LIBXSMM

LIBXSMM is a library for specialized dense and sparse matrix operations as well as for deep learning primitives
such as small convolutions. The library is targeting Intel Architecture with Intel SSE, Intel AVX, Intel AVX2,
Intel AVX-512 (with VNNI and Bfloat16), and Intel AMX (Advanced Matrix Extensions) supported by future Intel
processor code-named Sapphire Rapids. Code generation is mainly based on Just-In-Time (JIT) code specialization
for compiler-independent performance (matrix multiplications, matrix transpose/copy, sparse functionality, and deep
learning). LIBXSMM is suitable for "build once and deploy everywhere", i.e., no special target flags are needed to
exploit the available performance. Supported GEMM datatypes are: Fp64, FP32, bfloat16, int16, and int8.

For a list questions and answers, please also have a look at [https://github.com/libxsmm /libxsmm /wiki/Q&A%5D (ht
tps://github.com/libxsmm /libxsmm /wiki/Q&A).

Where to go for documentation?

¢« ReadtheDocs: main and sample documentation with full text search.
¢« PDF: main documentation file, and separate sample documentation.
o Articles: magazine article incl. sample code (full list of Articles).

Getting Started: The following C++ code is focused on a specific functionality but may be considered as Hello
LIBXSMM. Build the example with cd /path/to/libxsmm; make STATIC=0 (shared library), save the code under hello.cpp
(below) and compile with g++ -I/path/to/libxsmm/include hello.cpp -L/path/to/libxsmm/lib -lxsmm -1blas -o hello (GNU
CCC), and finally execute with LD_LIBRARY_PATH=/path/to/libxsmm/lib LIBXSMM_VERBOSE=2 ./hello.

#include <libxsmm.h>
#include <vector>
int main(int argc, charx argv[]) {
typedef double T;
int batchsize = 1000, m = 13, n = 5, k = 7;
std::vector<T> a(batchsize * m * k), b(batchsize * k * n), c(m * n, 0);
/* C/C++ and Fortran interfaces are avatlable */
typedef libxsmm_mmfunction<T> kernel_type;
/* generates and dispatches a matriz multiplication kernel (C++ functor) */
kernel_type kernel (LIBXSMM_GEMM_FLAG_NONE, m, n, k, 1.0 /*alpha*/, 1.0 /*beta*/);
assert (kernel);
for (int i = 0; i < batchsize; ++i) { /* 4nitialize input */
for (int ki = 0; ki < k; ++ki) {
for (int j = 0; j < m; ++j) ali * j * ki] = static_cast<T>(1) / ((i + j + ki) % 25);
for (int j = 0; j < n; ++j) b[i * j * kil = static_cast<T>(7) / ((i + j + ki) % 75);
}

3
3

}

/* kernel multiplies and accumulates matrices: C += A1 * Bi */
for (int i = 0; i < batchsize; ++i) kernel(&al[i * m * k], &b[i * k * n], &c[0]);

Plain C code as well as Fortran code resemble the same example.

What is a small matrix multiplication? When characterizing the problem-size by using the M, N, and K
parameters, a problem-size suitable for LIBXSMM falls approximately within (M N K)/3 <= 64 (which illustrates
that non-square matrices or even "tall and skinny" shapes are covered as well). The library is typically used to generate
code up to the specified threshold. Raising the threshold may not only generate excessive amounts of code (due to
unrolling in M or K dimension), but also miss to implement a tiling scheme to effectively utilize the cache hierarchy.
For auto-dispatched problem-sizes above the configurable threshold (explicitly JIT'ted code is not subject to the
threshold), LIBXSMM is falling back to BLAS. In terms of GEMM, the supported kernels are limited to Alpha := 1,
Beta := { 1, 0 }, and TransA := 'N'.

What is a small convolution? In the last years, new workloads such as deep learning and more specifically
convolutional neural networks (CNN) emerged and are pushing the limits of today's hardware. One of the expensive
kernels is a small convolution with certain kernel sizes such that calculations in the frequency space is not the most
efficient method when compared with direct convolutions. LIBXSMM's current support for convolutions aims for an
easy-to-use invocation of small (direct) convolutions, which are intended for CNN training and classification.

https://github.com/libxsmm/libxsmm/wiki/Q&A%5D(https://github.com/libxsmm/libxsmm/wiki/Q&A)
https://github.com/libxsmm/libxsmm/wiki/Q&A%5D(https://github.com/libxsmm/libxsmm/wiki/Q&A)
https://libxsmm.readthedocs.io/
https://libxsmm.readthedocs.io/libxsmm_samples/
https://github.com/libxsmm/libxsmm/raw/main/documentation/libxsmm.pdf
https://github.com/libxsmm/libxsmm/raw/main/documentation/libxsmm_samples.pdf
https://software.intel.com/sites/default/files/parallel-universe-issue-34.pdf
https://github.com/libxsmm/libxsmm/tree/main/samples/magazine
https://github.com/libxsmm/libxsmm/tree/main/samples/hello
https://github.com/libxsmm/libxsmm/tree/main/samples/hello
https://github.com/libxsmm/libxsmm/blob/main/samples/hello/hello.c
https://github.com/libxsmm/libxsmm/blob/main/samples/hello/hello.f
https://github.com/libxsmm/libxsmm/tree/main/samples/hello
libxsmm_tune.md#auto-dispatch

Interfaces and Domains
Overview

Please have a look at [https://github.com/libxsmm /libxsmm /tree/main/include%5D (https://github.com /libxsmm/lib
xsmm /tree/main/include) for all published functions. Get started with the following list of available domains and
documented functionality:

e MM: Matrix Multiplication

e TPP: Tensor Processing Primitives
e DNN: Deep Neural Networks

e AUX: Service Functions

e PERF': Performance

o BE: Backend

To initialize library internal resources, an explicit initialization routine helps to avoid lazy initialization overhead when
calling LIBXSMM for the first time. The library deallocates internal resources at program exit, but also provides a
companion of the afore mentioned initialization (finalize).

/*% Initialize the library; pay for setup cost at a specific point. */

void libxsmm_init (void);

/**% De-initialize the library and free internal memory (optional). */
void libxsmm_finalize(void);

Matrix Multiplication

This domain (MM) supports Small Matrix Multiplications (SMM), batches of multiple multiplications as well as the
industry-standard interface for GEneral Matrix Matrix multiplication (GEMM).

The Matrix Multiplication domain (MM) contains routines for:

e Small, tiled, and parallelized matrix multiplications
o Manual code dispatch (customized matrix batches)
o Batched multiplication (explicit interface)
Call wrapper (static and dynamic linkage)

Deep Learning

The Deep Learning domain is detailed by the following sample codes. Here we demonstrate how common operators
in deep learning applications (GEMM with activation function fusion, Convolutions with activation function fusion,
various norming operators, and pooling operators, etc.) can be implemented using the Tensor Processing Primitive
provided by LIBXSMM. Example drivers for performance evaluation are provided as part of LIBXSMM__DNN.

Service Functions

For convenient operation of the library and to ease integration, some service routines are available. These routines
may not belong to the core functionality of LIBXSMM (SMM or DNN domain), but users are encouraged to use this
domain (AUX). There are two categories: (1) routines which are available for C and FORTRAN, and (2) routines that
are only available per C interface.

The service function domain (AUX) contains routines for:

o Getting and setting the target architecture
¢ Getting and setting the verbosity

o Measuring time durations (timer)

o Dispatching user-data and multiple kernels
o Loading and storing data (I/0)

o Allocating memory

https://github.com/libxsmm/libxsmm/tree/main/include%5D(https://github.com/libxsmm/libxsmm/tree/main/include)
https://github.com/libxsmm/libxsmm/tree/main/include%5D(https://github.com/libxsmm/libxsmm/tree/main/include)
libxsmm_tpp.md
libxsmm_mm.md
libxsmm_mm.md#overview
libxsmm_mm.md#manual-code-dispatch
libxsmm_mm.md#batched-multiplication
libxsmm_mm.md#call-wrapper
https://github.com/libxsmm/libxsmm/tree/main/samples/deeplearning
https://github.com/libxsmm/libxsmm-dnn/tree/main/tests
libxsmm_aux.md
libxsmm_aux.md#getting-and-setting-the-target-architecture
libxsmm_aux.md#getting-and-setting-the-verbosity
libxsmm_aux.md#timer-facility
libxsmm_aux.md#user-data-dispatch
libxsmm_aux.md#meta-image-file-io
libxsmm_aux.md#memory-allocation

Backend

More information about the JIT-backend and the code generator can be found in a separate document. The encoder
sample collection can help to get started writing a kernel using LIBXSMM. Please note, LIBXSMM's stand-alone
generator-driver is considered legacy (deprecated).

Build Instructions
Overview

The main interface file is generated, and it is therefore not stored in the code repository. To inspect the interface for
C/C++ and FORTRAN, one can take a look at the template files used to generate the actual interface. There are two
general ways to build and use LIBXSMM:

o Classic Library (ABI) and Link Instructions (C/C++ and FORTRAN)
e Header-Only (C and C++)

Note: LIBXSMM is available as prebuilt package for Fedora/RedHat/CentOS, Debian/Ubuntu, FreeBSD, and others.
Further, LIBXSMM can be installed with the Spack Package Manager or per EasyBuild+EasyConfig.

Classic Library (ABI)

There are two ways to rely on prebuilt code for a given project: (1) using LIBXSMM's Makefile based build system,
(2) or using another build system and writing own rules for building LIBXSMM. The Makefile based build system relies
on GNU Make (typically associated with the make command, but e.g. FreeBSD is calling it gmake). The build can be
customized by using key-value pairs. Key-value pairs can be supplied in two ways: (1) after the "make" command, or
(2) prior to the "make" command (env) which is effectively the same as exporting the key-value pair as an environment
variable (export, or setenv). Both methods can be mixed (the second method may require make's -e flag).

In contrast to header-only which does not require configuration by default, 3rd-party build systems can compile and
link LIBXSMM's sources but still avoid configuring the library (per libxsmm_config.py). The prerequisite to omit
configuration is to opt-in by defining LIBXSMM_DEFAULT__CONFIG (-p). The zero-config feature is not available
for LIBXSMM's Fortran interface.

Note: By default, C/C++ and FORTRAN compilers are needed (some sample code is written in C++). Beside of
specifying the compilers (make CXX=g++ CC=gcc FC=gfortran and maybe AR=ar), the need for a FORTRAN compiler can
be relaxed (make FC= or make FORTRAN=0). The latter affects the availability of the MODule file and the corresponding
libxsmm.f library (the interface libxsmm.f is still generated).

The build system considers a set of given key-value pairs as a single unique build and triggers a rebuild for a distinct
set of flags. For more advanced builds or additional background, please consult the section about Customization.
To generate the interface of the library inside of the include directory and to build the static library (by default,
STATIC=1 is activated). Run any (or both) of the following command(s):

make STATIC=0
make

On CRAY systems, the CRAY Compiling Environment (CCE) should be used regardless of utilizing the CRAY
compiler, the Intel Compiler, or the GNU Compiler Collection (GCC). The CCE is eventually suppressing to build
shared libraries (STATIC=0). In any case, (1) switch to the desired compiler (module load/switch), and (2) rely on:

make CXX=CC CC=cc FC=ftn

A variety of build environments is out-of-the-box compatible, see [https://github.com/libxsmm /libxsmm /wiki/Comp
atibility%5D (https://github.com/libxsmm/libxsmm /wiki/Compatibility). If the build process is not successful, it may
help to avoid advanced GCC flags. This is useful with a tool chain, which pretends to be GCC-compatible (and is
treated as such) but fails to consume the afore mentioned flags:

make COMPATIBLE=1

libxsmm_be.md
https://github.com/libxsmm/libxsmm/tree/main/samples/encoder
https://github.com/libxsmm/libxsmm/tree/main/samples/encoder
libxsmm_be.md#generator-driver
https://github.com/libxsmm/libxsmm/blob/main/src/template/libxsmm.h
https://github.com/libxsmm/libxsmm/blob/main/src/template/libxsmm.f
https://computing.llnl.gov/projects/spack-hpc-package-manager
https://github.com/easybuilders
libxsmm_tune.md
https://github.com/libxsmm/libxsmm/wiki/Compatibility%5D(https://github.com/libxsmm/libxsmm/wiki/Compatibility)
https://github.com/libxsmm/libxsmm/wiki/Compatibility%5D(https://github.com/libxsmm/libxsmm/wiki/Compatibility)

In case of outdated Binutils, compilation can fail to assemble code when building the library (this has nothing to do
with JIT-generated code and it does not affect how JIT-code is targeting the system). LIBXSMM implements some
functionality using compiler-intrinsics and multiple code-paths which are scheduled according to CPUID. In contrast
to INTRINSICS=2 (default), INTRINSICS=1 enables a fully static code path according to the desired target. If no target
is given (e.g., AVX=3, or AVX=2), instruction set extensions cannot be leveraged for such code-paths. Try to fix failing
compilation by building the latest GNU Binutils (and export PATH=/path/to/binutils/bin:${PATH}). Binutils are versioned
independently of GNU GCC and other compilers. If one cannot update Binutils, work around with a CPUID-value as
tabulated in libxsmm_ cpuid.h: start at the upper end (less than 1999) and decrement until compilation passes (make
INTRINSICS=CPUID, e.g., make INTRINSICS=1021). As a last resort, rely on a fully static code path:

make INTRINSICS=1

To test and validate a build, please consult [https://github.com/libxsmm /libxsmm /wiki/Validation%5D (https:
//github.com/libxsmm /libxsmm /wiki/Validation). To run some basic sanity checks, remember that each set of given
key-value pairs represents a different build (and test):

make STATIC=0 tests

To remove intermediate files, or to remove all generated files and folders (including the interface and the library
archives), run one of the make-targets below. An additional distclean-target recursively cleans the entire tree (after
version 1.9).

make clean
make realclean

FORTRAN code can make use of LIBXSMM:

o By using the module and linking with libxsmmf, 1ibxsmm, and libxsmmext,
¢ By including 1ibxsmm.f and linking with libxsmm, and libxsmmext, or
o By (implicitly) calling a SUBROUTINE and linking with 1ibxsmm, and 1ibxsmmext.

Note: libxsmmf requires libxsmmext (starting with LIBXSMM 2.0), and thereby requires to link with the OpenMP
runtime as well.

Using the Fortran module (or including the interface), requires at least a Fortran 2003 compiler (F2K3). FORTRAN 77
compatibility is only implicitly available (no interface), and the available subset of routines is documented in libxsmm.f
and marked with comments (part of the implementation).

Header-Only

Version 1.4.4 introduced support for "header-only" usage in C and C++. By only including 1ibxsmm_source.h allows
to get around building the library. However, this gives up on a clearly defined application binary interface (ABI).
An ABI may allow for hot-fixes after deploying an application (when relying on the shared library form), and it may
also ensure to only rely on the public interface of LIBXSMM. In contrast, the header-only form not only exposes the
internal implementation of LIBXSMM but can also increase the turnaround time during development of an application
(due to longer compilation times). The header file is intentionally named "libxsmm_ source.h" since this header file
relies on the src directory (with the implications as noted earlier).

The header-only form depends on 1libxsmm_source.h which is generated according to the content of the source folder
(src). LIBXSMM 1.16 (and later) provides header-only support without invoking a make-target (zero configuration)
for any given checkout of LIBXSMM. To use configured header-only (non-default), LIBXSMM__CONFIGURED must
be defined (-p). Previously, it was necessary to invoke make header-only (v1.6.2 or later), make cheader (prior to v1.6.2),
or any target building the library (make). The zero-config feature allows 3rd-party build systems an easier integration
of LIBXSMM, which also holds true if the system builds LIBXSMM from source (see classic ABI). Fortran code may
include 1libxsmm.f but still requires that interface to be generated.

Note: building an application applies the same build settings to LIBXSMM! For instance, to omit debug code inside
of LIBXSMM npeBUG must be defined (-DNDEBUG).

https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_cpuid.h
https://github.com/libxsmm/libxsmm/wiki/Validation%5D(https://github.com/libxsmm/libxsmm/wiki/Validation)
https://github.com/libxsmm/libxsmm/wiki/Validation%5D(https://github.com/libxsmm/libxsmm/wiki/Validation)
https://github.com/libxsmm/libxsmm/search?q=implementation+provided+for+Fortran+77+compatibility
https://github.com/libxsmm/libxsmm/tree/main/src

Rules for building LIBXSMM

LIBXSMM can be used as header-only library, i.e., no source code must be (pre-)built. However, it can be desirable to
build LIBXSMM as an intermediate library using a custom setup or build system. The latter can still implement custom
build rules to configure LIBXSMM's interface before building the code. More likely, building LIBXSMM from source
in a custom fashion can still be omitting to configure the interface and rely on "(zero-config)[#zero-config-abi]", i.e.,
defining LIBXSMM__DEFAULT _CONFIG (-DLIBXSMM_DEFAULT_CONFIG). For example, a CMake module for LIBXSMM
can look like:
include (FetchContent)
FetchContent_Declare (

Xsmm

URL https://github.com/chelini/libxsmm/archive/<your-preferred-revision>.tar.gz

URL_HASH SHA256=<sha2b6sum-corresponding-to-above-revision>
)

FetchContent_GetProperties (xsmm)
if (NOT xsmm_POPULATED)

FetchContent_Populate (xsmm)
endif ()

set (LIBXSMMROOT ${xsmm_SOURCE_DIR})

file (GLOB _GLOB_XSMM_SRCS LIST_DIRECTORIES false CONFIGURE_DEPENDS ${LIBXSMMROOT}/src/*.c)
list (REMOVE_ITEM _GLOB_XSMM_SRCS ${LIBXSMMROOT}/src/libxsmm_generator_gemm_driver.c)

set (XSMM_INCLUDE_DIRS ${LIBXSMMROOT}/include)

add_library (xsmm STATIC ${_GLOB_XSMM_SRCS})

target_include_directories (xsmm PUBLIC ${XSMM_INCLUDE_DIRS})

target_compile_definitions (xsmm PUBLIC
LIBXSMM_DEFAULT_CONFIG

)
target_compile_definitions (xsmm PRIVATE

__BLAS=0
)

Above, LIBXSMM__DEFAULT__CONFIG is propagated to dependent code (puBLIC) and further, LIBXSMM is
configured to not require a LAPACK/BLAS library/fallback (-D__BLAS=0).

Link Instructions

Using the classic ABI (including Fortran code), requires linking LIBXSMM against the application. The library is
agnostic with respect to the threading-runtime, and therefore an application is free to use any threading runtime (e.g.,
OpenMP). The library is also thread-safe, and multiple application threads can call LIBXSMM!'s routines concurrently.
Enabling OpenMP for LIBXSMM's main library is supported as well (OMP=1), and mostly affects the synchronization
primitives used inside of the library. All the "omp" functionality (function postfix) is served by the libxsmmext library,
which is automatically built with OpenMP enabled. When using this "omp" functionality, 1ibxsmmext needs to be
present at the link line.

Library | Purpose :| libxsmm | Thread-safe core functions (same routine can be called concurrently). Contains routines
that can take a thread-ID and the number of library-external threads. libxsmmf | Necessary when using the Fortran
MODule but not when including libxsmm.f or relying on implicit interfaces (Fortran 77). libxsmmext | Provides
library-internal OpenMP-threaded functions carrying the omp postfix when compared to function name names of the
core library. libxsmmnoblas | Supplies faked symbols for dgemm (and others) and thereby removes the need to link
against a LAPACK/BLAS library.

To ease linking with LIBXSMM, pkg-config can be used. For example:

export PKG_CONFIG_PATH=/path/to/libxsmm/1lib
pkg-config libxsmm --1ibs

Similarly, an application is free to choose any BLAS or LAPACK library (if the link model available on the OS supports
this), and therefore linking GEMM routines when linking LIBXSMM itself (by supplying BLAS=1|2) may prevent a
user from making this decision at the time of linking the actual application. To use LIBXSMM without GEMM-related
functionality, any BLAS-dependency can be removed in two ways: (1) building a special library with make BLAS=0, or
(2) linking the application against the libxsmmnoblas library. If an application however uses BLAS already, the Call
Wrapper can be used to intercept existing BLAS calls (and to rely on LIBXSMM instead).

https://github.com/libxsmm/libxsmm/search?q=implementation+provided+for+Fortran+77+compatibility
libxsmm_mm.md#call-wrapper
libxsmm_mm.md#call-wrapper

Note: LIBXSMM does not support to dynamically link 1ibxsmm or libxsmmext ("so") when BLAS is linked statically
("a"). If BLAS is linked statically, the static version of LIBXSMM must be used!

Installation

There are two main mechanisms to install LIBXSMM (both mechanisms can be combined): (1) building the library in
an out-of-tree fashion, and (2) installing into a certain location. Building in an out-of-tree fashion looks like:

cd libxsmm-install
make -f /path/to/libxsmm/Makefile

Installation into a specific location looks like (PREFIX or DESTDIR):

make MNK="1 2 3 4 5" PREFIX=/path/to/libxsmm-install install

Both PREFIX and DESTDIR are equivalent and can be relative or absolute paths. An installation can be repeated for
different locations without triggering a rebuild. The prefix directory inside of each of the package configuration files is
set to where LIBXSMM is built (staging folder) unless PREFIX or DESTDIR is specified. The effect of PREFIX (or DESTDIR)
with respect to the pkg-config files is independent of whether the install-target is invoked or not (make).

Further, performing make install-minimal omits the documentation (default: PREFIX/share/libxsmm). Moreover, PINCDIR,
POUTDIR, PBINDIR, and PDOCDIR allow to customize the locations underneath of the PREFIX location. To build
a general package for an unpredictable audience (Linux distribution, or similar), it is advised to not over-specify or
customize the build step, i.e., JIT, SSE, AVX, OMP, BLAS, etc. should not be used. The following is building and
installing a complete set of libraries where the generated interface matches both the static and the shared libraries:

make PREFIX=/path/to/libxsmm-install STATIC=0 install
make PREFIX=/path/to/libxsmm-install install

Runtime Control
Handling Errors

The library handles errors with mechanisms available to the C programming language (no exceptions). The backend
uses result codes passed by an argument rather than an actual return value. Such an argument is often a descriptor
(struct) guiding and covering the state of the code generation. The frontend however may not hand-out any error
state, which can be a big relief on the call-side. Instead, the frontend implements a verbose mode to inform about
unexpected input or an error captured from the backend. Guiding principles of LIBXSMM are muted operation by
default (non-verbose) and no unexpected exit from execution.

Verbose Mode

The verbose mode (level of verbosity) allows for an insight into the code dispatch mechanism by receiving a small,
tabulated statistic as soon as the library terminates. The design point for this functionality is to not impact the
performance of any critical code path, i.e., verbose mode is always enabled and does not require symbols (SYM=1) or
debug code (DBG=1). The statistics appears (stderr) when the environment variable LIBXSMM _VERBOSE is set to
a non-zero value. For example:

LIBXSMM_VERBOSE=1 ./myapplication

[... application output]
HSW/SP TRY JIT STA coL
0..13 0 0 0 0
14..23 0 0 0 0
24..128 3 3 0 0

The tables are distinct between single-precision and double-precision, but either table is pruned if all counters are
zero. If both tables are pruned, the library shows the code path which would have been used for JI'T'ting the code:
LIBXSMM_TARGET=hsw (otherwise the code path is shown in the table's header). The actual counters are collected for
three buckets: small kernels (MNK'/3 <= 13), medium-sized kernels (13 < MNK!/? <= 23), and larger kernels
(23 < MNKY3 <= 64; the actual upper bound depends on LIBXSMM_MAX MNK as selected at compile-time).
Keep in mind, that "larger" is supposedly still small in terms of arithmetic intensity (which grows linearly with

libxsmm_aux.md#getting-and-setting-the-verbosity

the kernel size). Unfortunately, the arithmetic intensity depends on the way a kernel is used (which operands are
loaded /stored into main memory), and it is not performance-neutral to collect this information.

The TRY counter represents all attempts to register statically generated kernels, and all attempts to dynamically
generate and register kernels. The TRY counter includes rejected JIT requests due to unsupported GEMM arguments.
The JIT and STA counters distinct the successful cases of the afore mentioned event (TRY) into dynamically (JIT)
and statically (STA) generated code. In case the capacity (O(n) = 10°) of the code registry is exhausted, no more
kernels can be registered although further attempts are not prevented. Registering many kernels (O(n) = 10%) may
ramp the number of hash key collisions (COL), which can degrade performance. The latter is prevented if the small
thread-local cache is utilized effectively.

Since explicitly JIT-generated code (1ibxsmm_?mmdispatch) does not fall under the THRESHOLD criterion, the above
table is extended by one line if large kernels have been requested. This indicates a missing threshold-criterion
(customized dispatch) or asks for cache-blocking the matrix multiplication. Setting a verbosity level of at least two
summarizes the number of registered JIT-generated kernels, which includes the total size and counters for GEMM,
MCOPY (matrix copy), and TCOPY (matrix transpose) kernels.

Registry: 20 MB (gemm=0 mcopy=14 tcopy=0)

If the call-wrapper is used, an additional runtime statistic becomes available (see Call Wrapper).

Note: Setting LIBXSMM__VERBOSE to a negative value dumps each generated JIT kernel to a file (binary) with
each file being named like the function name shown in Intel VTune. Disassembly of the raw binary files can be
accomplished by:

objdump -D -b binary -m i386 -M x86-64 [JIT-dump-filel

Call Trace

During the initial steps of employing the LIBXSMM API, one may rely on a debug version of the library (make DBG=1).
The latter also implies console output (stderr) in case of an error/warning condition inside of the library. It is also
possible to print the execution flow (call trace) inside of LIBXSMM (can be combined with DBG=1 or OPT=0):

make TRACE=1

Building an application which traces calls (inside of the library) requires the shared library of LIBXSMM, alternatively
the application is required to link the static library of LIBXSMM in a dynamic fashion (GNU tool chain: -rdynamic).
Tracing calls (without debugger) can be then accomplished by an environment variable called LIBXSMM_TRACE.

LIBXSMM_TRACE=1 ./myapplication

Syntactically up to three arguments separated by commas (which allows to omit arguments) are taken (tid,i,n): tid
signifies the ID of the thread to be traced with 1...NTHREADS being valid and where LIBXSMM_ TRACE=1 is
filtering for the "main thread" (in fact the first thread running into the trace facility); grabbing all threads (no filter)
can be achieved by supplying a negative id (which is also the default when omitted). The second argument is pruning
higher levels of the call-tree with i=1 being the default (level zero is the highest at the same level as the main function).
The last argument is taking the number of inclusive call levels with n=-1 being the default (signifying no filter).

Although the 1trace (Linux utility) provides similar insight, the trace facility might be useful due to the afore
mentioned filtering expressions. Please note that the trace facility is severely impacting the performance (even with
LIBXSMM TRACE=0), and this is not just because of console output but rather since inlining (internal) functions
might be prevented along with additional call overhead on each function entry and exit. Therefore, debug symbols can
be also enabled separately (make syM=1; implied by TRACE=1 or DBG=1) which might be useful when profiling an
application.

Verification

This section refers to testing correctness of an application using LIBXSMM utilities, i.e., using libxsmm_matdiff
or libxsmm_matdiff_epsilon in particular. The former function (libxsmm_matdiff) compares two matrices (which can
degenerate to vector shape), and yields a structure with information about the difference of both matrices (gold vs.
test). The latter function (1ibxsmm_matdiff_epsilon) combines absolute and relative norms (given by afore mentioned
structure) and calculates a scalar "epsilon" which can be used to check against a margin.

libxsmm_mm.md#call-wrapper
libxsmm_prof.md#intelvtuneamplifier

Using libxsmm_matdiff_epsilon in an application exposes an environment variable LIBXSMM_MATDIFF which can specify a file
or directory path (LIBXSMM_MATDIFF=1 simply uses some filename as default). In any case, the application appends one line
to the respective file for each call of 1ibxsmm_matdiff_epsilon. A data record consists of the epsilon and the command line
used to launch the application. A generated file can be further evaluated, e.g., sort -gki libxsmm_matdiff.log | tail -n 10
which yields the largest ten epsilon values discovered along with the application's command line.

The environment variable LIBXSMM_MATDIFF can carry optional space-separated arguments to amend each file entry like
export LIBXSMM_MATDIFF="libxsmm_matdiff.log hello world". In sophisticated cases this can be used to amend a value only
known at runtime, e.g., the actual margin which is used to judge the epsilon (putenv).

Performance

Profiling an application, which uses LIBXSMM's JIT-code is well-supported. The library supports Intel VTune Amplifier
and Linux perf. Details are given on how to include profiler support, and how to run the application.

e Profiling using Intel VTune Amplifier
e Profiling using Linux perf

At build time, a variety of options exist to customize LIBXSMM. The library is setup for a broad range of use cases,
which include sophisticated defaults for typical use.

o Customizing performance
¢ Tuning auto-dispatch

To find performance results of applications or performance reproducers, the repository provides an orphaned branch
called "results" which collects collateral material such as measured performance results along with explanatory figures.
The results can be found at [https://github.com/libxsmm /libxsmm/tree/results#libxsmm-results%5D (https:
//github.com/libxsmm /libxsmm /tree/results#libxsmm-results), or the results can be cloned as shown below.

git clone --branch results \

https://github.com/libxsmm/libxsmm.git \
libxsmm-results

Please note that comparing performance results depends on whether the operands of the matrix multiplication are
streamed or not. For example, multiplying with all matrices covered by the L1 cache may have an emphasis towards
an implementation which perhaps performs worse for the real workload (if this real workload needs to stream some or
all matrices from the main memory). Most of the code samples are aimed to reproduce performance results, and it is
encouraged to model the exact case or to look at real applications.

Applications
High Performance Computing (HPC)

[1] [https://cp2k.org/%5D (https://cp2k.org/): Open Source Molecular Dynamics and the DBCSR library, which
processes batches of small matrix multiplications. The batches originate from a distributed block-sparse matrix with
problem-specific small matrices. Starting with CP2K 3.0, LIBXSMM can substitute CP2K's 1ibsmm library.

[2] [https://github.com/SeisSol/SeisSol/%5D (https://github.com/SeisSol/SeisSol/): SeisSol is one of the
leading codes for earthquake scenarios, for simulating dynamic rupture processes. LIBXSMM provides highly
optimized assembly kernels which form the computational back-bone of SeisSol (see [https://github.com/TUM-
15 /seissol__kernels/%5D (https://github.com/TUM-15/seissol__kernels/).

[3] [https://github.com/NekBox/NekBox%5D (https://github.com/NekBox/NekBox): NekBox is a highly scalable and
portable spectral element code, which is inspired by the Nek5000 code. NekBox is specialized for box geometries and
intended to prototype new methods as well as to leverage FORTRAN beyond the FORTRAN 77 standard. LIBXSMM
can be used to substitute the MXM__STD code. Please also note LIBXSMM's NekBox reproducer.

[4] [https://github.com/Nek5000/Nek5000%5D (https://github.com/Nek5000/Nek5000): Nek5000 is the open-
source, highly-scalable, always-portable spectral element code from [https://nek5000.mcs.anl.gov/%5D (https:
//nek5000.mcs.anl.gov/). The development branch of the Nek5000 code incorporates LIBXSMM.

libxsmm_prof.md#intelvtuneamplifier
libxsmm_prof.md#linuxperf
libxsmm_tune.md#tuning
libxsmm_tune.md#auto-dispatch
https://github.com/libxsmm/libxsmm/tree/results#libxsmm-results%5D(https://github.com/libxsmm/libxsmm/tree/results#libxsmm-results)
https://github.com/libxsmm/libxsmm/tree/results#libxsmm-results%5D(https://github.com/libxsmm/libxsmm/tree/results#libxsmm-results)
https://github.com/libxsmm/libxsmm/tree/main/samples
https://cp2k.org/%5D(https://cp2k.org/)
https://github.com/cp2k/dbcsr
https://www.cp2k.org/version_history
https://github.com/SeisSol/SeisSol/%5D(https://github.com/SeisSol/SeisSol/)
https://github.com/TUM-I5/seissol_kernels/%5D(https://github.com/TUM-I5/seissol_kernels/)
https://github.com/TUM-I5/seissol_kernels/%5D(https://github.com/TUM-I5/seissol_kernels/)
https://github.com/NekBox/NekBox%5D(https://github.com/NekBox/NekBox)
https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/NekBox/blob/box/mxm_std.F90
https://github.com/libxsmm/libxsmm/tree/main/samples/nek#nek-sample-collection
https://github.com/Nek5000/Nek5000%5D(https://github.com/Nek5000/Nek5000)
https://nek5000.mcs.anl.gov/%5D(https://nek5000.mcs.anl.gov/)
https://nek5000.mcs.anl.gov/%5D(https://nek5000.mcs.anl.gov/)
https://github.com/Nek5000/Nek5000/blob/master/core/mxm_wrapper.f

[5] [http://pyfr.org/%5D(http://pyfr.org/): PyFR is an open-source Python based framework for solving advection-
diffusion type problems on streaming architectures by using the flux reconstruction approach. PyFR 1.6.0 optionally
incorporates LIBXSMM as a matrix multiplication provider for the OpenMP backend. Please also note LIBXSMM's
PyFR-related code sample.

[6] [http://dial3343.0org/about/%5D (http://dial3343.org/about/): The Extreme-scale Discontinuous Galerkin
Environment (EDGE) is a solver for hyperbolic partial differential equations with emphasis on seismic simulations.
The EDGE source code optionally relies on LIBXSMM, but for high performance LIBXSMM's kernels are highly

recommended.

[7] [https://sxs-collaboration.github.io/spectre/%5D (https://sxs-collaboration.github.io/spectre/): SpECTRE
is an open-source code for multi-scale, multi-physics problems in astrophysics and gravitational physics which runs
at Petascale and is designed for Exascale computers. In the future, SpECTRE may be applied to problems across
discipline boundaries in fluid dynamics, geoscience, plasma physics, nuclear physics, and engineering.

[8] [https://ceed.exascaleproject.org/ceed-code/%5D (https://ceed.exascaleproject.org/ceed-code/): The Center
for Efficient Exascale Discretizations (CEED) is building on the efforts of the Nek5000, MFEM, MAGMA, OCCA
and PETSc projects to develop application program interfaces (APIs), both at high-level and at low-level to enable
applications to take advantage of high-order methods. The CEED low-level API, libCEED uses LIBXSMM as a

backend for high performance on CPUs.

[9] [https://github.com/romeric/Fastor%5D (https://github.com/romeric/Fastor): Fastor is a lightweight high
performance tensor algebra framework for modern C++ and can optionally use LIBXSMM as JIT-backend.

Machine Learning (ML)

[10] [https://github.com/plaidml/plaidml%5D (https://github.com/plaidml/plaidml): PlaidML is an open source
tensor compiler aiming for performance portability across a wide range of CPUs, GPUs and other accelerators.
Combined with Intel’s nGraph compiler, PlaidML is targeting popular deep learning frameworks such as PyTorch,
Keras (TensorFlow), and OpenVino. PlaidML/v1l (development branch) adopted MLIR, an extensible compiler
infrastructure gaining industry-wide adoption. PlaidML/v1 started using LIBXSMM as backend for targeting CPUs.

[11] [https://github.com/intel/intel-extension-for-pytorch%5D (https://github.com/intel /intel-extension-for-pytorch):
Intel Extension for PyTorch aims for a smooth user experience of PyTorch on CPUs by the means of good performance.
The extension pack started to rely on LIBXSMM for achieving high performance on CPUs.

[12] [https://github.com/libxsmm /tpp-pytorch-extension%5D (https://github.com/libxsmm /tpp-pytorch-extension):
Intel(R) Tensor Processing Primitive Extension for pytorch is an open source software library the integrates Tensor
Processing Primitives (TPP) into pytorch. It is aiming for a smooth user experience of PyTorch on CPUs by the
means of good performance. Intel's MLPerf Training submission codes leverage this project.

[13] [https://github.com/libxsmm /libxsmm-dnn%5D (https://github.com/libxsmm /libxsmm-dnn): LIBXSMM-DNN is
an open source software library that demonstrates how Tensor Processing Primitives (TPP) can be used to implement
various deep learning primitives such as convolutions, linear layers or even pooling and norming. Due to the use of
TPP not a single line of platform-specific code is needed.

Automated Driving (AD)

[15] [https://software.seek.intel.com/accelerating-eigen-math-library%5D (https:/ /software.seek.intel.com/accelerating-
eigen-math-library): Accelerating The Eigen Math Library for Automated Driving Workloads: The Need for Speed in
Kalman Filtering. An article in Issue 31 of The Parallel Universe magazine (pdf).

References

[1] [https://scl9.supercomputing.org/proceedings/tech__poster/tech__poster_ pages/rpost244.html%5D (https:
//scl9.supercomputing.org/proceedings/tech__poster/tech_poster_pages/rpost244.html): High-Performance Deep
Learning via a Single Building Block (poster and abstract), SC’19: The International Conference for High Performance
Computing, Networking, Storage, and Analysis, Denver (Colorado).

http://pyfr.org/%5D(http://pyfr.org/)
http://pyfr.org/user_guide.php
https://github.com/libxsmm/libxsmm/tree/main/samples/pyfr
http://dial3343.org/about/%5D(http://dial3343.org/about/)
https://github.com/3343/edge
https://sxs-collaboration.github.io/spectre/%5D(https://sxs-collaboration.github.io/spectre/)
https://ceed.exascaleproject.org/ceed-code/%5D(https://ceed.exascaleproject.org/ceed-code/)
https://ceed.exascaleproject.org/libceed/
https://github.com/CEED/libCEED#backends
https://github.com/romeric/Fastor%5D(https://github.com/romeric/Fastor)
https://github.com/romeric/Fastor/wiki/9.-Using-the-LIBXSMM-MKL-JIT-backend
https://github.com/plaidml/plaidml%5D(https://github.com/plaidml/plaidml)
https://github.com/plaidml/plaidml/tree/plaidml-v1
https://mlir.llvm.org/
https://github.com/intel/intel-extension-for-pytorch%5D(https://github.com/intel/intel-extension-for-pytorch)
https://arxiv.org/abs/2005.04680
https://github.com/libxsmm/tpp-pytorch-extension%5D(https://github.com/libxsmm/tpp-pytorch-extension)
https://arxiv.org/abs/2104.05755
https://github.com/mlcommons/training_results.1/tree/main/Intel/benchmarks/bert/implementations/pytorch-cpu
https://github.com/libxsmm/libxsmm-dnn%5D(https://github.com/libxsmm/libxsmm-dnn)
https://arxiv.org/abs/2104.05755
https://software.seek.intel.com/accelerating-eigen-math-library%5D(https://software.seek.intel.com/accelerating-eigen-math-library)
https://software.seek.intel.com/accelerating-eigen-math-library%5D(https://software.seek.intel.com/accelerating-eigen-math-library)
https://software.intel.com/content/www/us/en/develop/download/parallel-universe-magazine-issue-31-january-2018.html
https://software.intel.com/content/dam/develop/public/us/en/documents/parallel-universe-issue-31.pdf
https://sc19.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost244.html%5D(https://sc19.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost244.html)
https://sc19.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost244.html%5D(https://sc19.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost244.html)
https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost244s2-file2.pdf
https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost244s2-file3.pdf

[2] [https://dl.acm.org/doi/10.1109/SC.2018.00069%5D (https://dl.acm.org/doi/10.1109/SC.2018.00069): Anatomy of
High-Performance Deep Learning Convolutions on SIMD Architectures (paper). SC'18: The International Conference
for High Performance Computing, Networking, Storage, and Analysis, Dallas (Texas).

[3] [https://pascl7.pasc-conference.org/fileadmin/user_upload/pascl7/program/post116s2.pdf%5D (https:
//pascl7.pasc-conference.org/fileadmin/user__upload/pascl7/program/post116s2.pdf): DBCSR: A Sparse
Matrix Multiplication Library for Electronic Structure Codes (poster), PASC’17: The PASC17 Conference, Lugano
(Switzerland).

[4] [https://scl7.supercomputing.org/SC17%20Archive/tech__poster/tech_poster_pages/post190.html%5D (https:
//scl7.supercomputing.org/SC17%20Archive/tech__poster/tech__poster_pages/post190.html): Understanding
the Performance of Small Convolution Operations for CNN on Intel Architecture (poster and abstract), SC’17: The
International Conference for High Performance Computing, Networking, Storage, and Analysis, Denver (Colorado).

[5] [https://www.computer.org/csdl/proceedings-article/sc/2016/8815a981/120mNCeaQ1D%5D (https://www.co
mputer.org/csdl/proceedings-article/sc/2016/8815a981/120mNCeaQ1D): LIBXSMM: Accelerating Small Matrix
Multiplications by Runtime Code Generation. SC'16: The International Conference for High Performance Computing,
Networking, Storage and Analysis, Salt Lake City (Utah).

[6] [http://scl5.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster pages/post137.html%5
D(http://scl5.supercomputing.org/sites/all/themes/SC15images/tech poster/tech poster pages/post137.html):
LIBXSMM: A High Performance Library for Small Matrix Multiplications (poster and abstract). SC'15: The
International Conference for High Performance Computing, Networking, Storage and Analysis, Austin (Texas).

[7] Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning & HPC
Workloads SC'21: The International Conference for High Performance Computing, Networking, Storage and Analysis,
St Louis.

Articles

[1] [https://www.nextplatform.com/2019/10/09/cloudy-supercomputers-join-the-hpc-petascale-club/%5D (https:
//www.nextplatform.com/2019/10/09/cloudy-supercomputers-join-the-hpec-petascale-club/): Cloudy Supercomputers
Join the HPC Petascale Club. An article written by Rob Farber, 2019. The article covers LIBXSMM in a separate
section.

[2] [https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/%5D (https:
//www.nextplatform.com/2019/06/26 /counting-the-cost-of-scaling-hpc-applications/): Counting The Cost Of Scaling
HPC Applications. An article written by Timothy Prickett Morgan, 2019. This article is about CP2K Open Source
Molecular Dynamics and not about LIBXSMM. However, LIBXSMM was key for application performance.

[3] [https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/%5D (https:
//www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/): Azure Benchmarks HC-series
Across Twenty-thousand Cores for HPC. An article written by John Russell, 2019. This article is about CP2K Open
Source Molecular Dynamics and not about LIBXSMM. However, LIBXSMM was key for application performance.

[4] [https://software.intel.com /sites/default /files/parallel-universe-issue-34.pdf%5D (https: / /software.intel.com /con
tent/www /us/en/develop/download/parallel-universe-magazine-issue-34-october-2018.html): LIBXSMM: An Open
Source-Based Inspiration for Hardware and Software Development at Intel (pdf). An article written by Hans Pabst,
Greg Henry, and Alexander Heinecke, 2018.

[5] [https://medium.com/@Qrmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-applications-
9143¢6¢93125%5D (https: //medium.com/@rmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-
applications-9143c6¢93125): LIBXSMM Brings Deep-learning "Lessons Learned" to Many HPC Applications. An
article written by Rob Farber, 2018.

[6] [https://www.rdworldonline.com/largest-supercomputer-simulation-of-sumatra-andaman-earthquake /%5D (https:
//www.rdworldonline.com/largest-supercomputer-simulation-of-sumatra-andaman-earthquake/): Largest
Supercomputer Simulation of Sumatra-Andaman Earthquake. An article written by Linda Barney, 2018.

https://dl.acm.org/doi/10.1109/SC.2018.00069%5D(https://dl.acm.org/doi/10.1109/SC.2018.00069)
https://arxiv.org/pdf/1808.05567.pdf
https://pasc17.pasc-conference.org/fileadmin/user_upload/pasc17/program/post116s2.pdf%5D(https://pasc17.pasc-conference.org/fileadmin/user_upload/pasc17/program/post116s2.pdf)
https://pasc17.pasc-conference.org/fileadmin/user_upload/pasc17/program/post116s2.pdf%5D(https://pasc17.pasc-conference.org/fileadmin/user_upload/pasc17/program/post116s2.pdf)
https://sc17.supercomputing.org/SC17%20Archive/tech_poster/tech_poster_pages/post190.html%5D(https://sc17.supercomputing.org/SC17%20Archive/tech_poster/tech_poster_pages/post190.html)
https://sc17.supercomputing.org/SC17%20Archive/tech_poster/tech_poster_pages/post190.html%5D(https://sc17.supercomputing.org/SC17%20Archive/tech_poster/tech_poster_pages/post190.html)
https://sc17.supercomputing.org/SC17%20Archive/tech_poster/poster_files/post190s2-file2.pdf
https://sc17.supercomputing.org/SC17%20Archive/tech_poster/poster_files/post190s2-file3.pdf
https://www.computer.org/csdl/proceedings-article/sc/2016/8815a981/12OmNCeaQ1D%5D(https://www.computer.org/csdl/proceedings-article/sc/2016/8815a981/12OmNCeaQ1D)
https://www.computer.org/csdl/proceedings-article/sc/2016/8815a981/12OmNCeaQ1D%5D(https://www.computer.org/csdl/proceedings-article/sc/2016/8815a981/12OmNCeaQ1D)
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post137.html%5D(http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post137.html)
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post137.html%5D(http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post137.html)
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file2.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file3.pdf
https://arxiv.org/abs/2104.05755
https://arxiv.org/abs/2104.05755
https://www.nextplatform.com/2019/10/09/cloudy-supercomputers-join-the-hpc-petascale-club/%5D(https://www.nextplatform.com/2019/10/09/cloudy-supercomputers-join-the-hpc-petascale-club/)
https://www.nextplatform.com/2019/10/09/cloudy-supercomputers-join-the-hpc-petascale-club/%5D(https://www.nextplatform.com/2019/10/09/cloudy-supercomputers-join-the-hpc-petascale-club/)
https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/%5D(https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/)
https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/%5D(https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/)
https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/%5D(https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/)
https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/%5D(https://www.nextplatform.com/2019/06/26/counting-the-cost-of-scaling-hpc-applications/)
https://software.intel.com/sites/default/files/parallel-universe-issue-34.pdf%5D(https://software.intel.com/content/www/us/en/develop/download/parallel-universe-magazine-issue-34-october-2018.html)
https://software.intel.com/sites/default/files/parallel-universe-issue-34.pdf%5D(https://software.intel.com/content/www/us/en/develop/download/parallel-universe-magazine-issue-34-october-2018.html)
https://software.intel.com/content/dam/develop/public/us/en/documents/parallel-universe-issue-34.pdf
https://medium.com/@rmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-applications-9143c6c93125%5D(https://medium.com/@rmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-applications-9143c6c93125)
https://medium.com/@rmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-applications-9143c6c93125%5D(https://medium.com/@rmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-applications-9143c6c93125)
https://medium.com/@rmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-applications-9143c6c93125%5D(https://medium.com/@rmfarber/libxsmm-brings-deep-learning-lessons-learned-to-many-hpc-applications-9143c6c93125)
https://www.rdworldonline.com/largest-supercomputer-simulation-of-sumatra-andaman-earthquake/%5D(https://www.rdworldonline.com/largest-supercomputer-simulation-of-sumatra-andaman-earthquake/)
https://www.rdworldonline.com/largest-supercomputer-simulation-of-sumatra-andaman-earthquake/%5D(https://www.rdworldonline.com/largest-supercomputer-simulation-of-sumatra-andaman-earthquake/)

LIBXSMM Domains

Matrix Multiplication
Overview

To perform the dense matrix-matrix multiplication Cy,xn = alpha © Anxk ° Brxn + beta - Cpxn, the full-blown
GEMM interface can be treated with "default arguments" (which is deviating from the BLAS standard, however without
compromising the binary compatibility). Default arguments are derived from compile-time constants (configurable) for
historic reasons (LIBXSMM's "pre-JIT era').

libxsmm_7gemm (NULL /*transa*/, NULL/*transb+*/,
&m/*required*/, &n/*required*/, &k/*required*/,
NULL /*alpha*/, a/*required*/, NULL/*ldax*/,
b/*required*/, NULL/*1db*/,
NULL /*beta*/, c/*required*/, NULL/*ldc*/);

For the C interface (with type prefix s or d), all arguments including m, n, and k are passed by pointer. This is needed
for binary compatibility with the original GEMM /BLAS interface.

libxsmm_gemm (NULL /*transa*/, NULL/*transb*/,
m/*required*/, n/*required*/, k/*required*/,

NULL /*alpha*/, a/*required*/, NULL/*lda*/,

b/*required*/, NULL/*1db*/,

NULL /*beta*/, c/*required*/, NULL/*ldc*/);

The C++ interface is also supplying overloaded versions where m, n, and k can be passed by-value (making it clearer
that m, n, and k are non-optional arguments).

! Dense matriz multiplication (single/double-precision).
CALL libxsmm_7gemm(m=m, n=n, k=k, a=a, b=b, c=c)

! Dense matriz multiplication (generic interface).

CALL libxsmm_gemm(m=m, n=n, k=k, a=a, b=b, c=c)

The FORTRAN interface supports optional arguments (without affecting the binary compatibility with the original
BLAS interface) by allowing to omit arguments where the C/C++ interface allows for NULL to be passed.

/** Dense matriz multiplication (single/double-precision). */
libxsmm_blas_7?gemm (NULL/*transa*/, NULL/*transb*/,
&m/*required*/, &n/*required*/, &k/*requiredx*/,
NULL /*alpha*/, a/*required*/, NULL/*lda*/,
b/*required*/, NULL/*1db*/,
NULL/*beta*/, c/*required*/, NULL/*ldc*/);

For convenience, a BLAS-based dense matrix multiplication (1ibxsmm_blas_gemm) is provided for all supported languages.
This only re-exposes the underlying GEMM/BLAS implementation, but the interface accepts optional arguments (or
NULL pointers in C) where the regular GEMM expects a value. To remove any BLAS-dependency, please follow the
Link Instructions. A BLAS-based GEMM can be useful for validation/benchmark purposes, and more important as a
fallback when building an application-specific dispatch mechanism.

Manual Code Dispatch

Successively calling a kernel (i.e., multiple times) allows for amortizing the cost of the code dispatch. Moreover, to
customize the dispatch mechanism, one can rely on the following interface.

/%% Call dispatched (*function_ptr)(a, b, ¢ [, pa, pb, pcl). */
libxsmm_[s|d]mmfunction libxsmm_[type-prefix]mmdispatch (
libxsmm_blasint m, libxsmm_blasint n, libxsmm_blasint k,
/** NULL: tight fit (m) */ const libxsmm_blasint* lda,
/*% NULL: tight fit (k) */ const libxsmm_blasint* 1ldb,
/*% NULL: tight fit (m) */ const libxsmm_blasint* ldc,
/** NULL: LIBXSMM_ALPHA */ const typex* alpha,
/*% NULL: LIBXSMM_BETA */ const type* beta,
/*% NULL: LIBXSMM_FLAGS */ const intx* flags,
/*% NULL: LIBXSMM_PREFETCH_NONE (not LIBXSMM_PREFETCH!) x*/
const int* prefetch);

index.md#link-instructions

Overloaded function signatures are provided and allow to omit arguments (C++ and FORTRAN), which are then derived
from the configurable defaults. In C++, 1ibxsmm_mmfunction<type> can be used to instantiate a functor rather than making
a distinction between numeric types per type-prefix. For lower precision GEMMS, 1ibxsmm_mmfunction<itype,otype=itype>
optionally takes a second type (output type).
/* generates or dispatches the code specialization */
libxsmm_mmfunction<T> xmm(m, n, k);
if (xmm) { /* JIT'ted code */

/* can be parallelized per, e.g., OpenMP */

for (int i = 0; i < n; ++i) {

xmm (a+i*asize, b+i*xbsize, c+i*csize);

}

}

Similarly in FORTRAN (see samples/utilities/smmbench/smm.f), a generic interface (1ibxsmm_mmdispatch) can be used
to dispatch a L1BxsMM_?MMFUNCTION. The handle encapsulated by such a LIBXSMM_?MMFUNCTION can be called per libxsmm_call.
Beside of dispatching code, one can also call statically generated kernels (e.g., 1ibxsmm_dmm_4_4_4) by using the prototype
functions included with the FORTRAN and C/C++ interface. Prototypes are present whenever static code was
requested at compile-time of the library (e.g. per make MNK="1 2 3 4 5").
TYPE (LIBXSMM_DMMFUNCTION) :: xmm
CALL libxsmm_dispatch(xmm, m, n, k)
IF (libxsmm_available(xmm)) THEN

DO i = LBOUND(c, 3), UBOUND(c, 3) ! consider OpenMP

CALL libxsmm_dmmcall (xmm, a(:,:,i), b(:,:,1i), c(:,:,1i))

END DO

END IF

Batched Multiplication

In case of batched SMMs, it can be beneficial to supply "next locations" such that the upcoming operands are
prefetched ahead of time. Such a location would be the address of the next matrix to be multiplied (and not any of the
floating-point elements within the "current" matrix-operand). The "prefetch strategy" is requested at dispatch-time of
a kernel. A strategy other than LIBXSMM_PREFETCH_NONE turns the signature of a JIT'ted kernel into a function with six
arguments (a,b,c, pa,pb,pc instead of a,b,c). To defer the decision about the strategy to a CPUID-based mechanism,
one can choose LIBXSMM_PREFETCH_AUTO.
int prefetch = LIBXSMM_PREFETCH_AUTO;
int flags = 0; /* LIBXSMM_FLAGS */
libxsmm_dmmfunction xmm = NULL;
double alpha = 1, beta = 0;
xmm = libxsmm_dmmdispatch(23/*m*/, 23/*n*/, 23/*kx*/,

NULL /*lda*/, NULL/*1db#*/, NULL/*ldc*/,

&alpha, &beta, &flags, &prefetch);

Above, pointer-arguments of libxsmm_dmmdispatch can be NULL (or OPTIONAL in FORTRAN): for LDx this means a
"tight" leading dimension, alpha, beta, and flags are given by a default value (which is selected at compile-time), and for
the prefetch strategy a NULL-argument refers to "no prefetch" (which is equivalent to an explicit LIBXSMM_PREFETCH_NONE).
By design, the prefetch strategy can be changed at runtime (as soon as valid next-locations are used) without changing
the call-site (kernel-signature with six arguments).

if (0 < n) { /* check that n 4is at least 1 */

pragma parallel omp private(i)
for (i = 0; i < (n - 1); ++i) {

const double *const ai = a + i * asize;

const double *const bi = b + i * bsize;

double *const ci = c + 1 * csize;

xmm (ai, bi, ci, ai + asize, bi + bsize, ci + csize);
}
xmm(a + (n - 1) * asize, b + (n - 1) * bsize, ¢ + (n - 1) * csize,
/* pseudo prefetch for last element of batch (avoids page fault) */

a+ (n - 1) * asize, b + (n - 1) * bsize, ¢ + (n - 1) * csize);

To process a batch of matrix multiplications and to prefetch the operands of the next multiplication ahead of time, the
code presented in the Overview section may be modified as shown above. The last multiplication is peeled from the

https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_config.h
https://github.com/libxsmm/libxsmm/blob/main/samples/utilities/smmbench/smm.f
libxsmm_be.md#prefetch-strategy
https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_config.h

main batch to avoid prefetching out-of-bounds (OOB). Prefetching from an invalid address does not trap an exception,

but an (unnecessary) page fault can be avoided.

/*% Batched matriz multiplications (explicit data representation).

int libxsmm_gemm_batch_task(libxsmm_datatype iprec,
const char* transa, const char* transb,
libxsmm_blasint m, libxsmm_blasint n,
const void* alpha, const voidx* a,
const void* b,
const voidx* beta, void* c,
libxsmm_blasint index_base,
const libxsmm_blasint stride_al],
const libxsmm_blasint stride_bl[],
const libxsmm_blasint stride_cI[],
libxsmm_blasint batchsize,
int tid, int ntasks);

*/

libxsmm_datatype oprec,

libxsmm_blasint k,
const libxsmm_blasint*
const libxsmm_blasint*
const libxsmm_blasint*
libxsmm_blasint index_stride,

lda,
1db,
ldc,

To further simplify the multiplication of matrices in a batch, LIBXSMM!'s batch interface can help to extract
the necessary input from a variety of existing structures (integer indexes, array of pointers both with Byte sized
strides). An expert interface (see above) can employ a user-defined threading runtime (tid and ntasks). In case
of OpenMP, 1libxsmm_gemm_batch_omp is ready-to-use and hosted by the extension library (libxsmmext). Of course,
libxsmm_gemm_batch_omp does not take tid and ntasks since both arguments are given by OpenMP. Similarly, a sequential
version (shown below) is available per libxsmm_gemm_batch (libxsmm).

Please note that an explicit data representation should exist and reused rather than created only to call the explicit
batch-interface. Creating such a data structure only for this matter can introduce an overhead which is hard to

amortize (speedup). If no explicit data structure exists, a
described (see self-hosted batch loop).

void libxsmm_gemm_batch(libxsmm_datatype iprec,
const char* transa, const char* transb,
libxsmm_blasint m, libxsmm_blasint n,
const void* alpha, const voidx* a,
const void* b,
const voidx* beta, void* c,
libxsmm_blasint index_base,
const libxsmm_blasint stride_al],
const libxsmm_blasint stride_bl[],
const libxsmm_blasint stride_cI[],
libxsmm_blasint batchsize);

"chain" of multiplications can be often algorithmically

libxsmm_datatype oprec,

libxsmm_blasint k,
const libxsmm_blasint*
const libxsmm_blasint*
const libxsmm_blasint*
libxsmm_blasint index_stride,

lda,
1db,
ldc,

In recent BLAS library implementations, dgemm_batch and sgemm_batch have been introduced. This BLAS(-like) interface
allows for groups of homogeneous batches, which is like an additional loop around the interface as introduced above. On
the other hand, the BLAS(-like) interface only supports arrays of pointers for the matrices. In contrast, above interface
supports arrays of pointers as well as arrays of indexes plus a flexible way to extract data from arrays of structures
(AoS). LIBXSMM also supports this (new) BLAS(-like) interface with 1ibxsmm_?gemm_batch and libxsmm_?gemm_batch_omp
(the latter of which relies on LIBXSMM/ext). Further, existing calls to dgemm_batch and sgemm_batch can be intercepted
and replaced with LIBXSMM's call wrapper. The signatures of 1ibxsmm_dgemm_batch and libxsmm_sgemm_batch are equal

except for the element type (double and float respectively).

void libxsmm_dgemm_batch(const char transa_arrayl[],

const char transb_arrayl[],

const libxsmm_blasint m_arrayl[],

const libxsmm_blasint n_arrayl[],

const libxsmm_blasint k_arrayl],

const double alpha_arrayl],

const double beta_arrayl],

const libxsmm_blasint* group_count,

const double* a_arrayl[],
const double* b_arrayl[],
double* c_arrayl],

const libxsmm_blasint lda_arrayl[],
const libxsmm_blasint 1ldb_arrayl[],
const libxsmm_blasint ldc_arrayl],

const libxsmm_blasint group_sizel[]);

Note: the multi-threaded implementation (ntasks > 1 or "omp" form of the functions) avoids data races if indexes or
pointers for the destination (C-)matrix are duplicated. This synchronization occurs automatically (beta !'= 0), but can
be avoided by passing a negative batchsize, group_size and/or a negative group_count.

User-Data Dispatch

It can be desired to dispatch user-defined data, i.e., to query a value based on a key. This functionality can be used to,
e.g., dispatch multiple kernels in one step if a code location relies on multiple kernels. This way, one can pay the cost
of dispatch one time per task rather than according to the number of JIT-kernels used by this task. This functionality
is detailed in the section about Service Functions.

libxsmm_aux.md#user-data-dispatch

Call Wrapper

Overview Since the library is binary compatible with existing GEMM calls (BLAS), such calls can be replaced
at link-time or intercepted at runtime of an application such that LIBXSMM is used instead of the original BLAS
library. There are two cases to consider: (1) static linkage, and (2) dynamic linkage of the application against the
original BLAS library. When calls are intercepted, one can select a sequential (default) or an OpenMP-parallelized
implementation (make WRAP=2).

Note: Intercepting GEMM calls is low effort but implies overhead, which can be relatively high for small-sized
problems. LIBXSMM's native programming interface has lower overhead and can amortize overhead when using the
same multiplication kernel in a consecutive fashion (and employ sophisticated data prefetch on top).

Static Linkage An application which is linked statically against BLAS requires to wrap the sgemm_ and the dgemm_
symbol (an alternative is to wrap only dgemm_). To relink the application (without editing the build system) can often
be accomplished by copying and pasting the linker command as it appeared in the console output of the build system,
and then re-invoking a modified link step (please also consider -w1,--export-dynamic).

gcc [...] -Wl,--wrap=dgemm_,--wrap=sgemm_ \

/path/to/libxsmmext.a /path/to/libxsmm.a \
/path/to/your_regular_blas.a

In addition, existing BLAS(-like) batch-calls can be intercepted as well:

gcc [...] -Wl,--wrap=dgemm_batch_,--wrap=sgemm_batch_ \
-Wl,--wrap=dgemm_batch,--wrap=sgemm_batch \
-Wl,--wrap=dgemm_,--wrap=sgemm_ \

/path/to/libxsmmext.a /path/to/libxsmm.a \
/path/to/your_regular_blas.a

Above, GEMM and GEMM_BATCH are intercepted both, however this can be chosen independently. For
GEMM_ BATCH the Fortran and C-form of the symbol may be intercepted both (regular GEMM can always be
intercepted per ?gemm_ even when ?7gemm is used in C-code).

Note: The static link-time wrapper technique may only work with a GCC tool chain (GNU Binutils: 14, or 1d via
compiler-driver), and it has been tested with GNU GCC, Intel Compiler, and Clang. However, this does not work
under Microsoft Windows (even when using the GNU tool chain or Cygwin).

Dynamic Linkage An application that is dynamically linked against BLAS allows to intercept the GEMM calls at
startup time (runtime) of the unmodified executable by using the LD_PRELOAD mechanism. The shared library of
LIBXSMMext (make STATIC=0) can be used to intercept GEMM calls:
LD_LIBRARY_PATH=/path/to/libxsmm/lib:${LD_LIBRARY_PATH} \

LD_PRELOAD=1ibxsmmext.so \
./myapplication

Service Functions
Target Architecture

This functionality is available for the C and Fortran interface. There are ID based (same for C and Fortran) and
string based functions to query the code path (as determined by the CPUID), or to set the code path regardless of
the presented CPUID features. The latter may degrade performance if a lower set of instruction set extensions is
requested, which can be still useful for studying the performance impact of different instruction set extensions.
Note: There is no additional check performed if an unsupported instruction set extension is requested, and incompatible
JIT-generated code may be executed (unknown instruction signaled).

int libxsmm_get_target_archid(void);
void libxsmm_set_target_archid(int id);

const char* libxsmm_get_target_arch(void);
void libxsmm_set_target_arch(const char* arch);

Available code paths (IDs and corresponding strings):

https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_cpuid.h#L47

e LIBXSMM_TARGET_ARCH_GENERIC: "generic", "'none", "0"
o LIBXSMM_ X86_GENERIC: "x86", "x64", "sse2"

o LIBXSMM X86 SSE3: "sse3'

o LIBXSMM_ X86_ SSE42: "wsm", 'nhm", "ssed", "ssed_ 2", "sse4.2"
o LIBXSMM_X86_ AVX: "snb', "avx"

o LIBXSMM X86 AVX2: "hsw'", "avx2"

o LIBXSMM_X86_ AVX512 SKX: "skx', "skl", "avx3", "avx512"

o« LIBXSMM_ X86_AVX512_ CLX: "clx"

o LIBXSMM_X86_ AVX512_CPX: "cpx"

o« LIBXSMM_ X86_AVX512_SPR: "spr"

The bold names are returned by libxsmm_get_target_arch whereas libxsmm_set_target_arch accepts all of the above
strings (similar to the environment variable LIBXSMM__TARGET).

Verbosity Level

The verbose mode (level of verbosity) can be controlled using the C or Fortran API, and there is an environment
variable which corresponds to libxsmm_set_verbosity (LIBXSMM_VERBOSE).

int libxsmm_get_verbosity(void);
void libxsmm_set_verbosity(int level);

Timer Facility

Due to the performance oriented nature of LIBXSMM, timer-related functionality is available for the C and Fortran
interface (libxsmm_ timer.h and libxsmm.f). The timer is used in many of the code samples to measure the duration of
executing a region of the code. The timer is based on a monotonic clock tick, which uses a platform-specific resolution.
The counter may rely on the time stamp counter instruction (RDTSC), which is not necessarily counting CPU cycles
(reasons are out of scope in this context). However, libxsmm_timer_ncycles delivers raw clock ticks (RDTSC).
typedef unsigned long long libxsmm_timer_tickint;
libxsmm_timer_tickint libxsmm_timer_tick(void);
double libxsmm_timer_duration(

libxsmm_timer_tickint tickO,

libxsmm_timer_tickint tickl);
libxsmm_timer_tickint libxsmm_timer_ncycles(

libxsmm_timer_tickint tickO,
libxsmm_timer_tickint tickl);

User-Data Dispatch

To register a user-defined key-value pair with LIBXSMM's fast key-value store, the key must be binary reproducible.
Structured key-data (struct or class type which can be padded in a compiler-specific fashion) must be completely
cleared, i.e., all gaps may be zero-filled before initializing data members (memset (&mykey, 0, sizeof (mykey))). This is
because some compilers can leave padded data uninitialized, which breaks binary reproducible keys, hence the flow is:
clear heterogeneous keys (struct), initialize data-members, and register. The size of the key is arbitrary but limited to
LIBXSMM__DESCRIPTOR,__MAXSIZE (96 Byte), and the size of the value can be of an arbitrary size. The given
value is copied and may be initialized at registration-time or when dispatched. Registered data is released at program
termination but can be manually unregistered and released (1ibxsmm_xrelease), e.g., to register a larger value for an
existing key.

void* libxsmm_xregister (const void#* key, size_t key_size, size_t value_size, const void* value_init);

void* libxsmm_xdispatch(const void* key, size_t key_size);

The Fortran interface is designed to follow the same flow as the C language: (1) libxsmm_xdispatch is used to query the
value, and (2) if the value is a NULL-pointer, it is registered per libxsmm_xregister. Similar to C (memset), structured
key-data must be zero-filled (1ibxsmm_xclear) even when followed by an element-wise initialization. A key based on a
contiguous array has no gaps by definition and it is enough to initialize the array elements. A Fortran example is
given as part of the Dispatch Microbenchmark.

index.md#verbose-mode
https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_timer.h#L37
https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm.f#L32
https://github.com/libxsmm/libxsmm/tree/main/samples
https://github.com/libxsmm/libxsmm/blob/main/samples/utilities/dispatch/dispatch_udt.f
https://github.com/libxsmm/libxsmm/tree/main/samples/utilities/dispatch

FUNCTION libxsmm_xregister (key, keysize, valsize, valinit)

TYPE(C_PTR), INTENT(IN), VALUE :: key

TYPE(C_PTR), INTENT(IN), VALUE, OPTIONAL :: valinit
INTEGER(C_INT), INTENT(IN) :: keysize, valsize
TYPE(C_PTR) :: libxsmm_xregister

END FUNCTION

FUNCTION libxsmm_xdispatch(key, keysize)

TYPE(C_PTR), INTENT(IN), VALUE :: key
INTEGER(C_INT), INTENT(IN) :: keysize
TYPE(C_PTR) :: libxsmm_xdispatch

END FUNCTION

Note: This functionality can be used to, e.g., dispatch multiple kernels in one step if a code location relies on
multiple kernels. This way, one can pay the cost of dispatch one time per task rather than according to the number
of JIT-kernels used by this task. However, the functionality is not limited to multiple kernels, but any data can be
registered and queried. User-data dispatch uses the same implementation as regular code-dispatch.

Memory Allocation

The C interface (libxsmm_ malloc.h) provides functions for aligned memory one of which allows to specify the alignment
(or to request an automatically selected alignment). The automatic alignment is also available with a malloc compatible
signature. The size of the automatic alignment depends on a heuristic, which uses the size of the requested buffer.
Note: The function libxsmm_free must be used to deallocate buffers allocated by LIBXSMM's allocation functions.
void* libxsmm_malloc(size_t size);

void* libxsmm_aligned_malloc(size_t size, size_t alignment);

void* libxsmm_aligned_scratch(size_t size, size_t alignment);

void libxsmm_free(const volatile void* memory);

int libxsmm_get_malloc_info(const void* m, libxsmm_malloc_infox 1i);
int libxsmm_get_scratch_info(libxsmm_scratch_infox* info);

The library exposes two memory allocation domains: (1) default memory allocation, and (2) scratch memory allocation.
There are similar service functions for both domains that allow to customize the allocation and deallocation function.
The "context form" even supports a user-defined "object", which may represent an allocator or any other external
facility. To set the allocator of the default domain is analogous to setting the allocator of the scratch memory domain
(shown below).
int libxsmm_set_scratch_allocator (void* context,

libxsmm_malloc_function malloc_fn, libxsmm_free_function free_£fn);

int libxsmm_get_scratch_allocator (void** context,
libxsmm_malloc_function* malloc_fn, libxsmm_free_function* free_£fn);

The scratch memory allocation is very effective and delivers a decent speedup over subsequent regular memory
allocations. In contrast to the default allocator, a watermark for repeatedly allocated and deallocated buffers is
established. The scratch memory domain is (arbitrarily) limited to 4 GB of memory which can be adjusted to a different
number of Bytes (available per libxsmm_ malloc.h, and also per environment variable LIBXSMM_SCRATCH_ LIMIT
with optional "k|K", "m|M", "g|G" units, unlimited per "-1").

void libxsmm_set_scratch_limit(size_t nbytes);

size_t libxsmm_get_scratch_limit (void);

By establishing a pool of "temporary" memory, the cost of repeated allocation and deallocation cycles is avoided when
the watermark is reached. The scratch memory is scope-oriented with a limited number of pools for buffers of different
lifetime or held for different threads. The verbose mode with a verbosity level of at least two (LIBXSMM VERBOSE=2)
shows some statistics about the populated scratch memory.

Scratch: 173 MB (mallocs=5, pools=1)
To improve thread-scalability and to avoid frequent memory allocation/deallocation, the scratch memory allocator can
be leveraged by intercepting existing malloc/free calls.

Note: be careful with scratch memory as it only grows during execution (in between libxsmm_init and libxsmm_finalize
unless libxsmm_release_scratch is called). This is true even when libxsmm_free is (and should be) used!

https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_malloc.h
https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_malloc.h
index.md#verbose-mode
libxsmm_tune.md#intercepted-allocations

Meta Image File 1/0

Loading and storing data (I/O) is normally out of LIBXSMM's scope. However, comparing results (correctness) or
writing files for visual inspection is clearly desired. This is particularly useful for the DNN domain. The MHD library
domain provides support for the Meta Image File format (MHD). Tools such as ITK-SNAP or ParaView can be used
to inspect, compare, and modify images (even beyond two-dimensional images).

Writing an image is per libxsmm_mhd_write, and loading an image is split in two stages: (1) libxsmm_mhd_read_header, and
(2) libxsmm_mhd_read. The first step allows to allocate a properly sized buffer, which is then used to obtain the data
per libxsmm_mhd_read. When reading data, an on-the-fly type conversion is supported. Further, data that is already in
memory can be compared against file-data without allocating memory or reading this file into memory.

To load an image from a familiar format (JPG, PNG, etc.), one may save the raw data using for instance IrfanView
and rely on a "header-only" MHD-file (plain text). This may look like:

NDims = 2

DimSize = 202 134

ElementType = MET_UCHAR

ElementNumberOfChannels = 1
ElementDataFile = mhd_image.raw

In the above case, a single channel (gray-scale) 202x134-image is described with pixel data stored sepa-
rately (mhd_image.raw). Multi-channel images are expected to interleave the pixel data. The pixel type is per
libxsmm_mhd_elemtype Gjbxsrnrn__nlhd”h).

Thread Synchronization

LIBXSMM comes with a number of light-weight abstraction layers (macro and API-based), which are distinct from
the internal API (include files in src directory) and that are exposed for general use (and hence part of the include
directory).

The synchronization layer is mainly based on macros: LIBXSMM_LOCK_ * provide spin-locks, mutexes, and reader-
writer locks (LIBXSMM_LOCK__SPINLOCK, LIBXSMM_LOCK_ MUTEX, and LIBXSMM_LOCK_RWLOCK
respectively). Usually the spin-lock is also named LIBXSMM__LOCK_DEFAULT. The implementation is intentionally
based on OS-native primitives unless LIBXSMM is reconfigured (per LIBXSMM _LOCK_SYSTEM) or built using
make OMP=1 (using OpenMP inside of the library is not recommended). The life cycle of a lock looks like:

/% attribute wvariable and lock variable */
LIBXSMM_LOCK_ATTR_TYPE (LIBXSMM_LOCK_DEFAULT) attr;
LIBXSMM_LOCK_TYPE(LIBXSMM_LOCK_DEFAULT) lock;

/% attribute initialization */

LIBXSMM_LOCK_ATTR_INIT (LIBXSMM_LOCK_DEFAULT, &attr);

/* lock initialization per initialized attribute */
LIBXSMM_LOCK_INIT(LIBXSMM_LOCK_DEFAULT, &lock, &attr);
/* the attribute can be destroyed */
LIBXSMM_LOCK_ATTR_DESTROY (LIBXSMM_LOCK_DEFAULT , &attr);
/* lock destruction (usage: see below/next code block) */
LIBXSMM_LOCK_DESTROY(LIBXSMM_LOCK_DEFAULT, &lock);

Once the lock is initialized (or an array of locks), it can be exclusively locked or try-locked, and released at the end of the
locked section (LIBXSMM_LOCK_ACQUIRE, LIBXSMM_LOCK_TRYLOCK, and LIBXSMM_LOCK_RELEASE
respectively):

LIBXSMM_LOCK_ACQUIRE (LIBXSMM_LOCK_DEFAULT, &lock);

/* locked code section */
LIBXSMM_LOCK_RELEASE (LIBXSMM_LOCK_DEFAULT, &lock);

If the lock-kind is LIBXSMM_LOCK_ RWLOCK, non-exclusive a.k.a. shared locking allows to permit multiple
readers (LIBXSMM_LOCK_ACQREAD, LIBXSMM_LOCK_TRYREAD, and LIBXSMM_LOCK_RELREAD) if
the lock is not acquired exclusively (see above). An attempt to only read-lock anything else but an RW-lock is an
exclusive lock (see above).
if (LIBXSMM_LOCK_ACQUIRED (LIBXSMM_LOCK_RWLOCK) ==

LIBXSMM_LOCK_TRYREAD (LIBXSMM_LOCK_RWLOCK, &rwlock))
{ /* locked code section */

LIBXSMM_LOCK_RELREAD (LIBXSMM_LOCK_RWLOCK, &rwlock);
}

http://itksnap.org/
https://www.paraview.org/
http://www.irfanview.com/
https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_mhd.h#L38
https://github.com/libxsmm/libxsmm/tree/main/src
https://github.com/libxsmm/libxsmm/tree/main/include

Locking different sections for read (LIBXSMM__LOCK__ACQREAD, LIBXSMM_LOCK_RELREAD) and write
(LIBXSMM__LOCK__ACQUIRE, LIBXSMM__LOCK_RELEASE) may look like:

LIBXSMM_LOCK_ACQREAD (LIBXSMM_LOCK_RWLOCK, &rwlock);
/* locked code section: only reads are performed */
LIBXSMM_LOCK_RELREAD (LIBXSMM_LOCK_RWLOCK, &rwlock);

LIBXSMM_LOCK_ACQUIRE (LIBXSMM_LOCK_RWLOCK, &rwlock);
/* locked code section: exclusive write (no R/W) */
LIBXSMM_LOCK_RELEASE (LIBXSMM_LOCK_RWLOCK, &rwlock);

For a lock not backed by an OS level primitive (fully featured lock), the synchronization layer also a simple lock based
on atomic operations:

static union { char pad [LIBXSMM_CACHELINE]; volatile LIBXSMM_ATOMIC_LOCKTYPE state; } lock;
LIBXSMM_ATOMIC_ACQUIRE (&lock.state, LIBXSMM_SYNC_NPAUSE, LIBXSMM_ATOMIC_RELAXED);

/* locked code section */
LIBXSMM_ATOMIC_RELEASE(&lock.state, LIBXSMM_ATOMIC_RELAXED);

Performance Analysis
Intel VTune Profiler

To analyze which kind of kernels have been called, and from where these kernels have been invoked (call stack), the
library allows profiling its JIT code using Intel VTune Profiler. To enable this support, VTune's root directory needs to
be set at build-time of the library. Enabling symbols (SYM=1 or DBG=1) incorporates VTune's JIT Profiling API:

source /opt/intel/vtune_profiler/vtune-vars.sh
make SYM=1

Above, the root directory is automatically determined from the environment (VIUNE_PROFILER_*DIR or
VTUNE _AMPLIFIER* DIR with older versions). This variable is present after source'ing the Intel VTune envi-
ronment (source /path/to/vtune_amplifier/amplxe-vars.sh with older version), but it can be manually provided as well
(make VTUNEROOT=/path/to/vtune_amplifier). Symbols are not really required to display kernel names for the dynamically
generated code, however enabling symbols makes the analysis much more useful for the rest of the (static) code, and
hence it has been made a prerequisite. For example, when "call stacks" are collected it is possible to find out where the
JIT code has been invoked by the application:
vtune -r resultdir -data-limit O -collect hotspots \

-knob enable-stack-collection=true \

-knob sampling-mode=hw \

-knob stack-size=0 \
-- ./myapplication

In case of an MPI-parallelized application, it can be useful to only collect results from a "representative" rank, and to
also avoid running the event collector in every rank of the application. With Intel MPI both of which can be achieved
by:
mpirun -gtool 'vtune -r resultdir -data-limit O -collect hotspots \

-knob sampling-mode=hw -knob enable-stack-collection=true \

-knob stack-size=0:4=exclusive' \
[...] ./myapplication

The :4=exclusive is related to Intel MPI or mpirun's gtool arguments and unrelated to VTune's command-line syntax
(see vtune --help Or amplxe-cl --help with older versions); such argument(s) need to appear at the end of the gtool-string.
For instance, the shown command-line selects the 5th rank (zero-based) along with exclusive usage of the performance
monitoring unit (PMU) such that only one event-collector runs for all ranks (without rank-number, all ranks are
sampled).

Intel VTune Profiler presents invoked JIT code like functions, which belong to a module named "libxsmm.jit". The
function name as well as the module name are supplied by LIBXSMM using VTune's JIT-Profiling API. Below, the
shown "function name" (1ibxsmm_knl_dnn_23x23x23_23_23_23_al_bi_p6: :mxm) encodes an AVX-512 ("knl") double-precision
kernel ("d") for small dense matrix multiplication, which performs no transposes ("nn"). The name further encodes
M=N=K=LDA=LDB=LDC=23, Alpha=Beta=1.0, and a prefetch strategy ("p6").

 Advanced Hotspots Hotspots viewpoint (change) @

B Collection Log | | @ Analysis Target Analysis Type| | I8 Summary] Bottom-up
Grouping: | Function [Call Stack
CPU Timew

Function / Call Stack Effective Time by Utilization
|0 Idle @Poor 0Ok B !deal B Over

& libxsmm_knl_dnn_23x23x23 23 23 23 al_b1_pfsjit 1016.534 T
collocate_core_2 _ 144.D'I?5-
integrate_core_2 91.555s -

An application that cannot rely on LIBXSMM's build system can apply -DLIBXSMM_VTUNE=2 during compilation, and link
against ${VTUNE_AMPLIFIER_XE_2017_DIR}/1ib64/libjitprofiling.a.

Linux perf

With LIBXSMM, there is both basic (perf map) and extended support (jitdump) when profiling an application. To
enable perf support at runtime, the environment LIBXSMM__VERBOSE needs to be set to a negative value.

o The basic support can be enabled at compile-time with PERF=1 (implies SYM=1) using make PERF=1. At runtime
of the application, a map-file ('jit-pid.map') is generated ('/tmp' directory). This file is automatically read by
Linux perf and enriches the information about unknown code such as JIT'ted kernels.

o The support for "jitdump" can be enabled by supplying JITDUMP=1 (implies PERF=1) or PERF=2 (implies
JITDUMP=1) when making the library: make JITDUMP=1 or make PERF=2. At runtime of the application, a dump-file
('jit-pid.dump') is generated (in perf's debug directory, usually $HOME/.debug/jit/) which includes information
about JIT'ted kernels (such as addresses, symbol names, code size, and the code itself). The dump file can be
injected into perf.data (using perf inject -j), and it enables an annotated view of the assembly in perf's report
(requires a reasonably recent version of Linux perf).

Customization
Intercepted Allocations

To improve thread-scalability and to avoid frequent memory allocation/deallocation, the scratch memory allocator
can be leveraged by intercepting existing malloc/free calls. This facility is built into LIBXSMM's main library but
disabled at compile-time (by default); build with make MALLOC=1 to permanently enable or build with make MALLOC=-1
to even require an environment variable LI1BxsMM_MALLOC=1 or an API-call (1ibxsmm_set_malloc). Both runtime settings
allow an optional lower and/or an upper bound to select malloc-calls based on the size of the allocation. For the
environment option, an extra variable is introduced, e.g., use LIBXSMM_MALLOC=1 LIBXSMM_MALLOC_LIMIT=4nm:1g.

void libxsmm_set_malloc(int enabled, const size_t* lo, const size_t* hi);
int libxsmm_get_malloc(size_t* lo, size_t* hi);

Querying the status may return zero even if there was an attempt to enable this facility (limitation/experimental
implementation). Please note, the regular Scratch Memory API (e.g., libxsmm_[get|set]_scratch_limit) and the
related environment variables can apply as well (LIBXSMM_SCRATCH_LIMIT, LIBXSMM_SCRATCH_POOLS, LIBXSMM_SCRATCH_SCALE).
If intercepted memory allocations are enabled, the scratch limit is adjusted by default to allow unlimited growth of the
scratch domain. Further, an increased verbosity level can help to gain some insight (LIBXSMM_VERBOSE=3).

Intercepting malloc/free is supported by linking LIBXSMM's static or shared main library. The latter of which
can be used to intercept calls of an existing and unchanged binary (LD__PRELOAD mechanism). To statically link
with LIBXSMM and to intercept existing malloc/free calls, the following changes to the application's link stage are
recommended:

libxsmm_aux.md#memory-allocation
libxsmm_aux.md#memory-allocation

gcc [...] -Wl,--export-dynamic \
-Wl,--wrap=malloc,--wrap=calloc,--wrap=realloc \
-Wl,--wrap=memalign,--wrap=free \
/path/to/libxsmm.a

The main library causes a BLAS-dependency which may be already fulfilled for the application in question. However,
if this is not the case (unresolved symbols), 1ibxsmmnoblas.a must be linked in addition. Depending on the dependencies
of the application, the link order may also need to be adjusted. Other, i.e., a GNU-compatible compiler (as shown
above), can induce additional requirements (compiler runtime libraries).

Note: The Intel Compiler may need "libirc", i.e., -lirc in front of 1ibxsmm.a. Linking LIBXSMM's static library
may require above mentioned linker flags (--wrap) in particular when using Intel Fortran (IFORT) as a linker driver
unless CALL libxsmm_init() is issued (or at least one symbol of LIBXSMM's main library is referenced; check with
nm application | grep libxsmm). Linking the static library by using the GNU compiler does not strictly need special
flags when linking the application.

Linking the shared library form of LIBXSMM (make STATIC=0) has similar requirements with respect to the application
but does not require -w1,--wrap although -w1,--export-dynamic is necessary if the application is statically linked (beside
of LIBXSMM linked in a shared fashion). The LD_PRELOAD based mechanism does not need any changes to the
link step of an application. However, libxsmmnoblas may be required if the application does not already link against
BLAS.

LD_PRELOAD="libxsmm.so libxsmmnoblas.so"
LD_LIBRARY_PATH=/path/to/libxsmm/1lib:${LD_LIBRARY_PATH}
LIBXSMM_MALLOC=1

Note: If the application already uses BLAS, of course libxsmmnoblas must not be used!

The following code can be compiled and linked with gfortran example.f -o example:

PROGRAM allocate_test

DOUBLE PRECISION, ALLOCATABLE :: a(:), b(:), c(:)
INTEGER :: i, repeat = 100000
DOUBLE PRECISION :: tO, t1, d

ALLOCATE (b (16%1024))
ALLOCATE (c (16%1024))
CALL CPU_TIME(t0)

DO i = 1, repeat
ALLOCATE (a(16%1024%1024))
DEALLOCATE (a)

END DO

CALL CPU_TIME(t1)

DEALLOCATE (b)

DEALLOCATE (c)

d = t1 - t0

WRITE(x, "(A,F10.1,A)") "duration:", (1D3 * d), " ms"
END PROGRAM

Running with LIBXSMM_VERBOSE=3 LIBXSMM_MALLOC=1 LD_PRELOAD=... LD_LIBRARY_PATH=... ./example displays: Scratch: 132 MB (ma:

which shows the innermost allocation/deallocation was served by the scratch memory allocator.

Static Specialization

By default, LIBXSMM uses the JIT backend which is automatically building optimized code (JIT=1). Matrix
multiplication kernels can be also statically specialized at compile-time of the library (M, N, and K values). This
mechanism also extends the interface of the library because function prototypes are included into both the C and
FORTRAN interface.

make M="2 4" N="1" K="$(echo $(seq 2 5))"

The above example is generating the following set of (M,N,K) triplets:

(2,1,2), (2,1,3), (2,1,4), (2,1,5),
(4,1,2), (4,1,3), (4,1,4), (4,1,5)

index.md#jit-backend

The index sets are in a loop-nest relationship (M(N(K))) when generating the indexes. Moreover, an empty index set
resolves to the next non-empty outer index set of the loop nest (including to wrap around from the M to K set). An
empty index set does not participate in the loop-nest relationship. Here is an example of generating multiplication
routines which are "squares" with respect to M and N (N inherits the current value of the "M loop"):

make M="$(echo $(seq 2 5))" K="$(echo $(seq 2 5))"

An even more flexible specialization is possible by using the MNK variable when building the library. It takes a list of
indexes which are eventually grouped (using commas):

make MNK="2 3, 23"

Each group of the above indexes is combined into all possible triplets generating the following set of (M,N,K) values:

(2,2,2), (2,2,3), (2,3,2), (2,3,3),
(3,2,2), (3,2,3), (3,3,2), (3,3,3), (23,23,23)

Of course, both mechanisms (M/N/K and MNK based) can be combined by using the same command-line (make).
Static optimization and JIT can also be combined (no need to turn off the JIT backend).

User-Data Dispatch

It can be desired to dispatch user-defined data, i.e., to query a value based on a key. This functionality can be used to,
e.g., dispatch multiple kernels in one step if a code location relies on multiple kernels. This way, one can pay the cost
of dispatch one time per task rather than according to the number of JIT-kernels used by this task. This functionality
is detailed in the section about Service Functions.

Targeted Compilation

Specifying a code path is not necessary if the JIT backend is not disabled. However, disabling JIT compilation,
statically generating a collection of kernels, and targeting a specific instruction set extension for the entire library
looks like:

make JIT=0 AVX=3 MNK="1 2 3 4 5"

The above example builds a library which cannot be deployed to anything else but the Intel Knights Landing processor
family ("KNL") or future Intel Xeon processors supporting foundational Intel AVX-512 instructions (AVX-512F). The
latter might be even more adjusted by supplying MIC=1 (along with AVX=3), however this does not matter since
critical code is in inline assembly (and not affected). Similarly, SSE=0 (or JIT=0 without SSE or AVX build flag)
employs an "arch-native" approach whereas AVX=1, AVX=2 (with FMA), and AVX=3 are specifically selecting the
kind of Intel AVX code. Moreover, controlling the target flags manually or adjusting the code optimizations is also
possible. The following example is GCC-specific and corresponds to OPT=3, AVX=3, and MIC=1:

make OPT=3 TARGET="-mavxb512f -mavx512cd -mavx512er -mavx512pf"

An extended interface can be generated which allows to perform software prefetches. Prefetching data might be helpful
when processing batches of matrix multiplications where the next operands are farther away or otherwise unpredictable
in their memory location. The prefetch strategy can be specified similar as shown in the section Generator Driver, i.e.,
by either using the number of the shown enumeration, or by exactly using the name of the prefetch strategy. The only
exception is PREFETCH=1 which is automatically selecting a strategy per an internal table (navigated by CPUID
flags). The following example is requesting the "AL2jpst" strategy:

make PREFETCH=8

The prefetch interface is extending the signature of all kernels by three arguments (pa, pb, and pc). These additional
arguments are specifying the locations of the operands of the next multiplication (the next a, b, and ¢ matrices).
Providing unnecessary arguments in case of the three-argument kernels is not big a problem (beside of some additional
call-overhead), however running a 3-argument kernel with more than three arguments and thereby picking up garbage
data is misleading or disabling the hardware prefetcher (due to software prefetches). In this case, a misleading prefetch
location is given plus an eventual page fault due to an out-of-bounds (garbage-)location.

libxsmm_aux.md#user-data-dispatch
libxsmm_be.md#generator-driver

Further, a generated configuration (template) of the library encodes the parameters for which the library
was built for (static information). This helps optimizing client code related to the library's functional-
ity. For example, the LIBXSMM_ MAX * and LIBXSMM_ AVG * information can be used with the
LIBXSMM_PRAGMA_LOOP_COUNT macro to hint loop trip counts when handling matrices related to the
problem domain of LIBXSMM.

Auto-dispatch

The function libxsmm_?7mmdispatch helps amortizing the cost of the dispatch when multiple calls with the same M, N,
and K are needed. The automatic code dispatch is orchestrating two levels:

1. Specialized routine (implemented in assembly code),
2. BLAS library call (fallback).

Both levels are accessible directly, which allows to customize the code dispatch. The fallback level may be supplied by
the Intel Math Kernel Library (Intel MKL) 11.2 DIRECT CALL feature.

Further, a preprocessor symbol denotes the largest problem-size (M x N x K) that belongs to the first level, and
therefore determines if a matrix multiplication falls back to BLAS. The problem-size threshold can be configured by
using for example:

make THRESHOLD=3$((60 * 60 * 60))

The maximum of the given threshold and the largest requested specialization refines the value of the threshold. Please
note that explicitly JIT'ting and executing a kernel is possible and independent of the threshold. If a problem-size is
below the threshold, dispatching the code requires to figure out whether a specialized routine exists or not.

For statically generated code, the precision can be selected:

make PRECISION=2

The default preference is to generate and register both single and double-precision code (PRECISION=0). Specifying
PRECISION=1|2 is generating and registering single-precision or double-precision code respectively.

The automatic dispatch is highly convenient because existing GEMM calls can serve specialized kernels (even in
a binary compatible fashion), however there is (and always will be) an overhead associated with looking up the
code-registry and checking whether the code determined by the GEMM call is already JIT'ted or not. This lookup
has been optimized with various techniques such as specialized CPU instructions to calculate CRC32 checksums, to
avoid costly synchronization (needed for thread-safety) until it is ultimately known that the requested kernel is not yet
JIT'ted, and by implementing a small thread-local cache of recently dispatched kernels. The latter of which can be
adjusted in size (only power-of-two sizes) but also disabled:

make CACHE=0

Please note that measuring the relative cost of automatically dispatching a requested kernel depends on the kernel size
(obviously smaller matrices are multiplied faster on an absolute basis), however smaller matrix multiplications are
bottlenecked by memory bandwidth rather than arithmetic intensity. The latter implies the highest relative overhead
when (artificially) benchmarking the very same multiplication out of the CPU-cache.

Backend
Code Generator (JIT)

There can be situations in which it is up-front not clear which problem-sizes will be needed when running an
application. To leverage LIBXSMM's high-performance kernels, the library implements a JIT (Just-In-Time) code
generation backend which generates the requested kernels on the fly (in-memory). This is accomplished by emitting
the corresponding bytecode directly into an executable buffer. The actual JIT code is generated per the CPUID flags,
and therefore does not rely on the code path selected when building the library. In the current implementation, some
limitations apply to the JIT backend specifically:

https://github.com/libxsmm/libxsmm/blob/main/include/libxsmm_config.h

1. To stay agnostic to any threading model used, Pthread mutexes are guarding the updates of the JIT'ted code
cache (link line with -1pthread is required); building with OMP=1 employs an OpenMP critical section as an
alternative locking mechanism.

2. There is limited support for the Windows calling convention (only kernels without prefetch signature).

The JIT backend can also be disabled at build time (make JIT=0) as well as at runtime (LIBXSMM_TARGET=0, or anything
prior to Intel AVX). The latter is an environment variable which allows to set a code path independent of the CPUID
(LIBXSMM__TARGET=0|1|sse|snb|hsw|skx|clx|cpx|spr). Please note that LIBXSMM TARGET cannot enable the
JIT backend if it was disabled at build time (JIT=0).

One can use the afore mentioned THRESHOLD parameter to control the matrix sizes for which the JIT compilation
will be automatically performed. However, explicitly requested kernels (by calling 1ibxsmm_?7mmdispatch) fall not under a
threshold for the problem-size. In any case, JIT code generation can be used for accompanying statically generated
code.

Generator Driver

In rare situations, it might be useful to directly incorporate generated C code (with inline assembly regions). This is
accomplished by invoking a driver program (with certain command-line arguments).

Note: The stand-alone generator-driver is considered legacy (deprecated). Associated functionality may be removed
and future instruction set extensions may not be addressed with printed assembly code. The cost of dispatching
JIT-code for every code region of an application, and for every visit of such region, can be amortized in several ways
and without dispensing JIT-generated code. Dispatching multiple kernels at once or (most effectively) tabulating
JIT'ted function pointers manually, can alleviate or remove first-time code generation and (more important) the cost
of subsequently dispatching kernels (when code was already JIT-generated).

The generator driver program is usually built as part of LIBXSMM's build process, but also available as a separate
build target:

make generator
bin/libxsmm_gemm_generator

The code generator driver program accepts the following arguments:

1. Select: dense, dense asm, sparse, sparse_ Csr, Or Sparse_ Csr_ reg
2. Filename of a file to append to
3. Routine name to be created
4. M parameter
5. N parameter
6. K parameter
7. LDA (0 indicates A is sparse if 1st arg. is "sparse*")
8. LDB (0 indicates B is sparse if 1st arg. is "sparse*")
9. LDC parameter
10. Alpha (1)
11. Beta: (0 or 1)
12. Alignment override for A (1 auto, 0 unalignment)
13. Alignment override for C (1 auto, 0 unalignment)
14. Architecture (noarch, wsm, snb, hsw, skx, clx, cpx)
15. Prefetch strategy, see below (only nopf for "sparse*")
16. SP (single-precision), DP (double-recision), or 116 (only "dense*")

17. CSC file in Matrix market format (only if 1st arg. is "sparse*").
The prefetch strategy can be:

"nopf": data is not prefetched, just three arguments: A, B, and C
"BL2viaC": uses accesses to C to prefetch B'

"AL2": uses accesses to A to prefetch A

"curAL2": prefetches current A ahead in the kernel

"AL2 BL2viaC": combines AL2 and BL2viaC

"curAL2 BL2viaC": combines curAL2 and BL2viaC

AR A

libxsmm_aux.md#user-data-dispatch

Here are some examples of invoking the driver program:

bin/libxsmm_gemm_generator dense foo.c foo 16 16 16 32 32 32 1 1 1 1 hsw nopf DP
bin/libxsmm_gemm_generator dense_asm foo.c foo 16 16 16 32 32 32 1 1 1 1 knl AL2_BL2viaC DP
bin/libxsmm_gemm_generator sparse foo.c foo 16 16 16 32 0 32 1 1 1 1 hsw nopf DP bar.csc

Please note, there are additional examples given in samples/generator and samples/seissol.

Development Concepts

The low-level code generator is hosted by a single translation unit (src/generator_x86__instructions.c). The code
generator emits instructions as enumerated in src/generator__common.h. A kernel then is a buffered stream of
instructions in either binary/encoded or textual form. The latter is leveraged by stand-alone generator drivers that
can print C functions with an assembly section (inline). A generator driver may exists for some of LIBXSMM's
function domains. Please note that emitting the textual form is not needed to inspect the emitted code since the
binary encoded form can be easily disassembled (objdump).

The binary encoded form is directly suitable for execution by casting the code-buffer into a function-pointer of the
corresponding signature. It is advised to rely on LIBXSMM's internal memory allocation routines to acquire an
executable buffer (see libxsmm_malloc_ flags, libxsmm_ xmalloc, and libxsmm__malloc_ attrib in src/libxsmm__main.h).
This ensures correct behavior in security-hardened environments. As a bonus, profiler support for the emitted code is
enabled transparently.

To debug the JIT'ted code, GNU GDB can be used to disassemble a given memory address (disas address,+length).
Having the code disassembled side-by-side (while debugging) helps to look ahead and to have some orientation. For
the latter, objdump can be used to acquire the source code (assembly) along with hexadecimal line numbers (length).
The offset position (for GDB's disas) directly corresponds to objectdump's line numbers.

The kernel development is much like assembly programming, except that an API is used to emit instructions. For
further reference, some existing source code for building kernels can be inspected (e.g., matcopy). This may help to
capture the concept of mapping registers (basically a table to avoid hard-coding register names).

Appendix

Compatibility

It is desirable to exercise portability and reliability of LIBXSMM's source code even on Non-Intel Architecture by
the means of compilation, linkage, and generic tests. This section is not about Intel Architecture (or compatible).
Successful compilation (or even running some of the tests successfully) does not mean LIBXSMM is valuable on that
platform.

Make sure to rely on PLATFORM=1, otherwise a compilation error should occur Intel Architecture or compatible CPU
required! This error avoids (automated) attempts to upstream LIBXSMM to an unsupported platform. LIBXSMM is
upstreamed for Intel Architecture on all major Linux distributions, FreeBSD, and others. If compilation fails with
"LIBXSMM is only supported on a 64-bit platform!", make PLATFORM=1 DBG=1 can be used to exercise compilation.

If platform support is forced (PLATFORM=1), runtime code generation is disabled at compile-time (J1T=0). Runtime code
generation can be also enabled (PLATFORM=1 JIT=1) but code-dispatch will still return NULL-kernels. However, some
tests will start failing as missing JIT-support it is not signaled at compile-time as with JIT=0.

Note: JIT-support normally guarantees a non-NULL code pointer ("kernel") if the request is according to the
limitations (user-code is not asked to check for a NULL-kernel), which does not hold true if JIT is enabled on a
platform that does not implement it.

https://github.com/libxsmm/libxsmm/blob/main/src/generator_x86_instructions.h
https://github.com/libxsmm/libxsmm/blob/main/src/generator_common.h
index.md#objdump
https://github.com/libxsmm/libxsmm/blob/main/src/libxsmm_main.h
libxsmm_prof.md
index.md#objdump
https://github.com/libxsmm/libxsmm/wiki/Q&A#what-is-a-small-matrix-multiplication

LIBXSMM 2.x

For new developments prior to LIBXSMM 2.0 release, e.g., the integration of LIBXSMM into an application or a
library, it is advisable to rely on main branch (main may not be the default branch temporarily, i.e., a fresh clone of
LIBXSMM can be based on main_stable rather than main). Any functions carrying _v2 as a postfix is encouraged (_v2
is when development approaches LIBXSMM v2.0).

Version 2 remains feature wise compatible, i.e., equivalent but new API calls are necessary for v1.x functionality. For
an existing integration with LIBXSMM v1.x it is recommended to transition to API v2. If such code base cannot
easily control dependencies/users, or wishes to support APIvl as well as APIv2, it is possible to distinct LIBXSMM's
version at compile-time and to implement v1- and v2-codepaths.

Linux

All Linux distributions are meant to be fully supported (please report any compatibility issue). A shared library
(STATIC=0) necessarily implies some performance hit when accessing thread-local memory (contended multicore execution).
The GNU Compiler Collection prior to v5.1 may imply performance hits in some CPUID-dispatched code paths
(non-JIT).

In case of outdated Binutils, compilation can fail to assemble code that originates from code sections
using Intrinsics (see issue #170 and #212). To resolve the problem, please use INTRINSICS=1 along with the
desired target e.g., AVX=3 MIC=0, Or AVX=2.

CRAY

In addition to the regular Linux support, The CRAY Compiling Environment (CCE) is supported: Intel Compiler
as well as the GNU Compiler Collection are detected even when invoked per CCE, and the CRAY compiler is likely
configured to build for the architecture of the compute nodes and hence the compiler is sufficiently treated without
specific build flags (coMPATIBLE=1 is implicitly set). The CCE may suppress to build a shared library (sTaTIC=0), which
also affects the TRACE facility (requires dynamic linkage even for static archives).

make CXX=CC CC=cc FC=ftn

The compatibility settings imply minor issues when using the CRAY compiler: full control and customization is not
implemented, enabling symbols (syM=1) appears to imply an unoptimized debug-build (due to the -g flag being present).
Some sample codes/benchmarks enable symbols but are meant to not enable debug-code. The LIBXSMM library
however is built without symbols by default.

Windows

Microsoft Windows Microsoft Windows is supported using the Microsoft Visual Studio environment (no make). It is
advised to review the build settings. However, the following configurations are available: debug, release, and release
mode with symbols. JIT-code generation is enabled but limited to the MM domain (GEMM kernels and matcopy
kernels; no transpose kernels). GEMM kernels with prefetch signature remain as non-prefetch kernels i.e., prefetch
locations are ignored due to the effort of fully supporting the Windows calling convention. As a workaround and to
properly preserve caller-state, each JIT-kernel call may be wrapped by an own function.

Cygwin Cygwin (non-MinGW) is fully supported. Please note, that all limitations of Microsoft Windows apply.

make

LIBXSMM can be built as a static library as well as a dynamic link library (STATIC=0).

https://github.com/libxsmm/libxsmm/issues/new
https://github.com/libxsmm/libxsmm/issues/170
https://github.com/libxsmm/libxsmm/issues/212#issuecomment-394620082
http://libxsmm.readthedocs.io/libxsmm_tune/
https://github.com/libxsmm/libxsmm/wiki/Q&A#what-operating-systems-are-covered-by-libxsmm-and-what-about-microsoft-windows

MinGW /Cygwin This is about the Cygwin-hosted bits of MinGW. The -fno-asynchronous-unwind-tables compiler flag
is automatically applied. Please note, that all limitations of Microsoft Windows apply.

make \
CXX=x86_64-w64-mingw32-g++ \
CC=x86_64-w64-mingw32-gcc \
FC=x86_64-w64-mingw32-gfortran

To run tests, BLAS=0 may be supplied (since Cygwin does not seem to provide BLAS-bits for the MinGW part). However,
this may be different for "native" MinGW, or can be fixed by supplying a BLAS library somehow else.

MinGW This is about the "native" MinGW environment. Please note, there is the original MinGW as well as a fork
(made in 2007). Both of which can target Windows 64-bit. Here, the MSYS2 installer (scroll down on that page to see
the full installation instructions) has been used (see the details on how to install missing packages).

pacman -S msys/make msys/python msys/diffutils \
mingw64/mingw-w64-x86_64-gcc mingw64/mingw-w64-x86_64-gcc-fortran \
mingw64/mingw-w64-x86_64 -openblas

Similar to Cygwin/MinGW, the -fno-asynchronous-unwind-tables flag is automatically applied.

make

LIBXSMM can be built as a static library as well as a dynamic link library (STATIC=0).

ARM

AArch64 LIBXSMM 2.0 is the initial version supporting AArch64 (baseline is v8.1), which practically covers ARM
64-bit architecture from embedded and mobile to supercomputers. The build and installation process of LIBXSMM is
the same as for Intel Architecture (IA) and the library can be natively compiled or cross-compiled. The latter for
instance looks like:
make PLATFORM=1 AR=aarch64-linux-gnu-ar \

FC=aarch64-linux-gnu-gfortran \

CXX=aarch64-linux-gnu-g++ \

CC=aarch64-linux-gnu-gcc

Cross-compilation ARM AArch64 is regularly supported. However, 32-bit ARM requires PLATFORM=1 to unlock
compilation (like 32-bit Intel Architecture). Unlocking compilation for 32-bit ARM is not confused with supporting
32-bit ARM architectures.

make PLATFORM=1 AR=arm-linux-gnueabi-ar \
FC=arm-linux-gnueabi-gfortran \
CXX=arm-linux-gnueabi-g++ \
CC=arm-linux-gnueabi-gcc

Apple macOS

LIBXSMM for macOS is supported (i.e., qualifying a release) including AArch64 or Apple Silicon. The default is to
rely on Apple's Clang based (platform-)compiler ("gec"). However, GNU GCC in general as well as the Intel Compiler
for macOS (only x86-64) can be used.

FreeBSD

LIBXSMM is occasionally tested under FreeBSD. For libxsmmext, it is necessary to install OpenMP
(sudo pkg install openmp)

bash
gmake

An attempt to run the tests may ask for a LAPACK/BLAS installation (unless BLAS=0 is given). Both, Netlib BLAS
(reference) and OpenBLAS are available (in case of linker error due to the GNU Fortran runtime library, one can
try gmake CXX=g++7 CC=gcc7 FC=gfortran7 i.e., select a consistent tool chain and adjust LD_LIBRARY_PATH accordingly e.g.,
/usr/local/lib/gcc?)

https://iplogger.com/2FpaR4
https://iplogger.com/2FpaR4
https://iplogger.com/2FpaR4
https://github.com/msys2/msys2/wiki/MSYS2-installation
https://github.com/libxsmm/libxsmm/wiki/Compatibility#arm-aarch64
https://github.com/libxsmm/libxsmm/wiki/Validation

PGI Compiler

The PGI Compiler 2019 (and later) is supported. Earlier versions were only occasionally tested and automatically
enabled the coMPATIBLE=1 and INTRINSIC=0 settings. Still, atomic builtins seem incomplete (at least with pgec) hence
LIBXSMM built with PGI Compiler is not fully thread-safe (tests/threadsafety can fail). Support for GNU's libatomic
has been incorporated mainly for PGI but is also missing built-in compiler support hence supposedly atomic operations
are mapped to normal (non-atomic) code sequences (LIBXSMM_SYNC_SYSTEM).

make CXX=pgc++ CC=pgcc FC=pgfortran

IBM XL Compiler for Linux (POWER)

The POWER platform requires PLATFORM=1 to unlock compilation.

make PLATFORM=1 CC=xlc CXX=xlc++ FC=x1f

TinyCC

The Tiny C Compiler (TinyCC) supports Intel Architecture but lacks at least support for thread-local storage (TLS).
make CC=tcc THREADS=0 INTRINSICS=0 VLA=0 ASNEEDED=0 BLAS=0 FORCE_CXX=0

Validation
Basic Tests

To run basic tests:

make tests

Remember: a set of key-value pairs represents a single unique (re-)build (and test):

make STATIC=0 tests

Test Suites

It is possible to run whole test suites or collections of tests like for LIBXSMM's Continuous Integration (CI). The
script tool_test.sh is included in archives and releases, i.e., it also works for non-repository folders. To run an entire
collection (aka scripts/tool_test.sh 0).

scripts/tool_test.sh

It is also possible to select a single test (out of the whole collection):

scripts/tool_test.sh 1

In general, key-value pairs which are valid for LIBXSMM's maxe can be specified:

AVX=3 DBG=1 scripts/tool_test.sh

There are several collections of tests covering specific domains:

o samples/utilities/wrap/wrap-test.sh: test substituting standard symbols at link/run-time (gemm, gemv, etc).
o samples/xgemm/kernel_test.sh: test SMM kernels in an almost exhaustive fashion (brute-force).

e samples/eltwise/run_test.sh: test all kinds of element-wise kernels and variants.

o samples/pyfr/test.sh: test Sparse Matrix times Dense Matrix (FsSpMDM).

Reproduce Failures

LIBXSMM's verbose mode can print the invocation arguments when launching a test driver (LIBXSMM_VERBOSE=4 and
beyond). For example (LIBXSMM_VERBOSE=4 ./run_test_avx2.sh), the termination message of a failing test may look like:
[...]

LIBXSMM_TARGET: hsw

Registry and code: 13 MB + 8 KB (meltw=1)

Command: ./eltwise_binary_simple 1 0 F32 F32 F32 F32 10 10 10 10

[...]

Note: scripts such scripts/tool_pexec.sh suppress error output (console) by default and capture error output in
individual files, i.e., verbose output may not be immediately visible.

Scripts
Overview

LIBXSMM's collection of scripts consists of Python and Bash scripts falling into two categories:

o Configuration scripts
¢ Development tools

Scripts related to configuring LIBXSMM are distributed with source code archives. Development tools mostly for
software development purpose and are (indirectly) used by contributors, but some scripts are distributed by source
code archives as well. The latter are mostly related to running tests (indirectly used by upstream maintainers, e.g., of
Linux distributions).

Configuration

Configuration scripts are usually automatically invoked by LIBXSMM's Makefile based build system (GNU Make),
and there is no immediate need to run any of these scripts.

e libxsmm_config.py, libxsmm_interface.py, and libxsmm_specialized.py: Conﬁgures LIBXSMM and instantiates
libxsmm_version.h (format is suitable for C/C++ and Fortran), libxsmm_config.h, libxsmm.h, and libxsmm.f. The
templates contain certain placeholders which are filled with actual values. Beside of the version header, the
configuration considers special needs and rarely needs to deviate from the default. The default for instance
allows a 3rd party build system to ease building LIBXSMM. The configuration does not consider the platform,
compiler, or build system related choices but is rather about generating application specific implementations and
interfaces.

e libxsmm_dispatch.py: Makes application specific implementations available for LIBXSMM!'s code registry, i.e.,
registers functions generated at the time of configuring and building the library.

e libxsmm_utilities.py: Utility functions used by other Python scripts ("library"). The script also exposes a private
command-line interface to allows accessing some services, e.g., determining the name (mnemonic) of the target
architecture used by LIBXSMM when JIT-generating code.

e libxsmm_source.py: Collects source code file names and includes these implementations when using LIBXSMM as
header-only library.

Although libxsmm_utilities.py command-line interface is private (can change without notices), it is supposed to provide
the following information:

e libxsmm_utilities: outputs LIBXSMM's target architecture as used by JIT code generation. For this functionality,
LIBXSMM must be built since the script binds against 1ibxsmm_get_target_arch().

e libxsmm_utilities 0: outputs LIBXSMM's version string (preprocessor symbol LIBXSMM_VERSION).

o libxsmm_utilities 1: outputs LIBXSMM's 1st component version number (LIBXSMM_VERSION_MAJOR).

outputs LIBXSMM's 2nd component version number (LIBXSMM_VERSION_MINOR).

outputs LIBXSMM's 3rd component version number (LIBXSMM_VERSION_UPDATE).

outputs LIBXSMM's 4th component version number (LIBXSMM_VERSION_PATCH).

N

e libxsmm_utilities

w

e libxsmm_utilities

®

e libxsmm_utilities

The version information is based on version.txt, which is part of LIBXSMM's source code archives (distribution).

https://libxsmm.readthedocs.io/#verbose-mode
https://github.com/libxsmm/libxsmm/tree/main/scripts
https://github.com/libxsmm/libxsmm/blob/main/src/template
https://github.com/libxsmm/libxsmm/blob/main/version.txt

Development

Overview

e tool_analyze.sh: Runs compiler based static analysis based on Clang or GCC.

e tool_changelog.sh: Rephrases the history of LIBXSMM's checked-out repository to consist as a changelog grouped
by contributors.

 tool_checkabi.sh: Extracts exported/visible functions and other symbols (public interface) from built LIBXSMM
and compares against a recorded state. The purpose is to acknowledge and confirm for instance removed
functionality (compatibility). This includes functions only exported to allow interaction between LIBXSMM's
different libraries. However, it currently falls short of recognizing changes to the signature of functions (arguments).

e tool_cpuinfo.sh: Informs about the system the script is running on, i.e., the number of CPU sockets (packages),
the number of CPU cores, the number of CPU threads, the number of threads per CPU core (SMT), and the
number of NUMA domains. The script is mainly used to parallelize tests during development. However, this
script is distributed because test related scripts are not only of contributor's interest (tool_test.sh).

e tool_envrestore.sh: Restores environment variables when running tests (tool_test.sh).

o tool_getenvars.sh: Attempts to collect environment variables used in LIBXSMM's code base (getenv). This script
is distributed.

e tool_gitaddforks.sh: Collects forks of LIBXSMM and adds them as Git-remotes, which can foster collaboration
(development).

e tool_gitauthors.sh: Collects authors of LIBXSMM from history of the checked-out repository.

e tool_gitprune.sh: Performs garbage collection of the checked-out repository (.git folder). The script does not
remove files, i.e., it does not run git clean.

e tool_inspector.sh: Wrapper script when running a binary to detect potential memory leaks or data races.

e tool_normalize.sh: Detects simple code patters banned from LIBXSMM's source code.

e tool_logperf.sh: Extracts performance information produced by certain examples (driver code), e.g., LIBXSMM-
DNN tests.

e tool_logrept.sh: Calls tool_logperf.sh to summarize performance, updates a database of history to generate a
report (tool_report.py/tool_report.sh), and prints a base64 encoded image.

e tool_pexec.sh: Reads standard input and attempts to execute every line (command) on a per CPU-core basis,
which can help to parallelize tests on a per-process basis.

e tool_report.py: Core developer team can collect a performance history of specified Cl-collection (Buildkite
pipeline).

e tool_scan.sh: Core developer team can scan the repository based on a list of keywords.

e tool_test.sh:

e tool_version.sh: Determines LIBXSMM's version from the history of the checked-out repository (Git). With
respect to LIBXSMM's patch version, the information is not fully accurate given a non-linear history.

Parallel Execution The script tool_pexec.sh can execute commands read from standard input (see -h or --help). The
execution may be concurrent on a per-command basis. The level of parallelism is determined automatically but can
be adjusted (oversubscription, nested parallelism). Separate logfiles can be written for every executed command
(-o /path/to/basename.ext used as template for individual logfiles like /path/to/basename-case_xyz.ext). File I/O can
become a bottleneck on distributed filesystems (e.g., NFS), or generally hinders nested parallelism (-o /dev/null -k).

Every line of standard input denotes a separate command:

seq 100 | xargs -I{} echo "echo \"{}\"" \
| tool_pexec.sh

The script considers an allow-list which permits certain error codes. Allow-lists can be automatically gener-
ated (-u). Most if not all settings can be determined by environment variables as well (prefix PEXEC_), e.g.,
export PEXEC_LG=/path/to/basename.ext allows to omit -o on the command line and to always generate logfiles (see
earlier explanation).

Performance Report The script tool_report.py collects performance results given in two possible formats: (1) native
"telegram" format, and (2) JSON format. The script aims to avoid encoding domain knowledge. In fact, the collected
information is not necessarily performance data but a time series in general. Usually, the script is not executed directly
but launched using a wrapper supplying the authorization token and further adapting to the execution environment
(setup):

https://github.com/libxsmm/libxsmm-dnn/tree/main/tests
https://github.com/libxsmm/libxsmm-dnn/tree/main/tests

#!/usr/bin/env bash

authorization token
TOKEN=0123456789abcdef0123456789abcdef01234567

PYTHON=$ (command -v python3)
if [! "${PYTHON}"]; then

PYTHON=$ (command -v python)
fi

if ["${PYTHON}"]; then
HERE=$(cd "$(dirname "$0")" && pwd -P)
NAME=$ (basename "$0" .sh)
SCRT=${NAME}. py

if ["${HERE}"]; then SCRT_A=${HERE}/${SCRT}; fi
if ["${LIBXSMMROOT2}"]; then SCRT_B=${LIBXSMMROOT}/scripts/${SCRT}; fi
if ["${REPOREMOTE}"]; then SCRT_C=${REPOREMOTE}/libxsmm/scripts/${SCRT}; fi

if ["${SCRT_A}" 1 && [-e "${SCRT_A}" 1; then

${PYTHON} "${SCRT_A}" --token "${TOKEN}" "$@"
elif ["${SCRT_B}" 1 && [-e "${SCRT_B}"]; then

${PYTHON} "${SCRT_B}" --token "${TOKEN}" "g@"
elif ["${SCRT_C}"] && [-e "${SCRT_C}" 1; then

${PYTHON} "${SCRT_C}" --token "${TOKEN}" "$@"
else

>%2 echo -n "ERROR: missing ${SCRT_A}"
if ["${SCRT_B}"]; then >&2 echo -n " or ${SCRT_B}"; fi
if ["${SCRT_C}"]; then >&2 echo -n " or ${SCRT_C}"; fi
>%2 echo "!"
exit 1
fi
else
>%2 echo "ERROR: missing prerequisites!"
exit 1
fi

The following flow is established:

1. Connect to a specified pipeline (online) or load a logfile directly (offline).
2. Populate an entry (JSON-block or telegram) under a "build number", "category", and "case".
3. Plot "execution time" over the history of build numbers.

There are several command-line options to customize each of the above steps (--help or -h):

o To only plot data (already collected), use -i "" to omit a network connection.
o To query, e.g., ResNet-50 results, use -y resnet-50 (case-insensitive).

o Multiple results can be combined, i.e., use -y (space-separated words).

o To exactly match (single results) use -x in addition to -y.

o To limit and select a specific "category" (instead of all), use -s.

o Select exactly using -z, e.g., -z -s "clx" (omits, e.g., "clx").

o Create a PDF (vector graphics have infinite resolution), use -g myreport.pds.

o Adjust pixel resolution, aspect ratio, or density, use -d 1200x800.

The level of verbosity (-v) can be adjusted (0: quiet, 1: automation, 2: progress). Default verbosity shows progress
(downloading results) whereas "automation" allows to further automate reports, e.g., get the filename of the generated
plot (errors are generally printed to stderr). Loading a logfile into the database directly can serve two purposes:
(1) debugging the supported format like "telegram" or JSON, and (2) offline operation. The latter can be also useful if
for instance a Cl-agents produces a log, i.e., it can load into the database right away. Command-line options also allow
for "exact placement" (-j) by specifying the build number supposed to take the loaded data (data is appended by
default, i.e., it is assumed to be a new build, or the build number is incremented).

The tool automatically performs database backups of the historic values (-n) according to the retention (-x). The
retention can also be used to prune the history (by forcing an earlier backup). Backups carry a timestamp as part of
the filename (database), and contain the full history of value at the time of the backup.

Examples (omit -i "" if downloading results is desired):

¢ Plot ResNet-50 results from Cl-pipeline "tpp-libxsmm" for "clx" systems:

scripts/tool_report.sh -p tpp-libxsmm -i "" -y "resnet-50" -z -s "clx".
o Like above request, but only FP32 results:
scripts/tool_report.sh -p tpp-libxsmm -i "" -x -y "ResNet-50 (fwd, mb=1, £32)" -z -s "clx".
o Like above request, but alternatively ("all" operator is also default):
scripts/tool_report.sh -p tpp-libxsmm -i "" -u "all" -y "resnet £32" -z -s "clx".
e Plot ResNet-50 results from Cl-pipeline "tpp-plaidml":
scripts/tool_report.sh -p tpp-plaidml -i "" -r "duration_per_example,1000,ms"
e Plot "GFLOP/s" for "conv2d_odd_med" from Cl-pipeline "tpp-plaidml":
scripts/tool_report.sh -p tpp-plaidml -i "" -y "conv2d_odd_med" -r "gflop"
o Plot "tpp-benchmark" pipeline (MLIR benchmarks, main-branch):
scripts/tool_report.sh -p tpp-benchmark -i "" -y "" -r "mlir" -b "main"
o Plot "tpp-benchmark" pipeline (MLIR benchmarks, main-branch, untied plots):
scripts/tool_report.sh -p tpp-benchmark -i "" -y "" -r "mlir" -b "main" -u

o Plot "tpp-benchmark" pipeline (reference benchmarks; selected entries -y):
scripts/tool_report.sh -p tpp-benchmark -i "" -q "any" -y "gemm matmul" -r "dnn"

o Plot "tpp-benchmark" pipeline (MLIR benchmarks without "single", untied plots):
scripts/tool_report.sh -p tpp-benchmark -i "" -q "not" -y "single" -r "mlir" -u

o Plot "tpp-performance" pipeline (MLIR benchmarks only "mlp", untied plots):

scripts/tool_report.sh -p tpp-performance -i "" -y "mlp" -r "mlir" -u

The exit code of the script is non-zero in case of an error, or if the latest value deviates and exceeds the margin
(--bounds). For the latter, the meaning of the values must be given (like "higher is better"). The first argument of
the bounds is a factor such that the standard deviation of historic values is amplified to act as margin of the relative
deviation (latest versus previous value). The second argument of the bounds determines the accepted percentage of
deviation (latest versus previous value).

The exit code is only impacted if an explicit sign is given to determine "bad" values (+ or -). For example, 2.0 gives a
factor of two over standard deviation (no impact for the exit code), 2.0 10 is likewise but also limits the deviation to
10% at most, +3.0 gives a factor of three over standard deviation and considers a positive deviation as regression (like
for timing values) and thereby impacts the exit code. Also, it is possible to just determine the meaning and keep
default bounds, .i.e., only - determines negative deviation as a regression (like for higher-is-better values).

By default, only the last/current vs the previous value (history) determines the deviation. This can miss a historic
slow/steady regession if the last value is always below threashold. To consider the full history value (median) as part
of the deviation, a leading 0 can be given in front of the afore mentioned factor (after the sign). For example, -02.1
specifies an aplification factor of 2.1 over standard deviation with deviation considering the median of all historic
values. Consequently, a fractional factor requires two leading zeros, e.g., -00.4.

Q&A
What is the background of the name "LIBXSMM"?

The "MM" stands for Matrix Multiplication, and the "S" clarifies the working domain, i.e., Small Matrix Multiplication.
The latter also means the name is neither a variation of "MXM" nor an eXtreme Small Matrix Multiplication but
rather about Intel Architecture (x86) - and no, the library is 64-bit only. The spelling of the name might follow the
syllables of libx\ /smm, libx'smm, or libx-smm.

NOTE: the library does not support 32-bit architecture (64-bit only)

What is a small matrix multiplication?

When characterizing the problem-size using the M, N, and K parameters, a problem-size suitable for LIBXSMM falls
approximately within (M N K)1/ 3 <= 128 (which illustrates that non-square matrices or even "tall and skinny" shapes
are covered as well). The library is typically used to generate code up to the specified threshold. Raising the threshold
may not only generate excessive amounts of code (due to unrolling in M or K dimension), but also miss to implement
a tiling scheme to effectively utilize the cache hierarchy. For auto-dispatched problem-sizes above the configurable
threshold (explicitly JIT'ted code is not subject to the threshold), LIBXSMM is falling back to BLAS. In terms of
GEMM, the supported kernels are limited to Alpha := 1, Beta := { 1, 0 }, and TransA := 'N’.

https://github.com/libxsmm/libxsmm/issues/103#issuecomment-256887962
https://github.com/libxsmm/libxsmm/issues/103#issuecomment-256887962

NOTE: Alpha, Beta, and TransA are limited to 1, { 1, 0 }, and 'N' respectively.

What is a small convolution?

In the last years, new workloads such as deep learning and more specifically convolutional neural networks (CNN)
emerged and are pushing the limits of today's hardware. One of the expensive kernels is a small convolution with
certain kernel sizes (3, 5, or 7) such that calculations in the frequency space is not the most efficient method when
compared with direct convolutions. LIBXSMM's current support for convolutions aims for an easy-to-use invocation of
small (direct) convolutions, which are intended for CNN training and classification. The Interface is currently ramping
up, and the functionality increases quickly towards a broader set of use cases.

What about "medium-sized" and big(ger) matrix multiplications?

For cache-tiled or parallelized routines, please rely for example on OpenBLAS or Intel Math Kernel Library (Intel
MKL). It is possible to reuse LIBXSMM's kernels for big(ger) matrix multiplications however, an implementation is
out of scope for LIBXSMM's core functionality.

How to determine whether an application can benefit from using LIBXSMM or not?

Given the application uses BLAS to carry out matrix multiplications, one may use the Call Wrapper, and mea-
sure the application performance e.g., time to solution. However, the latter can significantly improve when using
LIBXSMM's API directly. To check whether there are applicable GEMM-calls, the Verbose Mode can help to collect
an insight. Further, when an application uses Intel MKL 11.2 (or higher), then running the application with the
environment variable MKL VERBOSE=1 (env MKL_VERBOSE=1 ./workload > verbose.txt) can collect a similar insight
(grep -a "MKL_VERBOSE DGEMM(N,N" verbose.txt | cut -d'(' -f2 | cut -d, —f3—5“)

Is LIBXSMM compatible from version-to-version, or what is the ABl commitment?

One may have a look at issue #120 or #282, but in summary:

o Binary compatibility is not continuously tested (only manually for a subset of the API namely SMM domain).
o Major versions are likely breaking binary compatibility with existing integrations (that is typical).

o Minor versions may break binary compatibility of recently introduced features (may not be typical).

o Update and patch versions are binary compatible but may only be released on request (issue).

LIBXSMM's API for Small Matrix Multiplications (SMMs) is considered stable, and all major known applications
(e.g., CP2K, EDGE, NEK5K, and SeisSol) either rely on SMMs or are able (and want) to benefit from an improved
APT of any of the other domains (e.g., DL). Until at least v2.0, LIBXSMM is not able to track or even maintain binary
compatibility and hence the SONAME also goes with the semantic version. A list of public functions is maintained

(but there is no distinction for a small subset of them that are only meant for communication between LIBXSMM and
LIBXSMM/ext).

I am relying on a prebuilt version of CP2K (or another application), is LIBXSMM incorporated and which version
is it?

This can be determined using the environment variable L1BXSMM_VERBOSE=2 (or higher verbosity). It is not even required
to use an input or workload since the information in question is presented when the program terminates. For example:

LIBXSMM_VERBOSE=1 exe/Linux-x86-64-intelx/cp2k.psmp
[...]

LIBXSMM_VERSION: release-1.11

LIBXSMM_TARGET: clx

https://registrationcenter.intel.com/en/forms/?productid=2558
https://github.com/libxsmm/libxsmm/issues/120#issuecomment-264498939
https://github.com/libxsmm/libxsmm/issues/282#issuecomment-485390494
https://github.com/libxsmm/libxsmm/blob/master/.abi.txt

I am relying on a prebuilt version of an application, and | am concerned about optimal compiler flags.

LIBXSMM uses JIT-generated code according to the CPUID of the system. This is independent of the compiler flags
used to build the library. If LIBXSMM was incorporated per classic ABI, LIBXSMM_DUMP_BUILD=1 environment variable
allows to print build flags at termination of the application. The output of LIBXSMM_DUMP_BUILD=1 can yield hints about
the flags used to build the application (if similar to the flags used for LIBXSMM).

What Operating Systems are covered by LIBXSMM, and what about Microsoft Windows?

The answer here focuses on the actual runtime support rather than the supported compiler tool chains used to build
the library. All flavors of Linux are supported (if the library was successfully built), which includes installations
running a security-hardened Linux kernel (SELinux). The Apple OS (OSX) is supported, which also includes more
recent SIP-enabled versions (System Integrity Protection). The BSD OS is likely supported, but building the library is
only occasionally validated. Microsoft Windows is supported for non-JIT operation, and for most (e.g., GEMM and
MATCOPY) of the JIT-kernels (prefetch signature is not supported). There is currently no support for JIT in the
DNN domain (no further check is performed, i.e., crash at runtime). See also issue #71.

Does LIBXSMM has some support for GEMV?

The library generates acceptable code when using M=1 or N=1. For example, building with make M=16 N=1 k=16 AVX=2 and
inspecting the assembly (build directory) or dumping/disassembling the JIT code (see reference documentation) shows
the minimum number of load/store instructions. Given that GEMV is a memory bound operation, this suggests
reasonable code quality. LIBXSMM selects from multiple microkernels (specific for each ISA extension) by using
a fixed scheme/heuristic, which should be acceptable for GEMV. The sample code under samples/smm provides
ready-to-use benchmark drivers that can help to compare the performance with LAPACK/BLAS. Afore mentioned
benchmarks exercise streaming all possible combinations of operands.

What about complex and mixed types?

This question refers to the following kind of element type of the GEMM interface of LIBXSMM:

o Complex types: complex numbers in single and double-precision,
o Mixed types: e.g., real double-precision and complex double-precision There are no (immediate) plans to support
more types for the GEMM part. Please note, that LIBXSMM indeed supports lower precision GEMM (wgemm).

What about voting for features?

All feedback and issue reports are handled openly, are welcome and considered (answered, and collected). However, we
do not seek for "feature votes" since the development of the library is not a democratic process.

https://libxsmm.readthedocs.io/#classic-library-abi
https://github.com/libxsmm/libxsmm/issues/71
https://github.com/libxsmm/libxsmm/blob/master/samples/smm
https://github.com/libxsmm/libxsmm/issues
https://github.com/libxsmm/libxsmm/issues?q=is%3Aissue+is%3Aclosed
https://github.com/libxsmm/libxsmm/wiki/Development#longer-term-issues

	LIBXSMM
	Interfaces and Domains
	Overview
	Matrix Multiplication
	Deep Learning
	Service Functions
	Backend

	Build Instructions
	Overview
	Classic Library (ABI)
	Header-Only

	Rules for building LIBXSMM
	Link Instructions
	Installation

	Runtime Control
	Handling Errors
	Verbose Mode
	Call Trace
	Verification

	Performance
	Applications
	High Performance Computing (HPC)
	Machine Learning (ML)
	Automated Driving (AD)

	References
	Articles

	LIBXSMM Domains
	Matrix Multiplication
	Overview
	Manual Code Dispatch
	Batched Multiplication
	User-Data Dispatch
	Call Wrapper

	Service Functions
	Target Architecture
	Verbosity Level
	Timer Facility
	User-Data Dispatch
	Memory Allocation
	Meta Image File I/O
	Thread Synchronization

	Performance Analysis
	Intel VTune Profiler
	Linux perf

	Customization
	Intercepted Allocations
	Static Specialization
	User-Data Dispatch
	Targeted Compilation
	Auto-dispatch

	Backend
	Code Generator (JIT)
	Generator Driver
	Development Concepts

	Appendix
	Compatibility
	LIBXSMM 2.x
	Linux
	CRAY
	Windows
	ARM
	Apple macOS
	FreeBSD
	PGI Compiler
	IBM XL Compiler for Linux (POWER)
	TinyCC

	Validation
	Basic Tests
	Test Suites
	Reproduce Failures

	Scripts
	Overview
	Configuration
	Development

	Q&A
	What is the background of the name "LIBXSMM"?
	What is a small matrix multiplication?
	What is a small convolution?
	What about "medium-sized" and big(ger) matrix multiplications?
	How to determine whether an application can benefit from using LIBXSMM or not?
	Is LIBXSMM compatible from version-to-version, or what is the ABI commitment?
	I am relying on a prebuilt version of CP2K (or another application), is LIBXSMM incorporated and which version is it?
	I am relying on a prebuilt version of an application, and I am concerned about optimal compiler flags.
	What Operating Systems are covered by LIBXSMM, and what about Microsoft Windows?
	Does LIBXSMM has some support for GEMV?
	What about complex and mixed types?
	What about voting for features?

