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Abstract. The ability to integrate a wealth of human-curated knowl-
edge from scientific datasets and ontologies can benefit drug-target in-
teraction prediction. The hypothesis is that similar drugs interact with
the same targets, and similar targets interact with the same drugs. The
similarities between drugs reflect a chemical semantic space, while simi-
larities between targets reflect a genomic semantic space. In this paper,
we present a novel method that combines a data mining framework for
link prediction, semantic knowledge (similarities) from ontologies or se-
mantic spaces, and an algorithmic approach to partition the edges of
a heterogeneous graph that includes drug-target interaction edges, and
drug-drug and target-target similarity edges. Our semantics based edge
partitioning approach, semEP, has the advantages of edge based commu-
nity detection which allows a node to participate in more than one cluster
or community. The semEP problem is to create a minimal partitioning of
the edges such that the cluster density of each subset of edges is maximal.
We use semantic knowledge (similarities) to specify edge constraints, i.e.,
specific drug-target interaction edges that should not participate in the
same cluster. Using a well-known dataset of drug-target interactions,
we demonstrate the benefits of using semEP predictions to improve the
performance of a range of state-of-the-art machine learning based pre-
diction methods. Validation of the novel best predicted interactions of
semEP against the STITCH interaction resource reflect both accurate
and diverse predictions.

Keywords: Drug-target interaction prediction; vertex coloring graph; commu-
nity detection; graph partitioning.

1 Introduction

Linked Open Data has important applications across the biomedical enterprise
where there is a nexus created by the availability of publicly accessible richly cu-
rated scientific collections and the extensive use of ontologies and thesauri. This
ability to seamlessly integrate a wealth of human-curated knowledge can benefit
many applications including drug-target interaction prediction and drug-drug
similarity ranking. Consider that drugs are molecules that participate in some



biomolecular reaction associated with a disease related genomic target (protein).
The ability to predict new drug-target interactions can have applications in drug
re-purposing to find new targets for drugs. A related application is drug-drug
side effect prediction, e.g., to construct the SIDER [16] side effect resource, or
to populate ADEpedia [14], a knowledge base of adverse drug events (ADEs) for
drug safety surveillance.

Beyond drug-target interaction prediction, drug-drug similarity rankings are
an important component of the comprehensive evidence that is used to make
clinical or policy recommendations. Consider the following example relevant to
a group of monoclonal antibodies (mab) drugs: On November 3, 2010, The New
York Times reported that Genentech began offering secret rebates to ophthal-
mologists in an apparent inducement to get them to prescribe Ranibizumab
rather than the less expensive Bevacizumab. Several studies have shown no su-
perior effect of Ranibizumab over Bevacizumab for the treatment of macular
degeneration, an aging-related eye condition. Subsequently, on April 8, 2014, the
Washington Post highlighted the results from analyzing a BIGDATA Medicare
collection revealing that one of the largest Medicare billers, an ophthalmologist
in West Palm Beach, Fla., earned $20 million in 2012; a large fraction of his
earnings came from injecting patients with Lucentis (Ranibizumab) instead of
Avastin (Bevacizumab).

Figures 1(a) and (b) show a schematic overview of drug-target interaction
networks; drugs are circles and targets are squares. For interaction prediction,
or to determine functionally equivalent drugs, one must exploit drug-drug and
target-target similarities; the hypothesis is that similar drugs interact with the
same targets, and similar targets interact with the same drugs. The similarities
between drugs reflect a chemical semantic space, while similarities between tar-
gets reflect a genomic semantic space [8,21]. Within these semantic spaces, pairs
of drugs or pairs of targets may have multiple semantics-based similarity scores.
For example, drugs can have similarities based on chemical structure or shared
side-effects, while gene targets may share sequence based or protein-protein in-
teraction based similarity [21]; this is illustrated by the multiple edge types.

For the purpose of this paper we focus on drug-target interaction edges.
However, our method can be applied to a variety of Linked Data collections and
ontologies as will be seen in the next section.

There are many approaches for link prediction or similarity ranking, e.g.,
drug-target interaction networks [29] or citation graphs [20]. The importance of
structured knowledge and collective classification for drug-target prediction was
discussed in [11]. Structured knowledge include triads; in Figure 1(b), the inter-
action edge (d;, t;), the similarity between targets t, and t,, and the potential
interaction edge (d;, t,) form a triad. Similarly, in Figure 1(a), the two interac-
tion edges (d;, t;) and (d;, ty), the corresponding drug-drug similarity between
d; and dj, and the target-target similarity between t, and t,, form a tetrad.
Further, collective classification would support the simultaneous reasoning over
the edges (d;, tz), (di, ty), (di, t2), etc., in Figure 1(b), and their corresponding
similarities.
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Fig. 1. (a) Drug-Target Interaction Network. Drugs are circles and diseases are rect-
angles. (b) An Example of Collective Classification of Potential Interactions.

We present semEP, an unsupervised semantics based edge partitioning method;
semEP combines a data mining framework for link prediction, semantic knowl-
edge (similarities) from ontologies or semantic spaces, and an algorithmic ap-
proach to partition the edges of a heterogeneous graph. For this paper, we con-
sider a graph that includes drug-target interaction edges, and drug-drug and
target-target similarities. The semEP problem is to create a minimal partition-
ing of the edges such that the cluster density of each subset of edges is maximal.
An advantage of semEP edge clustering is that it allows a node to participate in
more than one cluster or community; this is a natural match with the semantics
of drugs that have multiple functions, and thus interact with different targets.
We do not limit semEP to triad or tetrad clusters and we consider clusters of
varying shape and size. Further, semEP can use semantic knowledge on simi-
larities to specify edge constraints, i.e., specific pairs of drug-target interaction
edges that should not occur in the same cluster.

Using a well-known dataset of drug-target interactions [3, 8], we demonstrate
the benefits of using semEP predictions to improve the performance of all the
state-of-the-art machine learning based prediction methods [8]. We also validate
the best novel predictions of all the methods (where the interactions are not in
the test dataset) against the STITCH drug-target interaction resource [17]. The
good performance of semEP reflects its ability to exploit structured semantic
knowledge to make accurate and diverse predictions.

This paper is organized as follows: Section 2 provides a motivating example
of Linked Data and ontological knowledge and Section 3 describes the semEP
edge partitioning problem. Section 4 summarizes related research. Experimental
results are reported in Section 5 and Section 6 concludes.
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Fig. 2. (a) Drugs Bevacizumab and Cetuximab (green rectangles), Disease Annotations
(orange rectangles) and NCI Thesaurus Terms (red ovals). Four communities are high-
lighted in blue. (b) Fragment of an ISA Hierarchy in the NCIt. The red lines indicate
ISA relationships

2 Semantics of Annotations and Ontological Relatedness

In this paper, we focus on a specific link prediction use case — the problem of pre-
dicting drug-target or drug-disease interaction edges. However, as motivation, we
consider the more general problem of drug-drug similarity ranking. Bevacizumab
and Cetuximab are exemplars of monoclonal antibodies that are anti-neoplastic
agents used in cancer treatment. We consider the similarity of Bevacizumab
and Cetuximab using their neighborhood graph of shared annotations of disease
terms. Figure 2(a) represents (partial) disease annotations associated with each
drug; the disease terms are mapped to terms in the NCI Thesaurus (NCIt). Each
path between a pair of diseases, e.g., Colon Carcinoma and Stage IV Rectal
Cancer, is identified with red circles representing intermediate NCIt terms.

A simple shared annotation pattern would include the identical term, e.g.,
Rectal Carcinoma. Ontological relatedness indicates that non-identical terms
such as Colon Carcinoma and Stage IV Rectal Cancer are also related to
each other. Combining shared annotation and ontological relatedness, we may de-
termine that (Colon Carcinoma, Colorectal Carcinoma, Rectal Carcinoma,
Stage IV Rectal Cancer), together, form a shared community of ontologically
related disease terms. Further, (Malignant Colorectal Neoplasm, Stage IV
Colon Cancer, Colorectal Adenocarcinoma) appear to form a (possibly over-
lapping) community, while (Thyroid Gland Neoplasm, Oropharyngeal Neoplasm,
Head and Neck Neoplasm)and (Malignant Uterine Neoplasm,Malignant Ovarian
Neoplasm) form additional distinct communities.

Figure 2(b) shows a fragment of the NCIt ISA hierarchy. Carcinoma can be
specialized to various organs, e.g., Lung Carcinoma; to specific types of disease,



e.g., Adenocarcinoma; to disease stages, e.g., Stage IV Breast Cancer; or to
combinations, e.g., Stage III Colorectal Adenocarcinoma (not shown).

3 Semantics Based Edge Partitioning Problem (semEP)

3.1 From Structured Knowledge to Link Prediction for Drug Target
Interaction Networks

Let D ={d;,ds, -, dn} beadrugset and let T = {t1, ta, - - -, t, } be a target set.
Let Sy be a drug similarity matrix where the (7,5)-th element denoted s4(d;,d;) is
a similarity score (potentially there are multiple scores) between drugs d; and d.
Let S; be a target similarity matrix where the (4,j)-th element denoted s;(¢;,t;)
is a similarity score between targets ¢; and ¢;.

Let Y be a binary matrix of true labels of drug-target interactions. Y; ; =
1 if drug d; interacts with target ¢;; Y; ; = 0 otherwise.

The objective is to produce a score matrix F where the (i,7)-th element
denoted F; ; is the score or probability that the drug d; interacts with target ¢;.

The hypothesis underlying most solutions is that similar drugs interact with
the same targets, and similar targets interact with the same drugs. While this
appears to be straightforward, there are many challenges. First, there is no single
approach to determine the similarities between drugs or between targets; indeed
there are many similarities based on different semantics [21]. Referring to the
Linked Data example in the previous section, the NCIt can be used to define a
semantic space for drugs and for targets (diseases), while taxonomic metrics can
be used to determine similarity scores using the NCIt structure.

A bigger challenge is that the bipartite drug-target interaction network ex-
presses multi-relational or graph structured knowledge. A drug d; may be com-
plex in its functional behavior and may have multiple targets. Hence, a drug d;
that is similar to d; based on chemical structure but not on side-effect similarity,
may only share some of the targets of d;.

A state-of-the-art solution for the drug-target interaction prediction problem
is presented in [11] where they propose a drug-target prediction framework based
on Probabilistic Soft Logic (PSL) [5]. The PSL based solution reasons collectively
over interactions using structured rules that capture the multi-relational nature
of the network, e.g., the triads and tetrads of Figure 1(a) and (b). Finding the
most promising candidates for triad and tetrad based learning is an expensive
problem that requires significant tuning [11] and the PSL based program was
thus limited to triads and tetrads.

In contrast, semEP can make predictions using larger complex clusters. We
can also exploit the drug-drug or target-target similarities to control the shape
of the clusters. Figure 3 illustrates a drug-target interaction network on the left,
with three drugs DB01100 (Pimozide), DB01244 (Bepridil), and DB00836 (Lop-
eramide), and eight targets. Drugs DB01100 (Pimozide) and DB01244 (Bepridil)
share 6 interactions. A node partition may place these two drugs into one com-
munity and place DB00836 (Loperamide) in a second community.



Since semEP is an edge partitioning, it can instead consider more complex
communities with an overlap of nodes. The broken (dotted) edges in Figure 3
(left) connect each target to its least similar target. A visual inspection of these
edges reveals that a split of the targets, with 782, 784, and 785 appearing in one
community, while 774, 776, 778, 779, and 8912 are placed in a second community,
has the property that no target is placed in a community together with its least
similar target. To capture such properties, semEP will consider edge constraints
as follows: Consider the scenario where targets 784 and 779 have a mutual least-
similar-target relationship. Then semEP will guarantee an edge constraint for
this pair, i.e., no edge incident to 784 will be placed in the same cluster together
with an edge incident to target 779.

Thus, semEP combines the benefit of edge partitioning that allows node
overlap in the clusters, and the edge constraints that prohibit (some) pairs of
edges to be placed in the same cluster. This accommodates both the semantics
of nodes with complex function (node overlap in multiple clusters), and the
semantics of separating the edges incident to the least similar pairs of nodes
(edge constraints).

Figure 3 (b) shows the two edge communities created by semEP on the
right. Community 1 includes drugs DB01100 (Pimozide), DB01244 (Bepridil),
and five targets. Community 2 includes those two drugs as well as DB00836
(Loperamide), and has three targets. We note that these communities, with 6
and 7 nodes, respectively, are more complex compared to triads. The predicted
drug-target interaction(s) based on these two communities are shown as broken
edge(s) in the edge communities on the right. We note that through the use
of structured knowledge (edge constraints), edge partitioning and node overlap,
semEP predicts an interaction between DB00836 (Loperamide) and target 784.

We summarize the objectives of semEP as follows:

— An edge partitioning that allows the overlap of nodes in multiple clusters;
this matches the semantics of complex function associated with nodes.

— Create clusters with high cluster density to improve prediction accuracy.

— Exploit semantic knowledge about the least similar pairs of nodes to identify
edge constraints; they will be used to prohibit the placement of incident
edges, of the least similar nodes, in the same cluster.

— Balance these competing objectives by creating a minimal number of clus-
ters, each of which has maximal cluster density.

3.2 Problem Definition: semEP

The semantics based edge partition problem (semEP) is the minimal partitioning
P of the edges of a graph BG such that the aggregate cluster density over all
subsets of edges (clusters) p € P is maximized. We note that a partitioning P
of edges may result in the overlap of nodes across different clusters.

Definition 1 (Cluster (Similarity) Density). Consider a labeled bipartite
graph BG=(D UT, WE). Nodes in D represent a set of drugs and nodes in T
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Fig. 3. Using Structured Knowledge for semEP. (a) A drug-target interaction network
of three drugs DB01100 (Pimozide), DB01244 (Bepridil) and DB00836 (Loperamide),
and eight targets. (b) Two edge communities created by semEP. Community 1 includes
drugs DB01100 (Pimozide) and DB01244 (Bepridil) and five targets. Community 2
includes all three drugs and has three targets.

represent a set of targets. WE is a set of drug-target interactions, i.e., there
is an edge e = (d,t) € WE iff Yy, = 1. Let p be a subset of interactions of
WE. Let D, C D be the drug set incident on the edges (d,t) € p, and let
T, C T be the target set incident on the edges (d,t) € p. Let sq(3,j) represent
the similarity score between o pair of drugs ¢ and j € D,. Let s4(i,j) represent
the similarity score between a pair of targets i and j € Dy. Under the condition
that |Dp| > 0 A |Tp| > 0, the cluster (similarity) density of p cDensity(p) =

1+ 2+ jeDpli#ilsq(i,5) i 2% jeTpli#ilse (i,5)

[Dpl(]Dp[=1) 5 [ Tpl(ITpI=1) . If ‘Dp‘ =0, or Zf |Tp| = 0, then we
replace the respective fraction by the value 0.

To explain, the three terms in the numerator correspond to (1) the average
score of the interaction edges in p, (2) the average drug-drug similarity score
between all pairs of drugs in p, and (3) the average target-target similarity
score between all pairs of targets in p, respectively. We note that the score for
interactions is given by Y ; and is an unweighted score of 1.0 for this special case
of drug-target interactions. The cluster (similarity) cDensity penalizes singleton
clusters or clusters with a singleton drug or target node.

Definition 2 (The Semantics Based Edge Partition Problem (semEP)).
Given a labeled bipartite graph BG=(D UT, WE) described as before, semEP

identifies a (minimal) partition P of WE such that the aggregate cluster density

over all subsets p € P semEP(P) = ZPEP(C?PQ‘TLSM(M) is mazimal.
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Fig. 4. Two partitions with the same cDensity and red broken predicted edges.

Recall that a solution to semEP corresponds to a partition of the edges where
the number of clusters is minimized while the overall cDensity is maximized. We
illustrate the impact of these two objectives on drug-target interaction predic-
tion accuracy using the two edge partitions A and B in Figure 4. Consider the
following drug-drug and target-target similarity scores: sq(dy,ds) = sq(dz,ds) =
st(t1,t3) = s¢(te,t3) = 0.1, and s4(dy, d2) = s¢(t1,t2) = 0.4. Positive interaction
edges are black solid edges while predicted edges are red broken edges. Both
partitions have the same cDensity of 0.47. However, partition A includes four
prediction edges while B only includes one prediction edge. Assuming that these
are all true positive predictions, then partition A, which satisfies the two semEP
objectives of maximum aggregate cDensity and minimal number of clusters, has
the same precision and greater recall, compared to partition B.

Definition 3 (Edge Constraint). Given nodes i and j, let Inc(i) and Inc(j)
correspond to the sets of incident edges to i and j, respectively. Given a real
number 04 or 6, in the range [0 : 1] and a similarity score sq(i,j) < 604 or
s¢(i,7) < 0, then there exists an edge constraint EdgeConstraint(i, j, Inc(i),
Inc(j), 6).

Property 1 (Edge Constraint) Let P be a solution to the semEP. For a
given edge constraint EdgeConstraint(i, j, Inc(i), Inc(j), 6) to hold, there can
be no cluster p in P such that e; € Inc(i) and e; € Inc(j) occur in p.

We map semEP to the Vertex Coloring Graph (VCG) problem. The Vertex
Coloring Graph problem assigns a color to every vertex in a graph such that
adjacent vertices are colored with different colors and the number of colors is
minimized. Each cluster (component) p in the partition P produced by semEP
corresponds to a color in the VCG problem. This will ensure that a minimal
number of colors will guarantee a minimal partitioning P.

Definition 4 (Mapping of the Vertex Coloring Problem to the Seman-
tics Based Edge Partition Problem). Consider a labeled bipartite graph
BG=(DUT, WE) and a vertex coloring graph G=(V, F). For each edge or in-
teraction | in WE there is a node v; in V. Further, there is an edge | = (v;,v;)
in F, iff there are nodes i and j such that v; € Inc(i), v; € Inc(j), and Edge-
Constraint(i, j, Inc(i),Inc(j), )' holds. Let P be the (minimal) partition of WE

! There are thresholds 6, and 6, for drugs and targets, respectively.



to mazimize semEP(P). Let M be a mapping from V to SC, where SC is a set
of colors, two vertices from G share the same color if they are in the same par-
tition component p of P and the value cDensity(p) is mazimized. The Vertex
Coloring Problem for BG is to identify M such that the number of colors used
in the coloring of the graph G, namely nc(G), is minimized. Given the set Used-
Colors of colors in SC that are used in the coloring of the graph, the number
of colors corresponds to nc(G)=)_ ;¢ yseacoiors(1 —cDensity(cl)), where cDen-
sity(cl) represents the density of the labels of edges from component p in P, from
BG, that are colored with the color cl.
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(c) Iterations of the semEP Algorithm. Colors in VCG
correspond to clusters in the interaction network.
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Fig. 5. Example Iterations of semEP.

Example iterations of semEP: Consider the drug-target interaction network
of Figure 5(a) with four interactions and the following similar scores: s;(t1,t2) =
0.1, St(t1, t3) = 09, 8,5(152,153) = 08, Sd(dl,dg) = 075, Sd(d17d3) = 08, and
$4(da,ds) = 0.75. Consider thresholds §; = 6; = 0.6 below which pairs of drug
or pairs of targets are used to specify edge constraints. Figure 5(b) is the Vertex
Coloring Graph (VCG) for the interaction network of Figure 5(a). For example
the edge (11, I5) is in VCG because the similarity score s;(t1, t2) of targets t; and
to are below the threshold 0; = 0.6. Figure 5(c¢) shows the iterations of semEP;



in each iteration, the figure on the top assigns a color to a node of the VCG while
the figure at the bottom places an edge in a cluster. In the first iteration, semEP
chooses vertex Is of the VCG since it has the greatest degree, and assigns color
p1. Simultaneously, the interaction I is placed in the cluster p;. In the second
iteration, vertices I; and I3 have the greatest degree; sesmEP breaks the tie in
favor of I;. Vertex I; is assigned the color ps and this creates a new cluster p
with interaction I. In the third iteration, the vertex I3 is assigned the feasible
color po; this adds the interaction T3 to cluster ps. In the last iteration, vertex
I, can be colored with p; or po; semEP chooses p; and interaction I is placed
in cluster p;. The cluster p; has a cDensity 1 = (1.0 + 0.8 + 0.75)/3 = 0.85,
and cluster ps has cDensity = (1.0 + 0.0 4+ 0.8)/3 = 0.6; thus, the aggregate
cDdensity is (0.85 + 0.6)/2 = 0.73. If I, had instead been placed in po, the
aggregate cDensity would have been lower and = (0.33 + 0.9)/2 = 0.62. Figure
5(c) shows the two predicted edges (broken edges) in the fourth iteration.

An Efficient Implementation of semEP: VCG is NP-hard [15], and many
approximate algorithms have been proposed to solve this problem [23]. semEP
extends the well-known approximate algorithm DSATUR [4] to solve VCG to
obtain the edge partitions. DSATUR is a greedy iterative algorithm that col-
ors each vertex of the graph once by following a heuristic to choose the colors.
Given a graph G=(V,E), DSATUR orders vertices in V' dynamically based on
the number of different colors assigned to the adjacent vertices of each vertex in
V', i.e., the vertices are chosen based on the degree of saturation on the partial
coloring of the graph built so far. Only colored adjacent nodes are considered.
Intuitively, selecting a vertex with the maximum degree of saturation allows one
to first color the vertex (vertices) with more restrictions; this is one for which
there is a smaller set of colors. Ties are broken based on the vertex degree of the
adjacent nodes. As a result of casting the semEP problem to VCG, semEP iter-
atively adds an edge or interaction to a cluster following the DSATUR heuristic
to create clusters that maximize the cluster density. semEP assigns a score to
an edge e in WEF according to the number of edges whose adjacent terms are
dissimilar to the terms of e, and that have been already assigned to a cluster.
Then, edges are chosen in terms of this score (descendant order). Intuitively,
selecting an edge with the maximum score, allows semEP to place first the edges
with more restrictions; this is one for which there is a smaller set of potential
clusters. The selected edge is assigned to the cluster that maximized cDensity.
Time complexity of DSATUR is O(|V|3), thus semEP is O(] WE|?).

4 Related Work

We briefly compare with research in graph data mining, link prediction, clus-
tering, community detection and ranking. Graph data mining [7] covers a broad
range of methods dealing with the identification of (sub)structures and pat-
terns in graphs; state-of-the-art approaches include spectral graph clustering
[26], RankClus [24], and GNetMine [13]. Spectral graph clustering relies on an



unnormalized Laplacian graph representation of a homogeneous network to clus-
ter the graph based on information encoded in its eigenvectors [26]. RankClus
[24] and GNetMine [13] interleave link analysis-based ranking with clustering to
place highly ranked entities in highly ranked clusters. These approaches focus
on the use of graph properties to partition the graph.

The problem of dealing with multiple types of similarity scores has been
modeled as follows: Perform simultaneous clustering with multiple heterogeneous
networks over an identical set of nodes; the complexity has been shown to be as
hard as the k densest subgraphs problem [18]. JointCluster [19] is a simultaneous
clustering or partition of the nodes such that nodes within each set or cluster in
the partition are well connected in each graph, and the total cost of inter-cluster
edges (edges with endpoints in different clusters) is low. Khuller et al. presented
one of the earliest solutions to a related K-Center problem [2].

There has been significant work on community detection [1,9, 20, 22]; multi-
ple approaches have been identified as follows: [9]: %) topology-based techniques
that consider network structure; ) topic-based approaches that rely on tex-
tual information within nodes; #44) hybrid solutions that combine topology- and
topic-based approaches. The majority of existing techniques focus on partitioning
nodes rather than edge partitioning. Similar to semEP, Ahn et al. [1] introduce
a partition density function based on the similarity of nodes; they detect com-
munities that maximize partition density using optimization methods. This may
produce a large number of communities, unlike semEP that produces a minimal
number. Ereteo et al. [10] tackle the problem of a semantic social network and
propose a topology- and topic-based algorithm, SemTagP, to detect communi-
ties from the RDF representation of social networks. Osborne et al. [20] present
Temporal Semantic Topic-Based Clustering (TST); it uses similarity between
research trajectories and a Fuzzy C-Means algorithm.

Ding et al. [8] provides a comprehensive survey of similarity-based machine
learning approaches for drug-target interaction prediction. Several machine learn-
ing techniques have been evaluated [11,21,28,29]. Approaches presented by
Zheng et al. [29] and Perlman et al. [21] consider feature engineering over multiple
similarity features. A PSL based solution [11] directly considers multi-relational
structured knowledge and learns from multiple similarity metrics.

5 Evaluation of semEP and State-of-the-Art Methods

5.1 Dataset and Evaluation Protocol

Dataset: A well known dataset of over 900 drugs, almost 1,000 targets, and over
5,000 interactions [3] has been used by Ding et al. to compare several state-of-
the-art machine learning based interaction prediction methods [8]. This dataset
provides a drug-drug chemical similarity score based on the hashed fingerprints
from the SMILES resource, and a target-target similarity score based on the
normalized Smith-Waterman sequence similarity score. The targets belong to the
following four groups: Nuclear receptors, Gprotein-coupled receptors (GPCRs),
Ton channels and Enzymes. Dataset statistics are reported in Table 1.



A 10-fold cross validation will randomly select 90% of positive and negative
interactions as training data, and will use the remaining 10% of elements as test
data, for each of the four groups of targets in the dataset.

Statistics Nuclear receptor GPCR|Ion channel|Enzyme
Number of drugs 54 223 210 445
Number of targets 26 95 204 664
Number of drug target interactions 90 635 1,476 2,926
Average interaction count per target 3.46 6.68 7.23 4.4
Average interaction count per drug 1.66 2.84 7.02 6.57
Graph Density? 0.028 0.013 0.017 0.005

Table 1. Statistics for the Drug-Target Interaction Dataset [3].

semEP Prediction: Recall that Y is a binary matrix where Y; ; = 1 if drug
d; interacts with target ¢; and F; ; is the score or probability of the prediction.
Since semEP is not a machine learning method, it works as follows: We represent
the training data from Y as a bipartite graph and apply edge partitioning. Table
2 shows the values of the thresholds 6; and 6; used to specify edge constraints
in Definition 1. For a selected cluster p, all missing interactions are assigned
to be positive interactions in Y. The F; ; score assigned to the interactions in
p is the normalized graph density = %, where |I|, |D,| and |T,| are the
cardinalities of the interactions, drugs and targets in p, respectively. We label
this density as the interaction prediction density or iDensity.

Threshold|Nuclear receptor|GPCR|Ion channel|Enzyme
[ 0.3421 0.2759 0.2619 0.2333
0 0.1832 0.1416 0.1355 0.0209

Table 2. Score threshold 64 and 0, for edge constraints in Definition 1.

State-of-the-art Methods: We used the code and results from multiple ma-
chine learning based prediction methods that are available as supplemental ma-
terial to the research reported in [8]. Due to space limitations, we simply label
and name all the methods as follows: i) BLM: Bipartite Local Method [6];
i1) LapRLS: Laplacian Regularized Least Squares [27]; 44) GIP: Gaussian Inter-
action Profile [25]; i) KBMF2K: Kernelized Bayesian Matrix Factorization with
twin Kernels [12]; and v) NBI: Network-Based Inference [6].

2X#FEdges
#Nodesx (#Nodes—1)

2 Graph Density is defined as



5.2 Results

First, we demonstrate the benefits of using semEP predictions to improve the
performance of the prediction methods in [8]. We then validate the best novel
predictions of all the methods against the STITCH drug-target interaction re-
source [17].

Using semEP to Improve Performance: To measure the impact of semEP
predictions on the performance of the methods, we enhance the (initial) inter-
action prediction matrix Y of each method, over the hold-out test data, with
the best predicted interactions of semEP. The best predictions of semEP are
those with an iDensity prediction score equal or greater than a 0.5 threshold.
Further, we limit the added predictions to be no more than 30% of the positive
interactions in the holdout set. We label this matrix Yie,,pp. We also create
a control binary matrix Y., which enhances the initial predictions of each
method, Y with K interactions, where K corresponds to the cardinality of the
added predictions in Ysempp. The entries in Y; ; = 0 are randomly chosen (K
times) without replacement, following a uniform distribution, to create Y-

We use the metrics Area Under the Curve (AUC) for precision, and Area
Under the Precision-Recall curve (AUPR) for the trade-off between precision
and recall. Table 3 reports on the AUC and AUPR of each machine learning
method Y, the performance when using semEP predictions, Ysempp, and the
control predictions Y., for each of the four target groups.

The AUC for the methods are generally high, representing the robust perfor-
mance of these methods. Despite this high baseline, Y gp is able to improve
the performance for all of the methods, for all of the target groups. We also
observe that the performance of Y.,;; degrades for all of the methods, for all of
the target groups.

The impact of Yempp is noteworthy when considering the AUPR; these
values are somewhat low in general, for all methods, reflecting the sparse training
data. Again, we observe a major improvement of AUPR, for all of the methods,
for all of the target groups. In addition, there is a sharp decrease of performance
of Yentrt for all of the methods / target groups.

To further explore the benefit of the semEP predictions, Table 4 compares
the overlap of the Top 10 positive predictions in Yy pp and the Top 10 positive
predictions of each method in Y. The overlap (equal count) is remarkably low,
across all methods, and across all target groups. These results suggest that the
interactions predicted by semEP are both accurate and diverse, compared to
the range of state-of-the-art machine learning based prediction methods. The
diversity explains the major impact on AUPR by Yiengp and the potential for
semEP to exploit structured knowledge in the relevant semantic space(s).

Validation using STITCH: We validated the Top 5 novel predicted interac-
tions of all methods; novel interactions are those with Y; ; = 0 in the hold-out
test dataset. The validation was performed against the latest online version of



AUC

Method Nuclear receptor GPCR Ion channel Enzyme

Y YsemEP Yentri| Y YsemEP Yentri]| Y YsemiEP Yentri| Y YsemEP Yentrl
BLM 0.724 0.778 0.665|0.888 0.911 0.798 10.920 0.929 0.879(0.929 0.935 0.838
NBI 0.690 0.825 0.670(0.833 0.900 0.769(0.925 0.947 0.888|0.895 0.915 0.810
GIP 0.861 0.895 0.803(0.943 0.958 0.843|0.975 0.981 0.932(0.968 0.973 0.874

LapRLS |0.848 0.877 0.799|0.941 0.956 0.844 [0.967 0.972 0.925|0.962 0.966 0.868
KBMF2K|0.876 0.914 0.8220.939 0.960 0.845(0.981 0.985 0.936|0.967 0.971 0.869

AUPR
Method Nuclear receptor GPCR Ion channel Enzyme
Y YsemEP Yentri| Y YsemEP Yentri]| Y YsembEP Yentri| Y YsemEP Yentrl
BLM 0.242 0.369 0.238|0.472 0.481 0.327(0.599 0.622 0.542(0.499 0.537 0.373
NBI 0.465 0.682 0.342(0.615 0.719 0.467|0.829 0.854 0.744|0.786 0.818 0.616
GIP 0.657 0.749 0.520(0.705 0.764 0.563 |0.888 0.897 0.813|0.869 0.878 0.700

LapRLS |0.577 0.676 0.468 |0.630 0.704 0.517 [0.800 0.818 0.733|0.830 0.838 0.663
KBMF2K|0.557 0.725 0.475|0.673 0.760 0.544 |0.879 0.891 0.810(0.796 0.822 0.656

Table 3. 10-fold cross validation AUC and AUPR for methods in [8]. Y is the state-
of-the-art method; Ysemep is the semEP enhancement; Y.ntr is the random control.

Nuclear receptor GPCR TIon channel Enzyme
Method |[Equal Different |Equal Different|Equal Different|Equal Different
BLM 1 9 0 10 0 10 0 10
NBI 0 10 1 9 0 10 0 10
GIP 2 8 1 9 0 10 3 7
LapRLS 4 6 1 9 0 10 2 8
KBMF2K 4 6 0 10 0 10 0 10

Table 4. Overlap of Top 10 predictions of semEP and each of the methods in [8].
Entries highlighted in bold are cases where predictions are all different.

the STITCH [17] drug target interaction portal 3. Table 5 reports on the num-
ber of validated novel predictions. We observe that as before, semEP is able to
identify validated novel interactions across all target groups and it identifies the
highest number of validated novel interactions for the target groups of GPCRs
and Enzymes. We note that the graphs of GPCRs and Enzymes are sparser
than the other two graphs (see Graph Density in Table 1). This provides few
opportunities for learning in the training data. Nevertheless, semEP can exploit
structured knowledge, edge partitioning and node overlap, to make accurate and
diverse predictions, even in this sparse learning environment.

6 Conclusions and Future Work

We defined the semEP problem to create a minimal partitioning of drug-target
interaction edges such that the cluster density of each subset of interaction edges
is maximal. We map the semEP problem to the Vertex Coloring Graph problem
using Fdge Constraints. semEP combines the benefits of edge partitioning and
edge constraints (incident to the least similar drug-drug or target-target pairs)
to identify communities. We conducted an extensive evaluation of semEP on a

% http://stitch.embl.de/



Method [Nuclear receptor| GPCR|Ion channel Enzyme
semEP 4 5 1 4
BLM 2 1 0 0
NBI 1 1 1 2
GIP 3 3 1 1
LapRLS 5 3 2 2
KBMF2K 3 4 2 2

Table 5. Top 5 novel interactions manually validated with STITCH. Entries high-
lighted in bold correspond to the largest number of novel validations.

well-known dataset of drug-target interactions. The results suggest that semEP
exploits structured knowledge from semantically annotated data, and is clearly
able to predict novel interactions and enhance the performance of sophisticated
machine learning methods.

In future work, we will explore the use of semEP to identify interesting
clusters, and combine / compare with the structure learning of the PSL-based
method [11]. We will also apply semEP to other domains, e.g., citation graphs,
to identify topical and to predict future relationships between researchers.
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