
An Introduction to R

Laurent Gatto
lg390@cam.ac.uk

Microarray Analysis using R and Bioconductor
diXa Training – 28th Jan 2014

lg390@cam.ac.uk

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

Today’s topics

I The command line interface is your friend

I Reading/writing code (you will have to teach yourself
programming, through practice)

I Today, I will concentrate on data (create and manipulate)

I R - the environment and the language

What is R?

I An interactive statistical environment

I A programming language

I A language and associated tools for reproducible research
(these slides for example)

I Open source and cross platform (GNU/Linux, Windows, Mac
and others)

I Stable (currently 3.0) and development versions.

I Extensive graphics capabilites

I Diverse range of add-on packages

I Active community of developers

I Thorough documentation

What is R?

I An interactive statistical environment

I A programming language

I A language and associated tools for reproducible research
(these slides for example)

I Open source and cross platform (GNU/Linux, Windows, Mac
and others)

I Stable (currently 3.0) and development versions.

I Extensive graphics capabilites

I Diverse range of add-on packages

I Active community of developers

I Thorough documentation

What is needed:

I The R console

I An editor

We will use:

I RStudio IDE

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

Hello woRld

> 5

[1] 5

> 2 + 2

[1] 4

> sin(pi/2)

[1] 1

> x <- 1 ## a variable

> x

[1] 1

> x = 2 ## overwrite the content of x

> x

[1] 2

> y <- length(x) ## calling a function

> y

[1] 1

> y + 2

[1] 3

> ## just a comment

> ls()

[1] "x" "y"

> rm(y)

> ls()

[1] "x"

> rm(list = ls())

> ls()

character(0)

The working directory

> getwd()

[1] "/home/lgatto/Documents/Teaching/RIntro"

> setwd("/home/lgatto/tmp")

> getwd()

[1] "/home/lgatto/tmp"

(or use the GUI in RStudio)

Functions: fname(argument)

> floor(2.3)

[1] 2

> sum(3, 4, 10)

[1] 17

> max(3, 10, 1, -0.2)

[1] 10

> mean(3, 4, 5, 6) ## !

[1] 3

Getting help

I Just ask!

I help.start() and the HTML help button in the Windows
GUI.

I help and ?: help("sin") or ?sin.

I ??, help.search, apropos.

I Online manuals and mailing lists.

I Vignettes

I Local R user groups

Exercise 1:
In the interactive R console, calculate the following expressions,
where x and y have values -0.25 and 2 respecively. Then store
the result in a new variable and print its content.

> x + cos(pi/y)

Same, as above, but writing the code in an R source code file using
the editor. Then, clean your working environment (delete all your
variables) and execute the content of that file.

New functions: print to explicitely print to the console and
source to execute the content of a file.

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

Atomic vectors

> 1

[1] 1

> c(1, 4, 7, 10) ## concatenate

[1] 1 4 7 10

A vector contains an indexed set of values

I index starts at 1

I all items are of the same kind : numeric, logical or
character.

Back to our mean issue . . .

> mean(3, 4, 5, 6) ## 4 arguments

[1] 3

> mean(c(3, 4, 5, 6)) ## 1 argument

[1] 4.5

Functions to create vectors: constructors with default values

> vector(mode = "numeric", length = 4)

[1] 0 0 0 0

> numeric(4)

[1] 0 0 0 0

Functions to create vectors: seq

> 1:5

[1] 1 2 3 4 5

> seq(from = 1, to = 10, by = 2)

[1] 1 3 5 7 9

> seq(from = 1, to = 10, length.out = 4)

[1] 1 4 7 10

More functions to create vectors: rep

> rep(1, 5)

[1] 1 1 1 1 1

> rep(1:3, 2)

[1] 1 2 3 1 2 3

> rep(1:3, each = 2)

[1] 1 1 2 2 3 3

Arguments by position or name

> (z1 <- seq(from = 1, to = 10, by = 2))

[1] 1 3 5 7 9

> z2 <- seq(1, 10, 2)

> z3 <- seq(to = 10, by = 2, from = 1)

> identical(z1, z2) ## returns a logical

[1] TRUE

> identical(z1, z3)

[1] TRUE

Subsetting

The [operator

> x <- 1:10

> x[4:5]

[1] 4 5

> x[seq(1, 10, 3)]

[1] 1 4 7 10

> x[c(7, 1)]

[1] 7 1

Negative indices in [

> x <- 1:10

> x[-(1:5)] ## ? -1:5

[1] 6 7 8 9 10

> x[-seq(1, 10, 3)]

[1] 2 3 5 6 8 9

Out of range indices

> x <- 1:5

> x[5:6]

[1] 5 NA

> x[0:1]

[1] 1

Replacement with [

> (x <- 1:10)

[1] 1 2 3 4 5 6 7 8 9 10

> x[1] <- 100

> head(x)

[1] 100 2 3 4 5 6

> x[1:5] <- 0

> x[4:8]

[1] 0 0 6 7 8

Vectorised arithmetic

> x <- 1:5

> y <- 5:1

> x

[1] 1 2 3 4 5

> y

[1] 5 4 3 2 1

> x + y

[1] 6 6 6 6 6

> x^2

[1] 1 4 9 16 25

Vectorised arithmetic: recycling rule

> x <- 1:10

> x + 1:2

[1] 2 4 4 6 6 8 8 10 10 12

> x + 1:3

Warning: longer object length is not a multiple of

shorter object length

[1] 2 4 6 5 7 9 8 10 12 11

Modes and types

> a <- 10

> a <- "10"

> a <- b

> a <- "b"

modes

I logical, numeric
and character

I mode()

types

I logical, integer,
double,
character

I typeof()

class

I logical, integer,
numeric,
character and
many more

I class()

> x <- 1; y <- "1"; z <- as.integer(x)

> class(x)

[1] "numeric"

> class(y)

[1] "character"

> class(z)

[1] "integer"

> x <- 1; y <- "1"; z <- as.integer(x)

> x + z

[1] 2

> x + y

Error: non-numeric argument to binary operator

> x == z

[1] TRUE

Exercise 2:
Create vectors i, l, s and d of type integer, logical,
character and double respectively.

Hints
For example, use sample to create a sequence of integers, the
built-in letters character variable, runif to generate doubles
and a logical operator (==, >, <=, . . .) to create logicals.

See Exercise-02.R for a solution.

Matrices are 2-dimensional vectors

> m <- matrix(1:12, nrow = 4, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

> dim(m)

[1] 4 3

> ncol(m) ## and also nrow(m)

[1] 3

What if I don’t get the data or dimensions right?

> matrix(1:11, 4, 3)

Warning: data length [11] is not a sub-multiple or

multiple of the number of rows [4]

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 1

> matrix(1:12, 3, 3)

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Subsetting matrices

> dim(m)

[1] 4 3

> m[3:4, 2:3]

[,1] [,2]

[1,] 7 11

[2,] 8 12

> m[1,]

[1] 1 5 9

> m[, 1]

[1] 1 2 3 4

Arrays are n-dimensional vectors

> array(1:16, dim = c(2, 4, 2))

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]

[1,] 9 11 13 15

[2,] 10 12 14 16

Lists are ordered set of arbitrary R objects.

> ll <- list(a = 1:3, b = letters[1:2])

> ll

$a

[1] 1 2 3

$b

[1] "a" "b"

> ll[[1]]

[1] 1 2 3

> ll$b

[1] "a" "b"

Dataframes are 2-dimensional list.

> dfr <- data.frame(type = c("A", "A", "B", "B"),

+ time = rnorm(4))

> dfr

type time

1 A -0.3056

2 A -1.0342

3 B -1.0724

4 B -1.5242

> dfr[1,]

type time

1 A -0.3056

> dfr[1, "time"]

[1] -0.3056

> dfr$time

[1] -0.3056 -1.0342 -1.0724 -1.5242

Names
We have seen that function arguments have names, and named our
data.frame columns. We can also name matrix/data.frame
columns and rows, dimensions, and vector items.

> x <- c(a = 1, b = 2)

> x

a b

1 2

> names(x)

[1] "a" "b"

> M <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)

> colnames(M) <- c(2005, 2006, 2007)

> rownames(M) <- c("plane", "bus", "boat")

> M

2005 2006 2007

plane 4 6 1

bus 8 4 5

boat 5 2 7

> M[c("plane", "boat"), "2005"]

plane boat

4 5

> M <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)

> dimnames(M) <- list(year =

+ c(2005, 2006, 2007),

+ "mode of transport" =

+ c("plane", "bus", "boat"))

> M

mode of transport

year plane bus boat

2005 4 6 1

2006 8 4 5

2007 5 2 7

Subsetting with numbers, characters, logicals

> x <- 1:5

> names(x) <- letters[1:5]

> x[c(1, 3)]

a c

1 3

> x[c("a", "c")]

a c

1 3

> x[c(TRUE, FALSE, TRUE, FALSE, FALSE)]

a c

1 3

Factors represent categorical data

> gender_char <- sample(c("M", "F"), 10, replace = TRUE)

> gender_fac <- factor(gender_char)

> gender_fac

[1] F M M F F F F F M M

Levels: F M

Special values

> NULL

> is.null()

> NA

> NaN

> is.na()

> Inf

> -Inf

> is.infinite()

What are the mode and types of these?

Exercise 3:

How to store microarray data?

I What information do we want to store?

I How to store these individual pieces of information?

I How to store these together?

The paste function

> paste("A", "B", "C", sep = "-")

[1] "A-B-C"

> paste0("A", "B", "C") ## sep = ''

[1] "ABC"

Normally distributed data

> rnorm(3)

[1] 0.0003471 0.1893040 0.8993230

> rnorm(5, mean = 10, sd = 2)

[1] 12.050 7.051 13.512 10.955 9.550

The expression data

> expdata <- matrix(rnorm(200), nrow = 50, ncol = 4)

> dimnames(expdata) <-

+ list(features = paste0("gene", 1:nrow(expdata)),

+ samples = paste0("sample", 1:ncol(expdata)))

> head(expdata)

samples

features sample1 sample2 sample3 sample4

gene1 1.0614 -0.65092 -2.39525 0.03049

gene2 0.4263 -0.35495 0.95282 0.75578

gene3 1.3322 -0.21481 1.42996 0.84013

gene4 0.4323 0.07724 -1.02620 0.19746

gene5 0.1478 -0.44830 0.33999 0.29262

gene6 -0.6066 -0.51487 -0.05432 -1.53724

See Exercise-03.R

Sample description

> smdata <- data.frame(feature = colnames(expdata),

+ group = c("ctrl", "ctrl",

+ "cond1", "cond1"),

+ replicate = rep(1:2, each = 2))

> smdata

feature group replicate

1 sample1 ctrl 1

2 sample2 ctrl 1

3 sample3 cond1 2

4 sample4 cond1 2

See Exercise-03.R

Feature description

> fmdata <- data.frame(feature = rownames(expdata),

+ description = ...)

See Exercise-03.R

The complete experiment

> marray <- list(

+ expression = expdata,

+ featuremeta = fmdata,

+ samplemeta = smdata)

See Exercise-03.R

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

Exercise 4:

I Reproduce the data structure of the previous exercise using
the MAdata1.csv, smeta1.csv and fmeta1.csv files.

I Produce figures to explore the data.

I Count and visualise the differentially expressed genes in three
microarray result data.

Data IO

read.table creates a data.frame from a spreadsheet file.

write.table writes a data.frame/matrix to a spreadsheet (tsv,
csv).

Specialised data formats often have specific i/o functionality
(microarray CEL files see later)

save writes an binary representation of R objects to a file
(cross-platform).

load load a binary R file from disk.

See Exercise-04.R

Plotting

I scatter plots with plot and smoothScatter

I boxplots with boxplot,

I histograms with hist

I heatmaps with heatmap

See Exercise-04.R

Programming

I Flow control: for (and while) loops

I Conditions: if, (if else) and else

I (The apply family of functions)

See Exercise-04.R

Optional Exercise 5:

I Combine gene expression results from multiple files into one
matrix and visualise the results.

I Extract some genes of interest from a table and subset the
original data.

New functions: lapply, unlist, unique, match and strsplit.

See Exercise-05.R

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

Packages

I Primary mechanism to distribute R software is via packages.

I Packages are installed in libraries (directories) on your had
disk, and they are loaded with the library function.

I There are software, data and annotation packages.

I The Comprehensive R Archive Network (CRAN) is the main
package repository. It provides an automatic build framework
for package authors.

I The Bioconductor project manages its own CRAN-style
repository.

I R-forge – https://r-forge.r-project.org/

https://r-forge.r-project.org/

Bioconductor 671 reviewed
packages (2.12)

CRAN 4262 packages

R-forge 1453 projects

19th June 2012

Finding packages

I BiocViews – http://bioconductor.org/packages/

release/BiocViews.html.

I CRAN Task Views –
http://cran.r-project.org/web/views/.

http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/BiocViews.html
http://cran.r-project.org/web/views/

Package installation

I From within R , using install.packages - takes care of
dependencies

install.packages("packagename")

I Update all installed packages with update.packages.
I For Bioconductor packages, use biocLite:

source("http://www.bioconductor.org/biocLite.R")

or, if you have already done so in the past

library("BiocInstaller")

biocLite("packageName")

Getting information about packages

I CRAN/Bioconductor/R-forge web pages
I Documentation

help(package = "Biobase")

I Vignettes (mandatory for Bioconductor packages)

vignette(package = "Biobase")

vignette("Bioconductor", package = "Biobase")

I Demos

demo("lattice", package = "lattice")

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

The Bioconductor project

Bioconductor1 provides tools for the analysis and comprehension of
high-throughput genomic data. Bioconductor uses the R statistical
programming language, and is open source and open development.

I Good to get things done.

I Good to programming (as in engineering).

I Excellent for bioinformatics.

I Community support.

I Reproducible research.

1http://bioconductor.org/

http://bioconductor.org/

Bioconductor provides

I dedicated statistical methodologies

I that work out-of-the-box on specialised data structures
(objects)

I including relevant annotation

I and come with extensive documentation

The eSet class

Higher order objects

When the data to be stored is more complex, special objects are
created to store and handle it in a specialised manner. These
higher order objects are constructed using the data types we have
seen so far as building blocks.

Let’s look at how microarray data is handled in Bioconductor - the
eSet structure.

(The eSet model has been re-used for other technologies.)

> library("Biobase")

> data(sample.ExpressionSet)

> sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B ... Z (26 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

> class(sample.ExpressionSet)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

> slotNames(sample.ExpressionSet)

[1] "experimentData" "assayData"

[3] "phenoData" "featureData"

[5] "annotation" "protocolData"

[7] ".__classVersion__"

> ## class?ExpressionSet

assayData expression values in identical sized matrices.

phenoData sample annotation in AnnotatedDataFrame.

featureData feature annotation in AnnotatedDataFrame.

experimentData description of the experiment as a MIAME object
(see ?MIAME for more details).

annotation type of chip as a character.

protocolData scan dates as a character.

The assayData slot

Stored the expression data of the assay.

> exprs(sample.ExpressionSet)[1:4, 1:3]

A B C

AFFX-MurIL2_at 192.74 85.753 176.76

AFFX-MurIL10_at 97.14 126.196 77.92

AFFX-MurIL4_at 45.82 8.831 33.06

AFFX-MurFAS_at 22.54 3.601 14.69

> dim(sample.ExpressionSet)

Features Samples

500 26

The phenoData slot

stores the meta data about the samples.

> phenoData(sample.ExpressionSet)

An object of class 'AnnotatedDataFrame'

sampleNames: A B ... Z (26 total)

varLabels: sex type score

varMetadata: labelDescription

> pData(sample.ExpressionSet) ## as a data.frame

The featureData slot
stores the meta data about the feautres.

> fData(sample.ExpressionSet)

data frame with 0 columns and 500 rows

> ## as an AnnotatedDataFrame

> featureData(sample.ExpressionSet)

AnnotatedDataFrame

consists of a collection of samples and the values of variables
measured on those samples. There is also a description of each
variable measured. AnnotatedDataFrame associates a
data.frame with its metadata.

> head(pData(sample.ExpressionSet))

sex type score

A Female Control 0.75

B Male Case 0.40

C Male Control 0.73

D Male Case 0.42

E Female Case 0.93

F Male Control 0.22

Subsetting ExpressionSet instances

It is reasonable to expect that subsetting operations work also for
higher order objects.

> sample.ExpressionSet[1:10, 1:2]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 10 features, 2 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

Plan

About R

Hello woRld

Data types
Basic data structures
Exercise

R scripting: a complete use case

Packages

Bioconductor
The eSet class

A Bioc script

A typical Bioconductor script for microarray data analysis.

I Getting data

I Import data into R using dedicated infrastructure

I Analyse

I Save script, plots and objects

Using a subset of the tg-gates data

I E-MTAB-800: transcription profiling by array of rat liver and
kidney after exposure to approximately 130 chemicals
collected from repeat dosing studies2

I Downloaded and unzipped E-MTAB-800.raw.1.zip

I Using only a subset of files below.

2http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-800/

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-800/

Exercise 6:

Loading libraries

library("Biobase")

library("affy")

Reading data

rawdata <- ReadAffy(filenames = flnms)

Normalisation

eset <- rma(rawdata)

See Exercise-06.R

References

General

I W. N. Venables, D. M. Smith and the R Development Core
Team, An Introduction to R (get it with help.start())

I R. Gentleman, R Programming for Bioinformatics, CRC Press,
2008

I Plenty of free documentation on the R web page and
elsewhere.

Bioconductor

I Gentleman et al., Bioconductor: open software development
for computational biology and bioinformatics, Genome Biol.
2004; 5:(10)R80

I Bioconductor Case Studies, 2008, Springer.

References

Plotting

I We have covered base graphics, not lattice and ggplot2.

I Lattice: Multivariate Data Visualization with R, Deepayan
Sarkar (2008)

I ggplot2: Elegant Graphics for Data Analysis, Hadley Wickham
(2010)

I http://gallery.r-enthusiasts.com/allgraph.php

I R Graphics manual:
http://rgm3.lab.nig.ac.jp/RGM/r_image_list

I http://www.cookbook-r.com/Graphs/ (ggplot2)

http://gallery.r-enthusiasts.com/allgraph.php
http://rgm3.lab.nig.ac.jp/RGM/r_image_list
http://www.cookbook-r.com/Graphs/

toLatex(sessionInfo())

I R Under development (unstable) (2013-10-16 r64064),
x86_64-unknown-linux-gnu

I Locale: LC_CTYPE=en_GB.UTF-8, LC_NUMERIC=C,
LC_TIME=en_GB.UTF-8, LC_COLLATE=en_GB.UTF-8,
LC_MONETARY=en_GB.UTF-8, LC_MESSAGES=en_GB.UTF-8,
LC_PAPER=en_GB.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.UTF-8,
LC_IDENTIFICATION=C

I Base packages: base, datasets, graphics, grDevices, methods,
parallel, stats, utils

I Other packages: Biobase 2.23.3, BiocGenerics 0.9.3, knitr 1.5

I Loaded via a namespace (and not attached): evaluate 0.5.1,
formatR 0.10, stringr 0.6.2, tools 3.1.0

I Parts of these slides are based on the Beginners guide to
solving biological problems in R course3, University of
Cambridge.

I This work is licensed under a CC BY-SA 3.0 License

I Course web page:
https://github.com/lgatto/TeachingMaterial

Thank you for your attention

3http://www.training.cam.ac.uk/gsls/course/gsls-rintro

https://github.com/lgatto/TeachingMaterial
http://www.training.cam.ac.uk/gsls/course/gsls-rintro

	About R
	Hello woRld
	Data types
	Basic data structures
	Exercise

	R scripting: a complete use case
	Packages
	Bioconductor
	The eSet class

	A Bioc script

