV is a (possibly empty) set of property value pairs.

For example, an item for a particular movie could be

({ http//www.avatarmovie.com/index.html, w:Avatar_(2009_film)}
{s:Movie},
{(s:name, "Avatar") ,
(s«director, { {},{s:Person},{(s:name, "James Cameron")})),
s:actor, "Sam Worthington™) ,
s:actor, w:Sigourney_Weaver) }
s:year, "2009") ,
s:author, "James Cameron"))

o~ o~~~

This item has two identifiers and six property-value pairs, one providing a text value
for a name of the movie, one providing an in-line item for a director of the movie, one
providing a text value for an actor in the movie, one providing a URL identifying an
actor in the movie, one providing a text value for a copyright year of the movie, and
another providing a text value for an author of the movie.

A collection of definitions and items is a knowledge base, the overall way of col-
lecting schema.org information together. There are many side conditions on schema.org
knowledge bases to provide an overall structure of the generalization hierarchies for
types and properties, to account for the built-in types and properties, and to ensure that
literals are well behaved.

Definition 11. A schema.org knowledge base is a triple, (T, P, I), where D is a set of
type definitions, P is a set of property definitions, and I is a set of items that satisfies
the following conditions:

1. Each URL is the identifier of at most one definition in T, and similarly for P. There
is at most one definition for any URL in T and P.
. The descendant relationship for types (properties) in T' (P) is a strict partial order:
3. T contains the following regular type definitions:
(s:Thing, {}, { s:description, s:name}),
(s:Datatype, {},{}), and
(s:Enumeration, {s:Thing}, {}).
4. T contains the following datatype definition, where S is the set of text strings and
id is the identity mapping on text strings:
(s:Text, { s:Datatype}, S, id)
5. P contains the following property definitions:
(s:description, {}, {s:Text}) and (s:name, {}, {s:Text}).
6. For each literal (U, V') in the knowledge base there is a datatype definition
(U,S,W,I) in T such that I is defined on V.
7. T has a datatype definition for U iff U < s:Datatype in T
8. T has an enumerated type definition for U iff U < s:Enumeration in T
9. T has a regular type definition for U iff U is s:Datatype or s:Thing or U < s:Thing
but not U < s:Enumeration in T

A

There is nothing about web document retrieval in the abstract syntax (nor in the for-
mal semantics immediately following). The intent should be clear, however—that type
and property definitions come from the document (fragment) obtained by dereferencing
the URL identifying the type or property and that item information often comes from
the document (fragment) obtained by dereferencing a URL identifying the item.?

Building a schema.org knowledge base then generally starts with a collection of
web documents that have schema.org markup about items. However, first the pages in
schema.org that define types and properties are parsed to produce type and property
definitions for the knowledge base. The document (fragments) accessible from URLSs
identifying items encountered during this parsing are added to the initial collection of
web documents. Then this collection of documents is parsed to produce items for the
knowledge base.

URLSs for items that are encountered during the parsing may be used to direct that
the web document (fragment) at that URL also be parsed to produce items for the knowl-
edge base. Whether this “follow your nose” behavior is actually performed during the
construction of a particular knowledge base depends on many factors that are outside
the purview of this account.

Model-theoretic Semantics

The semantics for schema.org here is built up in the standard way from interpretations,
which provide formal meanings for all URLs as identifying types or properties, and
items and URLSs as identifying resources. Items are mapped into sets of resources, not
resources, as the resource corresponding to an item is indeterminate unless there is a
URL that identifies the item. A single URL can independently identify a type, a prop-
erty, and a resource, but these do not have any formal connection between them.

8 Note that types and properties have a unique identifier whereas items may have multiple iden-
tifiers, or none.

Definition 12. An interpretation is a sextuple, (Ig, I, I7,Ip, Iy, I1), where IR is a
set of resources; Iy is a set of data values, disjoint from Ir; and

Ir: U — 2lry2lv
Ip:U — QIRX(IRUIV)
Iy : U — IR

Ir: 1 — 21r
Ir(s:Thing) = Iy

I (s:Datatype) = Iy

where U is the set of URLs with optional fragments and I is the set of items.

I maps types into their extensions, a set of resources or a set of data values. Ip maps
properties into their extensions, sets of pairs whose first element is a resource and whose
second element is a resource or a data value. I; maps items into their extensions, a set
of resources. Iy maps URLs into their extensions as item identifiers, a resource;

Although the mappings above are infinite, in any knowledge base the only part of
the mappings that are relevant are for the URLs and items that occur in the knowledge
base (or query, in entailment and querying situations).

Definition 13. An interpretation, (Ig, I, IT, Ip, Iy, I1), satisfies a knowledge base,
(Kr,Kp,Kr) iff

1. for (U,{S1,...,Sn}, P) a regular type definition in Kr, Ir(U) C Ip(S;);
2. for (U,{S1,...,Sn}, P,{E1,...Em}) an enumerated type definition in Kr,
(a) Ir(U) € Ir(S;),
(b) Ir(U) ={Iy(e) | e € E}, and
(c) Vei #ej € E Iy(e;) # Iu(ej),
where E = U{E'| (U, S",P'E"Y e Kt AN({U' =UVU <U)},
3. for (U,{S1,...,Sn}, W, I) a datatype definition in K,
(a) IT(U) g IT(Sl) and
(b) Ir(U) =W;
4. for (U,{S1,...,Sn}, R) a property definition in Kp, Ip(U) C Ip(S;);
5. for I ={Uy,.... U}, {Th, ... T}, {{P1, V1) , ..., (B, V1) }), an item in K7,
(a) I1(I) ={Iy(U1)}, for1 <i<m,
(b) I;(I) C Ir(T;), 1 <i<m,
(c) forx € I1(I), for 1 < i <, there exists (P;, S, R}) a property definition and
there exists y such that (x,y) € Ip(P;) and
— ifViisanitemtheny € I;(V;)
- if Viisa URL then y = Iy (V)
— if V; is a literal (D, T) then there exists (D, S, W, ID) a datatype defini-
tionand y = Ip(T)
— if'V; is a text string then
o ifs:Text € R or s:Datatype € R theny =V,
e otherwise if there exists (D, S, W, I) a datatype with D in R and V;
mapped by I then y = It (V;) for some one of these datatypes
e otherwise if there exists (T, S, P) a type with T in R then y € I7(T)
for some one of these types, and {y,V;) € Ip(s:description)

e otherwise y = V;;
6. for each U, for each (x,y) € Ip(U),
(a) there exists (T, S, P) a type definition or (T, S, P, E) an enumerated type def-
inition in Kt such thatU € P and x € Ir(U), and
(b) there exists (U, S, R) a property definition in K p such that either R = {} or
there exists R’ € Rwithy € Ir(R').

From this basis the standard notions of entailment and inference and simple query-
ing can be defined in the usual way.

The first clause in the satisfaction definition above provides the basis for the type
generalization hierarchy, saying that the extension of a regular type is a subset of the ex-
tensions of each of its parent types. This is repeated for enumerated types and datatypes
in the first part of the second and third clauses. Because regular and enumerated types
are all descendants of s:Thing, their extensions are are subsets of the set of resources.

The second part of the second clause states that the extension of an enumeration is
just the set of all the items that are stated to belong to it and its subtypes. The third part
of the second clause states that all these items are different.

The third clause states that the extension of a datatype is its set of values. Because
datatypes are all descendants of s:Datatype, their extensions must be subsets of the set
of data values.

The fourth clause enforces the property generalization hierarchy.

The fifth clause handles all the parts of item syntax. The first part of this clause says
that the extension of an item is the same as the extension of its identifiers, if any. Note
that if there are no identifiers for an item, then the extension of the item need not be
a singleton set. The second part says that the extension of an item is in the extension
of the extensions of its types. The third part provides meaning for the property-value
pairs in the item. There must be a property relationship from the item to a value that
for item values is in the extension of the item, for URL values is the extension of the
URL as an item identifier, and for literals is the correct data value. For values that are
text there is a determination of what the most suitable ranges are with text datatypes the
most suitable, other compatible datatypes next, and other types least suitable. Then one
of these types is chosen and a data value or item is chosen to belong to this type.

So the movie item above would be a resource that is the same as the extensions of
http://www.avatarmovie.com/index.html and w:Avatar_(2009_film) and is in the extension
of s:Movie. This resource would be related to the string "Avatar” via (the property ex-
tension of) s:name, because s:name has s:Text as its sole range; to a resource in the
extension of s:Person that has name "James Cameron" via s:director; to a resource in
the extension of s:Person that has description "Sam Worthington" via s:actor, because
s:director has s:Person as its sole range; to the extension of w:Sigourney_Weaver via
s:actor, to the number 2009 via s:copyrightYear, because the supplied text is compatible
with the s:Number datatype; and via s:author to a resource that is either in the exten-
sion of s:Organization or s:Person and that has description "James Cameron™", because
s:author has ranges s:Organization and s:Person, and no datatype ranges.

The sixth clause enforces domain and range restrictions. The first part says that for
each property, for each relationship between an item and a value in that property, there
is a regular or enumerated type that has that property and contains the item. The second

part similarly says that if the the definition of the property states ranges, then the value
belongs to one of the ranges. Because parent properties have to have a range that is an
ancestor of this range, this also satisfies the range restriction for each ancestor property.

Discussion

The above formal semantics is quite dense, particularly the definition of satisfaction.
However, there is nothing particularly sophisticated going on, it is just that there are
quite a few bits of schema.org markup to take into account.

The formal semantics is actually more standard than the formal semantics of RDF
[10], as there are no resources for types and properties. It is easy to see that nothing
about items can affect the relationships within and between types and properties (except
that, as usual, inconsistencies in the information about items cause the semantics to
collapse). If two URLs identify the same item, it is not necessarily the case that the two
URLSs define the same type or define the same property. This stands in stark contrast
to RDF, but means that the only source of information for a type or property is its
definition (which would come from the appropriate schema.org page). Thus consumers
of schema.org information do not need to process any items to understand types and
properties.

If two items share an identifying URL, then their extension is the same. If an item
does not have a URL, but has a type that is an enumeration, then the item is one of finite,
enumerated instances of the enumeration. This provides a weak form of disjunction for
schema.org. The distinctness of the extensions of the URLs in an enumeration provides
inequality for arbitrary resources in schema.org

As schema.org has weak disjunction and inequality for resources, its expressive
power is considerably above that of RDFS, even though there is a translation provided
from schema.org types and properties into RDFS.

Schema.org can, however, be translated into OWL, but the translation is not into a
simple variant of OWL. For some parts of schema.org it is easy to see the translation.
The special types s:Thing and s:Datatype are translated into ow/:Thing and owl:Literal,
respectively. All other non-datatype types become OWL classes. Supertypes where the
parent type is a regular type translate into subtype axioms.

Property ranges for a property translate into a disjunctive property range axiom.
However, a property can have both regular types and datatypes as ranges. A property
with such a range cannot be categorized as either an object property or a data prop-
erty, and so cannot be translated into OWL 2 DL. However, OWL 2 Full [11] permits
uncategorized properties. Superproperties for properties then translate into subproperty
axioms.

For some parts, the translation needs to take into account more than just one part
of the knowledge base. Domains for a property are constructed by taking all the types
that mention the property and producing a disjunctive property domain for the prop-
erty from them. Enumerations are constructed by finding all the item URLs belonging
to the enumeration type and its subtypes and constructing an axiom stating that the
enumeration type is equivalent to the object one-of containing all these objects. This
construction handles the supertype relationship where the supertype is an enumeration

type. As well, a different individuals axiom is added stating that all the distinct URLs
belonging to the enumeration type and its subtypes are different.

The translation for datatypes requires the construction of a datatype map that has
the same effect as the datatype definitions. The datatypes in schema.org fit within what
can be done for OWL datatypes, so this is possible. Supertypes for datatypes are either
true, because the datatype’s value spaces are in the correct relationship, or false. The
first case can be ignored, as it has no effect. The second case can be translated into an
inconsistent OWL assertion, as it produces an inconsistency.

The translation for items is a bit tricky, to allow for items that do not have any
associated URLs. Anonymous individuals are employed in the translation to avoid the
need for extra URLS, for each item there is generated a different anonymous individual.

For each identifier of the item, there is a same-as assertion between the anonymous
individual and the identifier. For each type of the item, there is a class assertion stating
that the anonymous individual belongs to the type.

Property value pairs are treated as follows.

1. If the value is a URL, then it identifies an item, and the URL is used directly as the
value of a property assertion from the anonymous individual to the value via the
property.

2. If the value is a literal, then the corresponding OWL literal is used instead in the
property assertion.

3. If the value is an item, then the item is translated, and the anonymous individual for
the item is used instead.

4. If the value is text, the situation is more complex. First then the ranges for the
property are determined.

(a) If s:Text or s:Datatype is one of the ranges then a string literal is constructed
from the text and used as the value as above.

(b) If there is a range that is a datatype with the text in the domain of its literal-
to-value mapping, then those datatypes with the text in the domain of their
literal-to-value mappings are used to construct one or more literals. The anony-
mous individual is then asserted to belong to a data some-value-from with the
property to a data one-of constructed from these literals.

(c) If there are no suitable datatype ranges then if there are any non-datatype
ranges then the translation of the property-value pair is a property assertion
from the anonymous individual via the property to a fresh anonymous individ-
ual. This fresh anonymous individual is asserted to belong to the disjunction of
the non-datatype ranges and is also asserted to have the text as the value of the
s:description.

The correctness of this mapping is not hard to verify, but a full proof of the correct-
ness would be long and tedious and so is omitted here.

The translation into OWL does not determine how hard or easy reasoning is in
schema.org because reasoning in OWL Full is undecidable. There are no inverse prop-
erties in schema.org, so not making the division between object and data properties
does not appreciably affect reasoning. As this is the only part of the mapping that is

not in OWL 2 DL, the mapping into OWL shows that the reasoning in schema.org is
decidable.

It is easy to show that reasoning here is in PSpace, as reasoners need not introduce
new types, properties, or items. Showing the precise complexity of reasoning is more
difficult, as enumerations and the disjunctive nature of domain and range includes need
to be addressed. For example, if this account of schema.org were modified to use the
underlying semantics of RDF and lift the restrictions on the use of certain URLs the set
cover problem could be encoded, introducing a new source of hardness to reasoning.

The intent of schema.org appears to be that all the types and properties defined in
schema.org will remain in the schema.org namespace and thus under the control of the
owners of schema.org and will change only infrequently. Other web pages will not be
allowed to make changes or additions to these types and properties. This limits the effect
of the non-monotonic nature of the disjunctive domains and ranges of schema.org.

The model-theoretic account here is a standard one, based on inference instead of
constraints. If an item has a value for a property, then the item is inferred to belong to
one of the domains of the property. The constraint reading [12] would instead require
that the item be stated to belong to a domain for the property before a value could be
provided. There are benefits to the constraint account, as it is closer to the database
situation, but it is less flexible [13].

It is possible to get the effect of the constraint approach in a surface syntax. A
surface syntax can have constructs that require that property-value pairs for an item be
only for items that mention a type or subtype of one of the domains of the property. In
this way most benefits of both approaches can be obtained.

Conclusion

This paper has provided an analysis of what schema.org should be, leading up to a com-
plete formal treatment of schema.org including an abstract syntax and a model-theoretic
semantics. It fills in voids in the publicly-available description of schema.org, including
whether types and properties and items are disjoint, whether enumerations are distinct,
whether properties can have generalizations, and how to handle text values. This may
not exactly correspond to intent of the schema.org members, but it is consistent with the
available information about schema.org, and uses only a reasonable set of additional as-
sumptions.

This paper shows that even the unusual parts of schema.org can be translated into
OWL. Although schema.org cannot be translated into OWL 2 DL, because schema.org
properties cannot be categorized into object and data properties, the extensions are cos-
metic, and schema.org reasoning is no harder than reasoning in OWL 2 DL. Determin-
ing just how hard schema.org reasoning is remains as further work.

Schema.org does not provide local ranges for properties, such as saying that the
author of a movie is a person even though in general authors can be either people or
organizations. This lack of expressive power limits what can be said about property
values and is especially problematic as quite a few roles in schema.org could benefit
from local ranges (e.g., a season of a TV series should be a TV season, but can only be

a general season, as Radio Series also have seasons). Adding this feature to schema.org
would usefully improve its expressive power.

The account of schema.org here should provide a starting point for further formal
analysis of schema.org and a firm foundation for systems that consume schema.org in-
formation. Web pages that contain schema.org information can be checked against this
account to provide a formal account of what the information conveys, thus reducing the
possibility of mismatches between providers and consumers of schema.org information.

The obvious next step is to gather large amounts of schema.org information to see
how schema.org is used in practice. This usage should then be analyzed to see how well
the various aspects of schema.org are used and how the account here helps to better
provide meaning for actual information that uses schema.org.

References

1. Schreiber, G., Raimond, Y.: RDF 1.1 primer. W3C Working Group Note, http://www.w3.org-
/TR/rdf11-primer/ (25 February 2014)

2. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax. W3C Rec-
ommendation, http://www.w3.org/TR/rdf-concepts/ (25 February 2014)

3. W3C OWL Working Group: OWL 2 Web Ontology Language: Document overview. W3C
Recommendation, http://www.w3.org/TR/ow12-overview (11 December 2012)

4. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language: Structural spec-
ification and functional-style syntax. W3C Recommendation, http://www.w3.org/TR/owI2-
syntax/ (11 December 2012)

5. Bollacker, K., Tufts, P., Pierce, T., Cook, R.: A platform for scalable, collaborative, structured
information integration. In: Sixth International Workshop on Information Integration on the
Web, Vancouver, British Columbia, AAAI Press (July 2007)

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The De-
scription Logic Handbook: Theory, implementation, and applications. 2nd edn. Cambridge
University Press (2007)

7. Birbeck, M., McCarron, S.: CURIE syntax 1.0: A syntax for expressing compact URIs. W3C
Working Group Note, http://www.w3.org/TR/curie/ (2007)

8. Arvidsson, E., Smith, M.: URL. W3C Working Draft, http://www.w3.org/TR/URL/ (24 May
2012)

9. The Unicode Consortium: The unicode standard. http://www.unicode.org/versions/latest/
(2013)

10. Hayes, P, Patel-Schneider, P.F.: RDF 1.1 semantics. W3C Recommendation, http:-
/Iwww.w3.org/TR/rdf11-mt/ (25 February 2014)

11. Schneider, M.: OWL 2 web ontology language: RDF-based semantics (second edition). W3C
Recommendation, http://www.w3.org/TR/owl-rdf-based-semantics/ (11 December 2012)

12. de Bruijn, J., Polleres, A., Lara, R., Fensel, D.. OWL DL vs. OWL Flight: Conceptual
modeling and reasoning for the semantic web. In: Proceedings of the 14th World Wide Web
Conference, Japan (May 2005)

13. Patel-Schneider, P.F., Horrocks, I.: Position paper: A comparison of two modelling
paradigms in the semantic web. In: Proceedings of the 15th International Conference on
the World Wide Web (WWW2006), New York, NY, ACM Press (May 2006)

