
R OO Programming and Package Development

Robert Stojnic and Laurent Gatto

Teaching material:
https://github.com/lgatto/TeachingMaterial

September 21, 2016

Stojnic and Gatto Advanced R course September 21, 2016 1 / 110

https://github.com/lgatto/TeachingMaterial

Prerequisites

good knowledge of R (data types, functions, scripting ...)

basic knowledge of CLI

some Latex knowledge helpful but not essential

object-oriented programming knowledge helpful but not essential

Stojnic and Gatto Advanced R course September 21, 2016 2 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 3 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 4 / 110

Course introduction

Course agenda

Object-oriented programming in R: S3 and S4 class systems

Package development in R: creating and documenting packages

Other advanced topics: testing, debugging, profiling, C interface

This is an intensive course

Objectives

By the end of the course you should have created a working package
written in the S4 class system.

You should be able to use the code as a template for your own work. Our
example has been chosen for demonstrative purposes.

Stojnic and Gatto Advanced R course September 21, 2016 5 / 110

Course working example: ”sequences” package

Working example

We will make a simple package to handle sequence data.

This package will be able to load a FASTA file and based on sequence type
do some operations, like finding the sequence length or reverse sequence.
For simplicity we will manipulate single sequences only.

UML class diagram for the ”sequences” package

Stojnic and Gatto Advanced R course September 21, 2016 6 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 7 / 110

Basic R functions (size reflects frequency of usage)

Stojnic and Gatto Advanced R course September 21, 2016 8 / 110

Defining functions in R

Simple function with 4 arguments:
> # Function to calculate area of rectangle

> area <- function(x1, y1, x2, y2) {

+ abs(x2-x1) * abs(y2-y1)

+ }

> area(0, 0, 5, 5)

[1] 25

Special argument ”...” for any:

> # Plot with a message before the plot

> plotMsg <- function(x, y, ...){

+ cat("Plotting", length(x), "data points!\n")

+ plot(x, y, ...)

+ }

> plotMsg(1:10, 1:10, main="My plot")

Plotting 10 data points!

Stojnic and Gatto Advanced R course September 21, 2016 9 / 110

Output of plotMsg()

.

> plotMsg(1:10, 1:10, main = "My plot")

Plotting 10 data points!

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

My plot

x

y

Stojnic and Gatto Advanced R course September 21, 2016 10 / 110

Useful R function 1/2

readLines() - reads raw lines of text from a file

nchar() - gives number of characters in a string
> nchar("Some text")

[1] 9

strsplit() - split a string by some separator
> strsplit("Some text", " ")

[[1]]

[1] "Some" "text"

> strsplit("Some text", "")

[[1]]

[1] "S" "o" "m" "e" " " "t" "e" "x" "t"

unique() - unique elements of a vector
> unique(c(1, 1, 2, 2, 3))

[1] 1 2 3

> unique(c("a", "b", "a"))

[1] "a" "b"

Stojnic and Gatto Advanced R course September 21, 2016 11 / 110

Useful R function 2/2

grep() - find which elements of vector match regular expression
> grep("[AT]+", c("CGC", "TAT", "TATCATA"))

[1] 2 3

sub() - replace matches to regular expression
> sub("[AT]+", "-", c("CGC", "TAT", "TATCATA"))

[1] "CGC" "-" "-CATA"

chartr() - translate a string by replacing individual characters
> chartr("TA", "AT", "TATCTA")

[1] "ATACAT"

rev() - reverse ordering in a vector
> rev(c("TAT", "ATT", "TTT"))

[1] "TTT" "ATT" "TAT"

paste() - concatenate variables into a string representation
> paste(c("A", "T", "A"), collapse="")

[1] "ATA"

Stojnic and Gatto Advanced R course September 21, 2016 12 / 110

Lists in R

List is a data structure that can hold a vector of any other variables.

> x <- list(a=10, b="text")

> x

$a

[1] 10

$b

[1] "text"

> x$a

[1] 10

> x[["b"]]

[1] "text"

> x[[1]]

[1] 10

> names(x)

[1] "a" "b"

Stojnic and Gatto Advanced R course September 21, 2016 13 / 110

Everything in R has a class

Everything in R has a type - in object oriented programming called a class.

> class(10)

[1] "numeric"

> class(c(1, 2, 3))

[1] "numeric"

> class("Some text")

[1] "character"

> class(matrix(0, nrow=10, ncol=10))

[1] "matrix"

> class(plot)

[1] "function"

> class(table(1:4, 1:4))

[1] "table"

Stojnic and Gatto Advanced R course September 21, 2016 14 / 110

Recommended coding standards

Coding standards

Use <- for assignment rather than =.

Avoid long lines (80 characters).

Use spaces for identation (2 or 4).

No semi-colomns (unless you have several expression in a line).

Start names with upper case for classes, lower for the rest.

Use syntax highlighting

Stojnic and Gatto Advanced R course September 21, 2016 15 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 16 / 110

Object-oriented Programming (OOP)

Object-oriented vs Procedural programming

OOP introduced in 1970s in Smalltalk but gained wider popularity in
1990s with programming languages like C++ and Delphi

Traditional (procedural) programming - data and functions decoupled

Object-oriented programming - data and functions tied together in
objects

OOP concepts

Abstraction - related data is stored and handled together

Inheritance - code reuse by hierarchy of more-to-less general object
types (classes)

Polymorphism - the most appropriate function is called based on the
dataset (e.g various plot functions)

Stojnic and Gatto Advanced R course September 21, 2016 17 / 110

Procedural vs Object-oriented Programming

Procedural programming
> area <- function(x1,y1,x2,y2){

+ abs(x2-x1)*abs(y2-y1)

+ }

> area(0, 0, 5, 5)

[1] 25

Object-oriented programming
> setClass("Rectangle",

+ representation = representation(

+ x1 = "numeric",

+ y1 = "numeric",

+ x2 = "numeric",

+ y2 = "numeric")

+)

> setGeneric("area", function(obj)

+ standardGeneric("area"))

[1] "area"

> setMethod("area", "Rectangle", function(obj){

+ abs(obj@x2 - obj@x1) * abs(obj@y2 - obj@y1)

+ })

[1] "area"

> rect = new("Rectangle", x1=0, y1=0, x2=5, y2=5)

> area(rect)

[1] 25

Stojnic and Gatto Advanced R course September 21, 2016 18 / 110

OOP in R

OOP in R: S3 and S4

R has two object-oriented frameworks:

S3 - older and less formal (i.e. ad-hoc) framework with no explicit
class definitions. Many parts of base R use S3, e.g. plotting, linear
modelling, ...

I limited introspection, single inheritance, single dispatch, instance-based

S4 - full-fledged object-oriented framework, de-facto standard for
most modern packages and required for Bioconductor packages.

I introspection, multiple inheritance, multiple dispatch (introduces a
small overhead)

Stojnic and Gatto Advanced R course September 21, 2016 19 / 110

Course working example

Working example revisited

Working example for this course will be manipulating DNA/RNA sequence
data.

Functions we would like to have:

readFasta() - read in a single sequence from a FASTA file

id(), seq() - return the ID of sequence and the sequence (accessors)

rev() - return reverse DNA/RNA sequence

length() - return DNA/RNA sequence length

comp() - return complementary DNA/RNA sequence

transcribe() - return RNA sequence for DNA sequence

Goal

The final product should be an R package using S4 framework. But we need to
get there, so lets start with a procedural and S3 implementation...

Stojnic and Gatto Advanced R course September 21, 2016 20 / 110

readFasta() input file

We will start with the implementation of readFasta(). This function
should load the data from a FASTA file and somehow represent it in R.

A sample FASTA file:

> example dna sequence

agcatacgacgactacgacactacgacatcagacactacagactactac

gactacagacatcagacactacatatttacatcatcagagattatatta

acatcagacatcgacacatcatcatcagcatcat

Sequence description

Notice that a sequence is described by the:

name (example dna sequence)

nucleotide sequence

sequence alphabet (in case of DNA ATGC, for RNA AUGC)

Stojnic and Gatto Advanced R course September 21, 2016 21 / 110

Naive readFasta() implementation

readFasta() implementation

Read in a sequence from FASTA file and return the id, sequence and
alphabet in a list:

> readFasta <- function(infile){

+ lines <- readLines(infile)

+ header <- grep("^>", lines)

+

+ if (length(header) > 1) {

+ warning("Reading first sequence only.")

+ lines <- lines[header[1]:(header[2]-1)]

+ header <- header[1]

+ }

+

+ id <- sub("^> *","",lines[header],perl=TRUE)

+ sequence <- toupper(paste(lines[(header+1):length(lines)],collapse=""))

+ alphabet <- unique(strsplit(sequence,"")[[1]])

+

+ return.value <- list(id=id, sequence=sequence, alphabet=alphabet)

+ class(return.value) <- "GenericSeq"

+

+ return.value

+ }

Stojnic and Gatto Advanced R course September 21, 2016 22 / 110

S3 objects

> s <- readFasta("aDnaSeq.fasta")

> s

$id

[1] "example dna sequence"

$sequence

[1] "AGCATACGACGACTACGACACTACGACATCAGACACTACAGACTACTACGACTACAGACATCAGACACTACATATTTACATCATCAGAGATTATATTAACATCAGACATCGACACATCATCATCAGCATCAT"

$alphabet

[1] "A" "G" "C" "T"

attr(,"class")

[1] "GenericSeq"

> names(s)

[1] "id" "sequence" "alphabet"

S3 object definition

Any variable that has a ”class” attribute is an S3 object.
Now we can write class-specific functions - methods.

Stojnic and Gatto Advanced R course September 21, 2016 23 / 110

S3 methods and dispatch

Methods: class-specific functions

Lets write the id() method that will return the sequence id. There are two parts
to defining a class-specific function (method):

Defining a generic function

Defining the class method

> id <- function(x){ UseMethod("id") } # generic

> id.GenericSeq <- function(x){ x$id } # method

> id(s)

[1] "example dna sequence"

S3 methods mechanism

Generic function has the desired function name and contains only one command
UseMethod("functionName") called a dispatch command. This command
based on the first parameter’s class calls an appropriate function of format
functionName.className. If such function doesn’t exist
functionName.default is called.

Stojnic and Gatto Advanced R course September 21, 2016 24 / 110

Adding to existing S3 generics

The seq() method

Now consider the seq() function. This function already exists (try ?seq). We
would like to retain this old function, but also add our seq() that return the
DNA/RNA sequence.

The seq() function is already a generic. We don’t need to redefine it.

> seq

> methods("seq")

> seq.GenericSeq <- function(x) { x$sequence }

> seq(s)

[1] "AGCATACGACGACTACGACACTACGACATCAGACACTACAGACTACTACGACTACAGACATCAGACACTACATATTTACATCATCAGAGATTATATTAACATCAGACATCGACACATCATCATCAGCATCAT"

Stojnic and Gatto Advanced R course September 21, 2016 25 / 110

S3 methods exercises

Look at the code we have written so far, understand it, and then solve the
following exercise.

Exercise 1:

Explore some of the built-in generics and methods. Try the following commands:

methods("summary")

methods(class="lm")

Exercise 2: (code:02_GenericSeq.R, solution:02_GenericSeq_solution.R)

Both length() and rev() are already generic functions, but alphabet() is not.
Add these methods for class GenericSeq:

length() should return the length of the DNA/RNA sequence

alphabet() should return the alphabet of the sequence

rev() should return the sequence in reverse (Hint: try to use functions

strsplit() and the existing base rev() function).

Stojnic and Gatto Advanced R course September 21, 2016 26 / 110

S3 inheritance

Reusing class methods

So far we have written methods for GenericSeq that work with any
sequence type. Now lets introduce a new class DnaSeq. We want to
inherit all methods from GenericSeq - to achieve this simply set the
class attribute to all applicable class names.

> setSeqSubtype <- function(s){

+ if (all(alphabet(s) %in% c("A","C","G","T"))) {

+ class(s) <- c("DnaSeq", "GenericSeq")

+ } else if (all(alphabet(s) %in% c("A","C","G","U"))) {

+ class(s) <- c("RnaSeq", "GenericSeq")

+ } else {

+ stop("Alphabet ", alphabet(s) ," is unknown.")

+ }

+

+ return(s)

+ }

> s.dna <- setSeqSubtype(s)

> class(s.dna)

[1] "DnaSeq" "GenericSeq"

Stojnic and Gatto Advanced R course September 21, 2016 27 / 110

S3 inheritance continued

DnaSeq methods

Define a DnaSeq method complement(). All GenericSeq methods still work
with DnaSeq objects, but the complement() only works with DnaSeq.

> complement <- function(x){ UseMethod("complement") }

> complement.DnaSeq = function(x) chartr("ACGT", "TGCA", seq(x))

> id(s) # works on GenericSeq

[1] "example dna sequence"

> id(s.dna) # works on DnaSeq, GenericSeq

[1] "example dna sequence"

> try({ complement(s) }) # fails with error

> complement(s.dna)

[1] "TCGTATGCTGCTGATGCTGTGATGCTGTAGTCTGTGATGTCTGATGATGCTGATGTCTGTAGTCTGTGATGTATAAATGTAGTAGTCTCTAATATAATTGTAGTCTGTAGCTGTGTAGTAGTAGTCGTAGTA"

S3 dispatch and inheritance

The dispatching will look for appropriate methods for all x (sub-)classes (in order
in which they are set).

Stojnic and Gatto Advanced R course September 21, 2016 28 / 110

S3 inheritance exercise

Look at the inheritance code and understand how it works. Then solve the
following exercise.

Exercise 3: (code: 03_inherit.R, solution: 03_inherit_solution.R)

Write the complement() method for RnaSeq class. Since we don’t have a
RNA FASTA file you will have to make a new RnaSeq object by hand and
assign the right classes to test your code.

What do you notice about the S3 class system, is it easy to make
mistakes? Could you also make your RNA sequence to be of class ”lm”?

Stojnic and Gatto Advanced R course September 21, 2016 29 / 110

S3 class system revision

Classes are implicit (no formal class definition)

Making new objects is done by simply setting the class attribute

Making class methods is done by defining a generic function
functionName() and a normal function functionName.className().
Methods can be retrieved using the methods() function.

Objects can inherit multiple classes by setting the class attribute to a
vector of class names

Many functions in base R use the S3 system

Easy to make new ad-hoc classes and objects, but also mistakes and
inconsistencies

The S4 class system is designed to address some of these concerns.

Stojnic and Gatto Advanced R course September 21, 2016 30 / 110

Introduction to S4 class system

Differences of S4 class system to S3

Classes are explicit - they have slots which describe what kind of data is
stored

Improved introspection - class, method and slot introspection

Consistency checking - can no longer assign any class name, class
hierarchy is explicitly checked and reinforced

Validity checking - custom automatic checks of data consistency

Multiple inheritance, multiple dispatch, virtual classes

S4 class system is the de-facto standard in Bioconductor.

Stojnic and Gatto Advanced R course September 21, 2016 31 / 110

Defining S4 classes

Defining S4 class

Each class in S4 needs to be defined before it can be used. At this stage data

types and inheritance are specified.

> setClass("GenericSeq",

+ representation = representation(

+ id = "character",

+ alphabet = "character",

+ sequence = "character"

+))

S4 class slots

Slots define the names and types of variables that are going to be stored in the

object. Types can be any of the basic R type or S3/S4 classes. To inspect how

basic R types are called use class(), e.g.

> class("hello")

[1] "character"

Stojnic and Gatto Advanced R course September 21, 2016 32 / 110

S4 objects

Creating S4 objects

Once we have a class definition, we can make an object by filling out the slots.

We can directly access the slots using the @ notation although this is discouraged.

> genseq <- new("GenericSeq", id="sequence name",

+ alphabet=c("A", "C", "G", "T"), sequence="AGATACCCCGAAACGA")

> genseq

An object of class "GenericSeq"

Slot "id":

[1] "sequence name"

Slot "alphabet":

[1] "A" "C" "G" "T"

Slot "sequence":

[1] "AGATACCCCGAAACGA"

> genseq@id

[1] "sequence name"

> slot(genseq, "id")

[1] "sequence name"

Stojnic and Gatto Advanced R course September 21, 2016 33 / 110

S4 methods

Creating S4 methods

Similar to S3 we define object methods in two steps: by defining a generic
and the method.

> setGeneric("rev", function(x) standardGeneric("rev"))

[1] "rev"

> setMethod("rev", "GenericSeq",

+ function(x) paste(rev(unlist(strsplit(x@sequence, ""))), collapse=""))

[1] "rev"

> rev(genseq)

[1] "AGCAAAGCCCCATAGA"

> showMethods("rev")

Function: rev (package .GlobalEnv)

x="ANY"

x="character"

(inherited from: x="ANY")

x="GenericSeq"

Stojnic and Gatto Advanced R course September 21, 2016 34 / 110

S4 accessor methods

It is considered bad practice to use @ in your code to access slots. It breaks the
division between the internal class implementation and class usage.

Instead, create getter and setter methods for all slots you want to expose.

> setGeneric("id", function(object) standardGeneric("id"))

[1] "id"

> setMethod("id", "GenericSeq", function(object) object@id)

[1] "id"

> setGeneric("id<-", function(object,value) standardGeneric("id<-"))

[1] "id<-"

> setReplaceMethod("id", signature(object="GenericSeq",

+ value="character"),

+ function(object, value) {

+ object@id <- value

+ return(object)

+ })

[1] "id<-"

> id(genseq) <- "new sequence name"

> id(genseq)

[1] "new sequence name"

Stojnic and Gatto Advanced R course September 21, 2016 35 / 110

S4 introspection and methods exercises

Exercise 4: (code: 04_basic_S4.R)

Try the following introspection functions:

showMethods("rev")

getClass("GenericSeq")

slotNames(genseq)

getMethod("rev", "GenericSeq")

findMethods("rev")

isGeneric("rev")

What do these function output? In some cases the result is an object. Use the
introspection functions to find out more about the results (e.g. class(),
getClass(),...).

Exercise 5: (code as above, solution: 05_accessors_solution.R)

Lets complete our GenericSeq implementation with some more methods.
Implement getter/setter method seq() and getter only alphabet(). Then
implement the method length() to return sequence length. First check if
"length" is already a generic though.

Stojnic and Gatto Advanced R course September 21, 2016 36 / 110

Special methods - show()

You might have noticed that many object print a custom description
instead of a plain list of slots. We can add this functionality by setting
show() and print() methods.

> setMethod("show",

+ "GenericSeq",

+ function(object) {

+ cat("Object of class",class(object),"\n")

+ cat(" Id:",id(object),"\n")

+ cat(" Length:",length(object),"\n")

+ cat(" Alphabet:",alphabet(object),"\n")

+ cat(" Sequence:",seq(object), "\n")

+ })

[1] "show"

> genseq

Object of class GenericSeq

Id: new sequence name

Length: 16

Alphabet: A C G T

Sequence: AGATACCCCGAAACGA

Stojnic and Gatto Advanced R course September 21, 2016 37 / 110

Special methods - print()

The print() function already exists, but is not an S4 generic.

> setGeneric("print", function(x,...) standardGeneric("print"))

[1] "print"

> setMethod("print", "GenericSeq",

+ function(x) {

+ sq <- strsplit(seq(x),"")[[1]]

+ cat(">",id(x),"\n"," 1\t")

+ for (i in 1:length(x)) {

+ if ((i %% 10)==0) {

+ cat("\n",i,"\t")

+ }

+ cat(sq[i])

+ }

+ cat("\n")

+ })

[1] "print"

> print(genseq)

> new sequence name

1 AGATACCCC

10 GAAACGA

Stojnic and Gatto Advanced R course September 21, 2016 38 / 110

Special methods - initialize()

We might need to do some special processing on object creation. We can
do this with a custom initialize() method.

Use named arguments with default values (otherwise class checking might
fail).

> setMethod("initialize", "GenericSeq",

+ function(.Object, ..., id="", sequence=""){

+ .Object@id <- id

+ .Object@sequence <- toupper(sequence)

+ callNextMethod(.Object, ...) # call parent class initialize()

+ })

[1] "initialize"

> show(new("GenericSeq", id="new seq.", alphabet=c("A", "T"), sequence="atatta"))

Object of class GenericSeq

Id: new seq.

Length: 6

Alphabet: A T

Sequence: ATATTA

Stojnic and Gatto Advanced R course September 21, 2016 39 / 110

Inheritance in S4 class system

Implementation of GenericSeq is finished. Now we want to re-use this code and
add some extra functionality for DnaSeq and RnaSeq.

We start by defining the new classes that will inherit (contain) our GenericSeq

class. It is good practise to provide some default (prototype) values.

> setClass("DnaSeq",

+ contains="GenericSeq",

+ prototype = prototype(

+ id = paste("my DNA sequence",date()),

+ alphabet = c("A","C","G","T"),

+ sequence = character())

+)

> setClass("RnaSeq",

+ contains="GenericSeq",

+ prototype = prototype(

+ id = paste("my RNA sequence",date()),

+ alphabet = c("A","C","G","U"),

+ sequence = character())

+)

Stojnic and Gatto Advanced R course September 21, 2016 40 / 110

Extending child classes with custom methods

Custom comp() methods in two subclasses

Now we can write the comp() method which is going to work differently for DNA
and RNA sequences.

> setGeneric("comp",function(object) standardGeneric("comp"))

[1] "comp"

> setMethod("comp","DnaSeq",

+ function(object) {

+ chartr("ACGT","TGCA",seq(object))

+ })

[1] "comp"

> setMethod("comp","RnaSeq",

+ function(object) {

+ chartr("ACGU","UGCA",seq(object))

+ })

[1] "comp"

Stojnic and Gatto Advanced R course September 21, 2016 41 / 110

Creating objects of appropriate class

We could use new() to create new object instances, but it is tedious and error

prone. Instead, we should provide a function that reads in some data and sets the

right class for the data.

> readFasta <- function(infile){

+ lines <- readLines(infile)

+ header <- grep("^>", lines)

+ if (length(header)>1) {

+ warning("Reading first sequence only.")

+ lines <- lines[header[1]:(header[2]-1)]

+ header <- header[1]

+ }

+ .id <- sub("^> *","",lines[header],perl=TRUE)

+ .sequence <- toupper(paste(lines[(header+1):length(lines)],collapse=""))

+ .alphabet <- toupper(unique(strsplit(.sequence,"")[[1]]))

+ if (all(.alphabet %in% c("A","C","G","T"))) {

+ newseq <- new("DnaSeq",

+ id=.id,

+ sequence=.sequence)

+ } else if (all(.alphabet %in% c("A","C","G","U"))) {

+ newseq <- new("RnaSeq",

+ id=.id,

+ sequence=.sequence)

+ } else {

+ stop("Alphabet ",.alphabet," is unknown.")

+ }

+ return(newseq)

+ }

Stojnic and Gatto Advanced R course September 21, 2016 42 / 110

Object validity tests

The user can still use new in an inconsistent way or change a consistent object in the
way that will render it inconsistent (e.g. assign an RNA sequence to an object of class
DnaSeq).

First lets make sure each new object is consistent, e.g. that alphabet matches

sequence.

> setClass("GenericSeq",

+ representation = representation(

+ id = "character",

+ alphabet = "character",

+ sequence = "character",

+ "VIRTUAL"),

+ validity = function(object) {

+ isValid <- TRUE

+ if (nchar(object@sequence)>0) {

+ chars <- casefold(unique(unlist(strsplit(object@sequence,""))))

+ isValid <- all(chars %in% casefold(object@alphabet))

+ }

+ if (!isValid)

+ cat("Some characters are not defined in the alphabet.\n")

+ return(isValid)

+ })

Stojnic and Gatto Advanced R course September 21, 2016 43 / 110

Validity tests - setters

Now lets make sure the user cannot render the objects inconsistent by modifying

the object.

> setReplaceMethod("id",

+ signature(object="GenericSeq",

+ value="character"),

+ function(object, value) {

+ object@id <- value

+ if (validObject(object))

+ return(object)

+ })

[1] "id<-"

> setReplaceMethod("seq",

+ signature(object="GenericSeq",

+ value="character"),

+ function(object, value) {

+ object@sequence <- value

+ if (validObject(object))

+ return(object)

+ })

[1] "seq<-"

Stojnic and Gatto Advanced R course September 21, 2016 44 / 110

S4 exercises

Look at the code we wrote so far and understand it. Then solve the
following exercise.

Exercise 6: (code: 06_S4_complete.R)

Try again reading the supplied fasta file using
x <- readFasta("aDnaSeq.fasta")

Inspect the resulting object using object introspection tools. Try to break the
resulting object by assigning invalid values to sequence. What happens if you do:

seq(x) <- "!"

and what if:
x@sequence <- "!"

Exercise 7: (code as above, solution: 07_transcribe_solution.R)

Implement a new method transcribe() of DnaSeq. This method should take a
DnaSeq, replace the T’s with U’s and return a RnaSeq object.

Stojnic and Gatto Advanced R course September 21, 2016 45 / 110

More S4 features and considerations

Virtual classes

A class can be marked to be virtual so that no objects can be made, but it can
only be inherited. In our case, we might want to mark GenericSeq as virtual,
to do so just add parameter "VIRTUAL" into class representation.

Class unions

In some cases we might want a slot to contain an object from one of multiple
unrelated classes. In that case we would create a ”dummy” class to serve as a
place holder. For this we can use class union, for example
setClassUnion("AOrB", c("A", "B")) would create a new virtual class
AOrB that is a parent class to both A and B.

Overriding operators

Operators in R can also be over-ridden. For instance setMethod("[",

MyClass,) will override the subsetting operator [] for MyClass to give
it custom functionality.

Stojnic and Gatto Advanced R course September 21, 2016 46 / 110

Reference classes

Mutability

R objects are not mutable; R has a copy on modify semantics: whenever
you pass an a object to a function, a copy is passed as argument. This is
how things work for both S3 and S4 class systems.

> a <- new("DnaSeq",sequence="ACGTaa")

> seq(a)

[1] "ACGTAA"

> comp(a)

[1] "TGCATT"

> seq(a)

[1] "ACGTAA"

Stojnic and Gatto Advanced R course September 21, 2016 47 / 110

Reference classes

Reference classes

A recent OO system, based on S4 classes, that implements a pass by
reference semantic. See ?ReferenceClasses for details.

Example

here, you would have

> a$seq ## equivalent of seq(a)

[1] "AGCATG"

> a$comp()

> a$seq

[1] "TCGTAC"

Stojnic and Gatto Advanced R course September 21, 2016 48 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 49 / 110

References

R Installation and Administration [R-admin], R Core team

Writing R Extensions [R-ext], R Core team

Use help.start() to access them from your local installation, or
http://cran.r-project.org/manuals.html from the web.

Terminology

A package is loaded from a library by the function library(). Thus a
library is a directory containing installed packages.

Calling library("foo", lib.loc = "/path/to/bar") loads the
package (book) foo from the library bar located at /path/to/bar.

Stojnic and Gatto Advanced R course September 21, 2016 50 / 110

http://cran.r-project.org/manuals.html

Packages

One of the aspects that make
R appealing:

CRAN package repository features
2868 available packages.

R-forge 986 packages.

Bioconductor 517 reviewed packages in
latest release (version 2.9).

Numbers checked on 2nd March 2011

Stojnic and Gatto Advanced R course September 21, 2016 51 / 110

Why packages

Packages provide a mechanism for loading optional code and attached
documentation as needed.
There is more to it – packages are a means to

logically group your own functions

keep code and documentation together and consistent

keep code and data together

keep track of changes in code

summarise all packages used for a analysis (see sessionInfo())

make a reproducible research compendium (container for code, text,
data as a means for distributing, managing and updating)

optionally test your code

. . . project managment

even if you do not plan to distribute them.

Stojnic and Gatto Advanced R course September 21, 2016 52 / 110

Administration

Building packages

R CMD build myPackage – the R package builder builds R package (and
vignettes if available).

Checking packages

R CMD check myPackage_0.1.1.tar.gz or R CMD check myPackage –
the R package checker tests whether the package or source work correctly.

The package is installed (checks missing cross-references and duplicate aliases in help
files).

File names validity, permissions.

Package DESCRIPTION file is checked for completeness, and some of its entries for
correctness.

R and .Rd files are checked for syntax errors.

A check is made for missing documentation entries.

Codoc checking

Examples provided by the package’s documentation are run.

If available, package tests are run and vignettes are executed and compiled.

Stojnic and Gatto Advanced R course September 21, 2016 53 / 110

Administration

Installing packages

R CMD INSTALL myPackage_0.1.1.tar.gz or
install.packages("myPackage_0.1.1.tar.gz") – installs the package
in the default library. Other libraries can be specified with the -l option or
lib argument.

Loading

Use library() or require().

On Windows

R is very much Unix centric. To build from source on Windows, you will
need Rtoolsa See the The Windows toolset in R-Admin for more details.

ahttps://cran.r-project.org/bin/windows/Rtools/

Stojnic and Gatto Advanced R course September 21, 2016 54 / 110

https://cran.r-project.org/bin/windows/Rtools/

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 55 / 110

A minimal package

Function package.skeleton() automates some of the setup for a new source
package. Calling it with minimal arguments produces the following
hierarchy:

> foo <- function(x) x

> package.skeleton(name="myRpackage",list="foo")

produces

myRpackage/

|-- DESCRIPTION

|-- man

| |-- foo.Rd

| +-- myRpackage-package.Rd

|-- R

| +-- foo.R

+-- Read-and-delete-me

2 directories, 6 files

Stojnic and Gatto Advanced R course September 21, 2016 56 / 110

DESCRIPTION

Package: myRpackage

Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2016-09-21

Author: Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>

Description: More about what it does (maybe more than one line)

License: What license is it under?

Stojnic and Gatto Advanced R course September 21, 2016 57 / 110

Lazy

Lazy loading

A mechanism used to defer initialization of an object until the point at
which it is needed. The individual objects in the package’s environment
are indirect references to the actual objects until, for example a function is
called or an object loaded.

The LazyLoad and LazyData fields control whether the R objects and the
datasets (respectively) use lazy-loading. LazyLoad must be set if the
methods package is used.

LazyLoad is now on by default.

Stojnic and Gatto Advanced R course September 21, 2016 58 / 110

Lazy

Example

R uses Lazy evaluation, which delays the evaluation of an expression (here
the argument) until its value is actually required [a]:

> f <- function(x) { 10 }

> system.time(f(Sys.sleep(3)))

user system elapsed

0 0 0

> f <- function(x) { force(x); 10 }

> system.time(f(Sys.sleep(3)))

user system elapsed

0.000 0.000 3.003

aexample from Hadley Wickham’s devtools

Stojnic and Gatto Advanced R course September 21, 2016 59 / 110

Lazy

Example

> suppressWarnings(dump("dnaseq","",evaluate=FALSE))

dnaseq <-

<promise: lazyLoadDBfetch(c(0L, 195L), datafile, compressed,

envhook)>

Stojnic and Gatto Advanced R course September 21, 2016 60 / 110

DESCRIPTION

Other important fields

Depends A comma-separated list of package names (optionally with
versions) which this package depends on.

Suggests Packages that are not necessarily needed: used only in
examples, tests or vignettes, packages loaded in the body of
functions (see require()).

Imports Packages whose name spaces are imported from (as specified
in the NAMESPACE file) but which do not need to be attached
to the search path.

Collate Controls the collation order for the R code files in a package.
If filed is present, all source files must be listed.

URL A list of URLs separated by commas or whitespace.

. . .

Stojnic and Gatto Advanced R course September 21, 2016 61 / 110

NAMESPACE

The NAMESPACE file

Stored in the package directory. Restrict the symbols that are exported
and imports functionality from other packages. Only the exported symbols
will have to be documented.
Note: NAMESPACE is now required (since R 2.14).

export(f, g) ## exports f and g

exportPattern("^[^\\.]")

import(foo) ## imports all symbols from package foo

importFrom(foo, f, g) ## imports f and g from foo

It is possible to explicitely use symbol s from package foo with foo::s or
foo:::s if s is not exported.

Stojnic and Gatto Advanced R course September 21, 2016 62 / 110

Attach and load

Packages are attached to the search path with library or require.

Attach When a package is attached, then all of its dependencies (see
Depends field in its DESCRIPTION file) are also attached.
Such packages are part of the evaluation environment and
will be searched.

Load One can also use the Imports field in the NAMESPACE file.
Imported packages are loaded but are not attached: they do
not appear on the search path and are available only to the
package that imported them.

Stojnic and Gatto Advanced R course September 21, 2016 63 / 110

Package subdirectories

R

Contains source()able R source code to be installed. Files must start
with an ASCII (lower or upper case) letter or digit and have one of the
extensions .R (recommended), .S, .q, .r, or .s. File order is important if
code relies on earlier code – order use Collate filed in DESCRIPTION file.

Example

works fine without Collate field

AllGenerics.R DataClasses.R

methods-ClassA.R methods-ClassB.R

functions-ClassA.R ...

zzz.R is generally used to define special functions used to initialize (called
after a package is loaded and attached) and clean up (just before the
package is detached). See help(".onLoad")), ?.First.Lib and
?.Last.Lib for more details.

Stojnic and Gatto Advanced R course September 21, 2016 64 / 110

Package subdirectories

man

Manuals for the objects (package, functions, generics, methods, classes
and data sets) in the package in R documentation (Rd) format. The
filenames must start with an ASCII (lower or upper case) letter or digit
and have the extension .Rd or .rd and should be URL compatible. If you
use a NAMESPACE, only exported symbols need to be documented.
Without NAMESPACE, internal use only objects should be documented in
pkg-internal.Rd.

Stojnic and Gatto Advanced R course September 21, 2016 65 / 110

Package subdirectories

data

Contains data files, made available via lazy-loading or for loading using
data(). Data types that are allowed are

R code self-sufficient plain R code (.R or .r),

Tables possibly compressed tables (.tab, .txt, or .csv, see ?data

for the file formats)

Objects created using save() (.RData or .rda).

Example

There is a DnaSeq object in sequences/data.

Stojnic and Gatto Advanced R course September 21, 2016 66 / 110

Package subdirectories

inst

Content is copied recursively to the installation directory, for example

CITATION file (see citation() function),

doc directory for additional documents (see vignettes, later).

extdata directory for other data files, not belonging in data.

tests code for unit tests (see later).

Example

In our sequences package, there is a fasta sequence in
sequences/inst/extdata used to illustrate the readFasta function.

Stojnic and Gatto Advanced R course September 21, 2016 67 / 110

Package subdirectories

tests

Contains additional package-specific test code. We will talk about unit
tests later.

src

Contains sources and headers for the compiled code, plus optionally a file
Makevars or Makefile.

demo

R scripts runned via demo() that demonstrate some of the functionality of
the package. Execution of these scripts is not checked.

Stojnic and Gatto Advanced R course September 21, 2016 68 / 110

Exercise 8: Let’s create a package

So far, you have defined a set of classes, methods and functions . . . Create
the required directory structure and files using
package.skeleton(name="sequences") or manually. For the former,
you can use different arguments:

list to specify the R objects by their names.

code files to specify R code files.

environment to specify an environment where objects are looked for.

See ?package.skeleton for more details.

Stojnic and Gatto Advanced R course September 21, 2016 69 / 110

Exercise 9: Let’s build/check it

Do you expect the package to build/check/INSTALL:

R CMD build sequences

R CMD check sequences_1.0.tar.gz

R CMD INSTALL sequences_1.0.tar.gz

Why? Have a look at R CMD build|check --help.

Stojnic and Gatto Advanced R course September 21, 2016 70 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 71 / 110

Rd format

R documentation format

R objects are documented in files written in R documentation (Rd) format,
a simple markup language much of which closely resembles LATEX, which
can be processed into a variety of formats, including LATEX, HTML, pdf
and plain text.

Stojnic and Gatto Advanced R course September 21, 2016 72 / 110

Rd format

An Rd file constists of

Header provides basic information about the name of the file, the
topics documented, a title, a short textual description and R
usage information – mandatory.

Body gives further information defined within sections (for
example, on the function’s arguments and return value, as in
the example)

Footer with keyword information – optional.

Every (exported) object must be documented. Package documentation is
optional.

Stojnic and Gatto Advanced R course September 21, 2016 73 / 110

Example

% File src/library/base/man/load.Rd

\name{load}

\alias{load}

\title{Reload Saved Datasets}

\description{

Reload the datasets written to a file with the function

\code{save}.

}

\usage{

load(file, envir = parent.frame())

}

\arguments{

\item{file}{a connection or a character string giving the

name of the file to load.}

\item{envir}{the environment where the data should be

loaded.}

}

\seealso{

\code{\link{save}}.

}

\examples{

save all data

save(list = ls(), file= "all.RData")

restore the saved values to the current environment

load("all.RData")

restore the saved values to the workspace

load("all.RData", .GlobalEnv)

}

\keyword{file}

Stojnic and Gatto Advanced R course September 21, 2016 74 / 110

Documentation

General comments

Different objects are documented with different types of Rd files, as
defined by the \docType{} tag.

Different object documentation require or are advised to contain
different sections.

One .Rd file can document several objects by defining multiple
\alias{}’es.

Stojnic and Gatto Advanced R course September 21, 2016 75 / 110

Documentation

Guidelines for Rd files

These are suggested guidelines for the system help files (in .Rd format)
that are intended for core developers but may also be useful for package
writers. (see http://developer.r-project.org/Rds.html)

There are many different sections and marking text (for mathematical
notation, tables, cross-references, . . .), that will look very familiar to
LATEX users. All are described in Writing R documentation files (section 2)
of the R-ext manual.
Fortunately, the prompt(object) et. al. functions will inspect the
object to be documented and create a specific documentation skeleton
for us to be completed.

Stojnic and Gatto Advanced R course September 21, 2016 76 / 110

http://developer.r-project.org/Rds.html

Package documentation

Provides an short and optional overview of a package.

Example

promptPackage("sequences")

Exercise 10:

Create a sequences-package.Rd and document your package.

Stojnic and Gatto Advanced R course September 21, 2016 77 / 110

Data sets documentation

Example
\name{rivers}

\docType{data}

\alias{rivers}

\title{Lengths of Major North American Rivers}

\description{

This data set gives the lengths (in miles) of 141 \dQuote{major}

rivers in North America, as compiled by the US Geological

Survey.

}

\usage{rivers}

\format{A vector containing 141 observations.}

\source{World Almanac and Book of Facts, 1975, page 406.}

\references{

McNeil, D. R. (1977) \emph{Interactive Data Analysis}.

New York: Wiley.

}

\keyword{datasets}

Example

prompt(myDataFrame) or promptData(myDataObject)

Exercise 11:

Document the dnaseq object.

Stojnic and Gatto Advanced R course September 21, 2016 78 / 110

Function documentation

Many markup command, including \usage{fun(arg1, arg2, ...)},
\arguments{...}, \section{Warning}{...} and \examples{...},
which are executed!

Example

prompt(object=myFunction) or prompt(name="myFunction")

Exercise 12:

Choose one of the functions and document it.

Stojnic and Gatto Advanced R course September 21, 2016 79 / 110

Documenting S4 classes and methods

Documentation is ’similar’ than for functions. Note that aliases are of
the form MyClass-class or MyGeneric,signature_list-method.
Additionnal aliases should be added to refer to MyGeneric,
MyGeneric-method, . . . and the manuals are accessed with class?topic

and method?topic. Overall documentation for methods should be aliased
with MyGeneric-methods

See help("Documentation", package = "methods") for more details.

Example

promptClass("MyClass") and promptMethods("myMethod")

Exercise 13:

Document one class and one method of the package.
NB: we have used aliases for the methods to refer to the class
documentation.

Stojnic and Gatto Advanced R course September 21, 2016 80 / 110

Roxygen2

What is it?

Roxygen is a Doxygen-like documentation system for R; allowing
in-source specification of Rd files, collation and namespace directives.

See https://github.com/klutometis/roxygen.

Install with install.packages("roxygen2").

Use R CMD roxygen myPackage to generate manuals and NAMESPACE.

Stojnic and Gatto Advanced R course September 21, 2016 81 / 110

https://github.com/klutometis/roxygen

Roxygen

Example

##' Reads sequences data in fasta and create \code{DnaSeq}

##' and \code{RnaSeq} instances.

##'

##' This funtion reads DNA and RNA fasta files and generates

##' valid \code{"DnaSeq"} and \code{"RnaSeq"} instances.

##'

##' @title Read fasta files.

##' @param infile the name of the fasta file which the data are to be read from.

##' @return an instance of \code{DnaSeq} or \code{RnaSeq}.

##' @seealso \code{\linkS4class{GenericSeq}}, \code{\linkS4class{DnaSeq}} and \code{\linkS4class{RnaSeq}}.

##' @examples

##' f <- dir(system.file("extdata",package="sequences"),pattern="fasta",full.names=TRUE)

##' f

##' aa <- readFasta(f[1])

##' aa

##' @author Laurent Gatto \email{lg390@@cam.ac.uk}

##' @keywords IO, file

readFasta <- function(infile) {

...

}

Stojnic and Gatto Advanced R course September 21, 2016 82 / 110

Roxygen2

Good points

Makes (1) to get from code to full package straightforward and also (2)
maintenance much easier.

Since roxygen2

S4 support (classes, generics, methods).

See also

Rd2roxygen – Convert Rd to roxygen documentation and utilities to
improve documentation
http://cran.r-project.org/web/packages/Rd2roxygen/index.html

Stojnic and Gatto Advanced R course September 21, 2016 83 / 110

http://cran.r-project.org/web/packages/Rd2roxygen/index.html

Vignettes

Package vignette

These executable documents are in Sweave (.Rnw extension) or
Rmarkdown (Rmd) which is an extended LATEX document (markdown) that
includes code chunks. These are executed and the output (variable, but
also tables and graphs) are displayed in the document. These dynamic
reports, are updated automatically if data or analysis change.

The package vignettes are compiled at build time and are the prefered
place for more extensive package documentation and use-cases.

References:
http://www.stat.uni-muenchen.de/~leisch/Sweave/ and
http://yihui.name/knitr/

Stojnic and Gatto Advanced R course September 21, 2016 84 / 110

http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://yihui.name/knitr/

Vignettes

... LaTeX document ...

<<label=myCode,echo=TRUE,fig=TRUE>>=

x <- sort(rnorm(100))

y <- sort(rnorm(100,2,2))

plot(x,y,pch=19,col="#0000BB80")

abline(lm(y~x))

@

... LaTeX document ...

Stojnic and Gatto Advanced R course September 21, 2016 85 / 110

Vignettes

> x <- sort(rnorm(100)); y <- sort(rnorm(100,2,2))

> plot(x,y,pch=19,col="#0000BB80"); abline(lm(y~x))

−2 −1 0 1 2

−
2

2
4

6

x

y

Stojnic and Gatto Advanced R course September 21, 2016 86 / 110

Vignettes

Example

Have a look at the sequences package vignette in sequences/inst/doc.

Exercise 14:

The vignette is very basic. Try to add some code chunks to improve it.
You can also embed code in-line with \Sexpr{}.

Stojnic and Gatto Advanced R course September 21, 2016 87 / 110

sessionInfo()

Prints version information about R and attached or loaded packages.

Example
> sessionInfo()

R version 3.3.1 Patched (2016-08-02 r71022)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.5 LTS

locale:

[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8

[5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8

[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] tools_3.3.1 msdata_0.12.1

Stojnic and Gatto Advanced R course September 21, 2016 88 / 110

sessionInfo() in vignettes

Example

> toLatex(sessionInfo())

R version 3.3.1 Patched (2016-08-02 r71022), x86_64-pc-linux-gnu

Locale: LC_CTYPE=en_GB.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB.UTF-8,
LC_COLLATE=en_GB.UTF-8, LC_MONETARY=en_GB.UTF-8,
LC_MESSAGES=en_GB.UTF-8, LC_PAPER=en_GB.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.UTF-8,
LC_IDENTIFICATION=C

Base packages: base, datasets, graphics, grDevices, methods, stats, utils

Loaded via a namespace (and not attached): msdata 0.12.1, tools 3.3.1

Stojnic and Gatto Advanced R course September 21, 2016 89 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 90 / 110

How to test the code in your package?

Or how to make sure that changes in your code do not break existing
functionality?

Implicitely, documentation examples and a vignette do some tests.

Using R’s build-in testing, that runs some code and compares the
output to a saved template.

Specific packages for unit testing: RUnita or testthatb.

ahttp://cran.r-project.org/web/packages/RUnit/index.html
bhttp://cran.r-project.org/web/packages/testthat/index.html

Stojnic and Gatto Advanced R course September 21, 2016 91 / 110

http://cran.r-project.org/web/packages/RUnit/index.html
http://cran.r-project.org/web/packages/testthat/index.html

Using an .Rout.save file

In package/tests/

Create

mytest.R with code to be tested

mytest.Rout.save with the reference output

When checking your package R will

1 execute the code in mytest.R

2 save the output to mytest.Rout

3 compare mytest.Rout to mytest.Rout.save

4 report any differences

Stojnic and Gatto Advanced R course September 21, 2016 92 / 110

Using testthat

Test individual expression

expect_that(object_or_expression, condition) with conditions

equals expect_that(1+2,equals(3)) or expect_equal(1+2,3)

gives warning expect_that(warning("a"), gives_warning())

is a expect_that(1, is_a("numeric")) or
expect_is(1,"numeric")

is true expect_that(2 == 2, is_true()) or
expect_true(2==2)

matches expect_that("Testing is fun", matches("fun")) or
expect_match("Testing is fun", "f.n")

takes less than expect_that(Sys.sleep(1),takes_less_than(3))

...

Stojnic and Gatto Advanced R course September 21, 2016 93 / 110

Using testthat

Example

> library(testthat)

> test_that("ok test", {

+ expect_equal(length(a), 6)

+ expect_true(seq(a) == "ACGTAA")

+ expect_is(a, "DnaSeq")

+ })

> try(expect_true(seq(a) == "ACGTaa")) ## fails with

> ## Error: seq(aa) == "ACGTaa" isn't true

Stojnic and Gatto Advanced R course September 21, 2016 94 / 110

Exercise 15:

Update sequences/tests/sequences-test.R and
sequences-test.Rout.save accordingly.

Hint: check the updated package and look in
sequences.Rcheck/tests/

Stojnic and Gatto Advanced R course September 21, 2016 95 / 110

Debugging

Using R’s tools

Call traceback() after error to print the sequence of calls that lead
to the error.

Use debug(faultyFunction) to register faultyFunction for
debugging, so that browser() will be called on entry. In browser

mode, the execution of an expression is interrupted and it is possible
to inspect the environment (with ls()). Use
undebug(faultyFunction) to revert to normal usage.

Use trace() to insert code into functions, start the browser or
recover() from error.

Set options(error=recover) to get the call stack and browse in
any of the function calls.

Good reference: An Introduction to the Interactive Debugging Tools in Ra

ahttp://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf

Stojnic and Gatto Advanced R course September 21, 2016 96 / 110

http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf

Debugging

Exercise 16:

Lets debug sequences’ readFasta function:

1 Prepare for debugging: debug(readFasta)

2 Let get a fasta file from the package:
fasta <-

dir(system.file(dir="extdata",package="sequences"),full.names=TRUE)

3 Call the function to be debugged: readFasta(fasta)

4 Debug!

Hint: when debugging, use n (or an empty line) to advance to the next
step, c to continue to the end of the current context (to the end of a loop
for instance), where to print the stack trace of all active function calls and
Q to exit the browser.
Other hint: use ls(all.names=TRUE) to see all objects, also those that
start with a ’.’.

Stojnic and Gatto Advanced R course September 21, 2016 97 / 110

Profiling time

Measuring time

> m <- matrix(runif(1e4), nrow=1000)

> system.time(apply(m, 1, sum))

user system elapsed

0.002 0.000 0.002

Replicate

> replicate(5, system.time(apply(m, 1, sum))[[1]])

[1] 0.002 0.001 0.002 0.001 0.001

Stojnic and Gatto Advanced R course September 21, 2016 98 / 110

Profiling time

Execution time
> Rprof("rprof")

> res <- apply(m,1,mean,trim=.3)

> Rprof(NULL); summaryRprof("rprof")

$by.self

self.time self.pct total.time total.pct

"mean.default" 0.02 33.33 0.06 100.00

"any" 0.02 33.33 0.02 33.33

"unique.default" 0.02 33.33 0.02 33.33

$by.total

total.time total.pct self.time self.pct

"mean.default" 0.06 100.00 0.02 33.33

"apply" 0.06 100.00 0.00 0.00

"FUN" 0.06 100.00 0.00 0.00

"any" 0.02 33.33 0.02 33.33

"unique.default" 0.02 33.33 0.02 33.33

"sort.int" 0.02 33.33 0.00 0.00

"unique" 0.02 33.33 0.00 0.00

$sample.interval

[1] 0.02

$sampling.time

[1] 0.06

Stojnic and Gatto Advanced R course September 21, 2016 99 / 110

Profiling memory use

Memory usage using tracemem∗

> a

Object of class DnaSeq

Id:

Length: 6

Alphabet: A C G T

Sequence: GCATCA

> tracemem(a)

[1] "<0x20f0978>"

> seq(a) <- "GTGT"

tracemem[0x20f0978 -> 0x242a700]:

tracemem[0x242a700 -> 0x2223df0]: seq<- seq<-

∗ tracemem requires to build R with --enable-memory-profiling

Stojnic and Gatto Advanced R course September 21, 2016 100 / 110

Calling foreign languages

The difficult route

When R is getting too slow or is not doing well in terms of memory
management.

Implement the heavy stuff in C, C++a, Fortran or Javab.

ahttp://dirk.eddelbuettel.com/code/rcpp.html
bhttp://www.rforge.net/rJava/

Other scripting languages

R/Perla and R/Pythonb bidirectional interfaces.

There is also the system() function for direct access to OS functions.

ahttp://www.omegahat.org/RSPerl/
bhttp://www.omegahat.org/RSPython/

Stojnic and Gatto Advanced R course September 21, 2016 101 / 110

http://dirk.eddelbuettel.com/code/rcpp.html
http://www.rforge.net/rJava/
http://www.omegahat.org/RSPerl/
http://www.omegahat.org/RSPython/

R’s build-in C interfaces

Better know how to program in C.

Documentation is not always easy to follow: R-Ext, R Internals as
well as R and other package’s code.

.C

Easy way

Arguments and return values must be primitive (vectors of doubles or
integers)

.Call

Accepts R data structures as arguments and return values (SEXP and
friends) (no type checking is done though).

Memory management: memory allocated for R objects is garbage
collected. Thus R objects in C code, you must be explicitely
PROTECTed to avoid being gc()ed, and subsequently UNPROTECTed.

Stojnic and Gatto Advanced R course September 21, 2016 102 / 110

.Call example

Example
#include <R.h>

#include <Rdefines.h>

SEXP gccount(SEXP inseq) {

int i, l;

SEXP ans, dnaseq;

PROTECT(dnaseq = STRING_ELT(inseq, 0));

l = LENGTH(dnaseq);

printf("length %d\n",l);

PROTECT(ans = NEW_NUMERIC(4));

for (i = 0; i < 4; i++)

REAL(ans)[i] = 0;

for (i = 0; i < l; i++) {

char p = CHAR(dnaseq)[i];

if (p=='A')

REAL(ans)[0]++;

else if (p=='C')

REAL(ans)[1]++;

else if (p=='G')

REAL(ans)[2]++;

else if (p=='T')

REAL(ans)[3]++;

else

error("Wrong alphabet");

}

UNPROTECT(2);

return(ans);

}

Stojnic and Gatto Advanced R course September 21, 2016 103 / 110

Using your C code

Directly

1 Create a shared library: R CMD SHLIB gccount.c

2 Load the shared object: dyn.load("gccount.so")

3 Create an R function that uses it: gccount <- function(inseq)

.Call("gccount",inseq)

4 Use you C code: gccount("GACAGCATCA")

In a package

Document you function.

Overwrite .First.lib to dyn.load you shared object.

If you have a NAMESPACE, export the shared objects with useDynLib.

Stojnic and Gatto Advanced R course September 21, 2016 104 / 110

sequences example

Example

In sequences, we have

The gccount.c code in src.

Defined a R function in R/functions.R

gccount <- function(inseq) {

.Call("gccount",

inseq,

PACKAGE="sequences")

}

Written the man/gccount.Rd man page.

Exported the function in NAMESPACE using export(gccount) and
the shared library with useDynLib(sequences)

Stojnic and Gatto Advanced R course September 21, 2016 105 / 110

sequences example

Example

> s <- "GACTACGA"

> gccount

function (inseq)

{

.Call("gccount", inseq, PACKAGE = "sequences")

}

<environment: namespace:sequences>

> gccount(s)

[1] 3 2 2 1

> table(strsplit(s,""))

A C G T

3 2 2 1

Stojnic and Gatto Advanced R course September 21, 2016 106 / 110

Plan

1 Introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 A few words about R packages

5 Package structure

6 Writing R documentation

7 Other advanced topics
Testing your package
Debugging
Profiling
Calling foreign languages

8 Distributing packages

Stojnic and Gatto Advanced R course September 21, 2016 107 / 110

Submission

CRAN Upload your checked myPackage_x.y.z.tar.gz to
ftp://cran.R-project.org/incoming and optionally
send a message to CRAN@R-project.org. Your package will
be installable with install.packages("myRpackage").

Bioconductor Make sure to satisfy submission criteria (pass check, have
a vignette, use S4, have a NAMESPACE, make use of
appropriate existing infrastructure, include a NEWS file,
must not already be on CRAN, . . .) and submit by email.
Your package will then be reviewed before acceptance. A svn
account will then be created. Package will be installable with
biocLite("myPackage").

Stojnic and Gatto Advanced R course September 21, 2016 108 / 110

CRAN@R-project.org

R-forge Log in, regitser a project and wait for acceptance. Then
commit you code to the svn repository. Your package will be
installable with install.packages using
repos="http://R-Forge.R-project.org".

GitHub (and bitbucket, ...) Version control, issues, social coding,
continuous integration via Travis-CI. Installation using
devtools::install_github("lgatto/sequences")

(install_bitbucket).

Stojnic and Gatto Advanced R course September 21, 2016 109 / 110

References

Further reading

Writing R Extensions, R Core

R Programming for Bioinformatics, Robert Gentleman

Advanced R and R Packages by Hadley Wickham

https://github.com/lgatto/TeachingMaterial

Thank you for you attention.

Stojnic and Gatto Advanced R course September 21, 2016 110 / 110

https://github.com/lgatto/TeachingMaterial

	Introduction
	Revision of basic R
	Object-oriented (OO) Programming
	A few words about R packages
	Package structure
	Writing R documentation
	Other advanced topics
	Testing your package
	Debugging
	Profiling
	Calling foreign languages

	Distributing packages

