An Introduction to R

Laurent Gatto
1g390@cam.ac.uk

Microarray Analysis using R and Bioconductor
diXa Training — 28" Jan 2014

lg390@cam.ac.uk

Plan

About R
Hello woRId

Data types
Basic data structures
Exercise

R scripting: a complete use case
Packages

Bioconductor
The eSet class

A Bioc script

Plan

About R

Today’s topics

v

The command line interface is your friend

v

Reading/writing code (you will have to teach yourself
programming, through practice)

v

Today, | will concentrate on data (create and manipulate)

» R - the environment and the language

What is R?

» An interactive statistical environment

» A programming language

» A language and associated tools for reproducible research
(these slides for example)

What is R?

» An interactive statistical environment

» A programming language

» A language and associated tools for reproducible research
(these slides for example)

» Open source and cross platform (GNU/Linux, Windows, Mac
and others)

» Stable (currently 3.0) and development versions.
» Extensive graphics capabilites

» Diverse range of add-on packages

» Active community of developers

» Thorough documentation

@ The R Project for Statis x

¢ & @ [wwwrprojectorg e

The R Project for Statistical Computing

PCA 5 vars ®
e - do.cx -) L] °

About R
What is R?

What's new?

Download, Packages
CR

R Project Glstering 4 groups Factor 1 [419%] Factor 3 [19%)
Foundation Gows

Members & Donors .
L i
Developer Page . °

Conferences
Search

[Getting sStarted:

Documentation
Manuals

 Ris a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To
download R, please choose your preferred CRAN mirror.

 1f you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions
before you send an email.

FAQs
The R Journal

oks
Certfication -
Other News :
i R version 3.0.0 (Masked Marvel) has been released on 2013-04-03.
Bllzznnducmr R version 2.15.3 (Security Blanket) has been released on 2013-03-01.

Related Projects
User Groups
Links

useR! 2012, took place at Vanderbilt University, Nashville Tennessee, USA, June 1215, 2012,

+ The R Journal Vol.472 is available.
 useR! 201

, will take place at the University of Castilla-La Mancha, Albacete, Spain, July 10-12 2013, .

‘This server is hosted by the Institute for Statistics and Mathematics of WU (Wirtschaftsuniversitit Wien).

What is needed:
» The R console
» An editor

We will use:
» RStudio IDE

File Edit Code

View Project Workspace

Plots Tools Help

=0

R Seript *

=0
e

ol-- 23 2|4
@ diamondPricing.R* » | ®formatPlotR ® | diamonds %
& B Dsourceonsave | Q A - = (58 [#Source - £l
1 Tlibrary(ggplot2)
2 source(’plots/formatPlot.R™)
3
4 view(diamonds)
5 summary(diamonds)
6
7 summary (diamonds$price)
& avesize < round(mean(diamondsScarat), 4)
9 clarity < levels(diamondssclarity)
10
11 p < gplot(carat, price,
data- d1amonds. color= c'\ar1ty,
13 xlab="carat", ylab="price"
14 main="piamond Pricing")
15
15:1 (Top Level) &
Console -/
¥ z
0.000 Min. : 0.000 wMin. i 0.000
4.710 1st Qu.: 4.720 1st qQu.: 2.910
5.700 wmedian : 5.710 Median : 3.530
5.731 Mean : 5.735 Mean + 3.539
6.540 3rd Qu.: 6.540 3rd Qu.: 4.040
:10.740 Max. :58.900 Max. :31.800
> summary(diamonds$price)
Min. 1st Qu. Median Mean 3rd Qu. Max.
326 950 2401 3933 5324 18820
> avesize <- round(mean(diamonds3carat), 4)
= clarity <- 'Ieve'ls(d'iamondstc'\ar'ity)
= p o<- qp'lot((arat price,
+ ata-diamonds, aﬂur—ﬂanty,
+ carat”, ylab="Price"
+ piamond pricing™)
>
> format.plot(p, size=24)
>

i

Workspace History

&4 Load~ | [] Saver | #*Import Dataset~ | § Clear Al
Data

diamonds 53940 obs. of 10 variables
Values

aveSize 0.7979

clarity character [8]

P ggplot[8]

Functions

format.plot(plot, size)

Files Plots Packages Help

& & zoom | Eeport- | @] | Clearan

Diamond Pricing

15000 -

10000 -

Price

5000 -

&) project: (Nane) ~

=0

= Clarity

Plan

Hello woRId

Hello woRId
> 5

(11 5

>2 + 2

(1] 4

> sin(pi/2)

[1]1 1

z

(1]

<- 1 ## a wvarziable

= 2 ## overwrite the content of x

2

<- length(x) ## calling a function

> ## just a comment
> 1s()

[1] "X" lly"

> rm(y)
> 1s0)

[1] "X"

> rm(list = 1s())
> 1s()

character (0)

The working directory
> getwd ()

[1] "/home/lgatto/Documents/Teaching/RIntro"

> setwd("/home/lgatto/tmp")
> getwd ()

[1] "/home/lgatto/tmp"

(or use the GUI in RStudio)

Functions: fname (argument)

> floor(2.3)

[1] 2

> sum(3, 4, 10)

[1] 17

> max(3, 10, 1, -0.2)
[1] 10

> mean(3, 4, 5, 6) ## !

[1] 3

Getting help

> Just ask!
> help.start() and the HTML help button in the Windows
GUI.

> help and 7: help("sin") or ?sin.
» 77, help.search, apropos.
» Online manuals and mailing lists.

» Vignettes

» Local R user groups

Exercise 1:

In the interactive R console, calculate the following expressions,
where x and y have values -0.25 and 2 respecively. Then store
the result in a new variable and print its content.

> x + cos(pi/y)

Same, as above, but writing the code in an R source code file using
the editor. Then, clean your working environment (delete all your
variables) and execute the content of that file.

New functions: print to explicitely print to the console and
source to execute the content of a file.

Plan

Data types
Basic data structures
Exercise

Atomic vectors

(1] 1
> c(1, 4, 7, 10)
(1] 1 4 7 10

A vector contains an indexed set of values

» index starts at 1

> all items are of the same kind: numeric, logical or
character.

Back to our mean issue . ..
> mean(3, 4, 5, 6) ## 4 arguments
[1] 3

> mean(c(3, 4, 5, 6)) ## 1 argument

[1] 4.5

Functions to create vectors: constructors with default values
> vector(mode = "numeric", length = 4)

(1] 0000

> numeric(4)

[1] 0000

Functions to create vectors: seq
> 1:5

[1] 12345

> seq(from = 1, to = 10, by = 2)
[11 13579

> seq(from = 1, to

10, length.out = 4)

(1] 1 4 7 10

More functions to create vectors: rep
> rep(1, 5)

(1111111

> rep(1:3, 2)

[1] 123123

> rep(1:3, each = 2)

[1] 112233

Arguments by position or name

> (z1 <- seq(from = 1, to = 10, by = 2))
[11 13579

> z2 <- seq(1, 10, 2)

> z3 <- seq(to = 10, by = 2, from = 1)

> identical(zl, z2) ## returns a logical
[1] TRUE

> identical(zl, z3)

[1] TRUE

Subsetting

The [operator

> x <= 1:10
> x[4:5]

[1] 4 5

> x[seq(1, 10, 3)]
[1] 1 4 710

> x[c(7, 1]

[11 7 1

Negative indices in [

> x <- 1:10
> x[-(1:5)] ## 2 -1:5

[1] 6 7 8 9 10
> x[-seq(1, 10, 3)]

[1] 235689

Out of range indices

> x <- 1:5
> x[5:6]

[1] 5 NA
> x[0:1]

(11 1

Replacement with [

> (x <= 1:10)
[1] 1 2 3 4 5 6 7 8 9 10

> x[1] <- 100
> head(x)

[1] 100 2 3 4 5 6

> x[1:5] <- 0
> x[4:8]

[1] 006 7 8

Vectorised arithmetic

vV V V
N X
A
|
]
(o

(11 12345
>y

[11 54321
>xX +y

[1] 6 6 6 6 6

[1] 1 4 9 16 25

Vectorised arithmetic: recycling rule

> x <= 1:10
>x + 1:2

[1] 2 4 4 6 6 8 8 10 10 12
>x + 1:3

Warning: longer object length is not a multiple of
shorter object length

[1] 2 4 6 5 7 9 810 12 11

Modes and types

> a <- 10
> a <= "10"
> a<-b
> a <- "b"
types class
modes

> logical, integer,

> logical, integer, numeric

> logical, numeric

double,
and character character and
character
» mode () many more
> typeof ()

> class()

> x <- 1; y <= "1"; z <- as.integer(x)
> class(x)

[1] "numeric"
> class(y)

[1] "character"
> class(z)

[1] "integer"

>x <-1; y <= "1"; z <- as.integer(x)
>x + z

[1] 2
>x +ty

Error: non-numeric argument to binary operator

> x ==

[1] TRUE

Exercise 2:
Create vectors i, 1, s and d of type integer, logical,
character and double respectively.

Hints

For example, use sample to create a sequence of integers, the
built-in 1etters character variable, runif to generate doubles
and a logical operator (==, >, <=, ...) to create logicals.

See Exercise-02.R for a solution.

Matrices are 2-dimensional vectors

> m <- matrix(1:12, nrow = 4, ncol = 3)
> m

(.11 [,2] [,3]
[1,] 1 5 9

[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> dim(m)
[1] 4 3

> ncol(m) ## and also nrow(m)

(1] 3

What if | don't get the data or dimensions right?
> matrix(1:11, 4, 3)

Warning: data length [11] is not a sub-multiple or
multiple of the number of rows [4]

[,11 [,21 [,3]
[1,] 1 5 9

[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 1

> matrix(1:12, 3, 3)

[,11 [,2]1 [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Subsetting matrices

> dim(m)

[1] 4 3

> m[3:4, 2:3]
[,1]1 [,2]

[1,] 7 11

[2,] 8 12

> m[1,]

[11 159

Arrays are n-dimensional vectors

> array(1:16, dim = c(2, 4, 2))

[,11 [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

[,11 [,21 [,31 [,4]
[1,] 9 11 13 15
[2,] 10 12 14 16

Lists are ordered set of arbitrary R objects.

> 11 <- list(a = 1:3, b = letters[1:2])
> 11

$a
[1] 1 2 3

$b
[1] nau llbll

> 11[[1]1]
[1] 1 2 3
> 11$b

[1] nau ubn

Dataframes are 2-dimensional list.

> dfr <- data.frame(type = c("A", "A", "B", "B"),
+ time
> dfr

rnorm(4))

type time
A -0.3056
A -1.0342
B -1.0724
B -1.5242

DS wWw N -

> dfr[1,]

type time
1 A -0.3056

> dfr[1, "time"]
[1] -0.3056
> dfr$time

[1] -0.3056 -1.0342 -1.0724 -1.5242

Names

We have seen that function arguments have names, and named our
data.frame columns. We can also name matrix/data.frame
columns and rows, dimensions, and vector items.

>x <-c(a=1, b =2)
> X

ab

12

> names (x)

[1] ||a|| ubn

> M <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)
> colnames (M) <- c(2005, 2006, 2007)

> rownames (M) <- c("plane", "bus", "boat")

> M

2005 2006 2007
plane 4 6 1
bus 8 4 5
boat 5 2 7

> M[c("plane", "boat"), "2005"]

plane boat
4 5

> M <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)
> dimnames(M) <- list(year =

+ c (2005, 2006, 2007),

"mode of transport" =
c("plane", "bus", "boat"))

vV o+ +

mode of transport
year plane bus boat
2005 4 6 1
2006 8 4 5
2007 5 2 7

Subsetting with numbers, characters, logicals

> x <- 1:5

> names(x) <- letters[1:5]

> x[c(1, 3)]

ac

13

> X[C("a", “C")]

ac

13

> x[c(TRUE, FALSE, TRUE, FALSE, FALSE)]

Factors represent categorical data

> gender_char <- sample(c("M", "F"), 10, replace = TRUE)
> gender_fac <- factor(gender_char)
> gender_fac

[1] FMMFFFFFMM
Levels: F M

Special values

NULL
is.null()

NA

NaN

is.na()

Inf

—Inf
is.infinite()

V V V V V V V V

What are the mode and types of these?

Exercise 3:

How to store microarray data?

» What information do we want to store?
» How to store these individual pieces of information?

» How to store these together?

The paste function

> paste("A", "B", "C", sep = "-")
[1] "A-B-C"

> pasteO("A", "B", "C") ## sep = ''

[1] "ABC"

Normally distributed data

> rnorm(3)
[1] 0.0003471 0.1893040 0.8993230
> rnorm(5, mean = 10, sd = 2)

[1] 12.050 7.051 13.512 10.955 9.550

The expression data

> expdata <- matrix(rnorm(200), nrow = 50, ncol = 4)
> dimnames (expdata) <-
+ list(features = pasteO("gene", 1:nrow(expdata)),
i samples = pasteO("sample", 1:ncol(expdata)))
> head(expdata)
samples

features samplel sample2 sample3 sample4

genel 1.0614 -0.65092 -2.39525 0.03049

gene2 0.4263 -0.35495 0.95282 0.75578

gene3 1.3322 -0.21481 1.42996 0.84013

gene4 0.4323 0.07724 -1.02620 0.19746

geneb 0.1478 -0.44830 0.33999 0.29262

gene6 -0.6066 -0.51487 -0.05432 -1.53724

See Exercise-03.R

Sample description

> smdata <- data.frame(feature = colnames(expdata),

+ group = c("ctrl", "ctrl",

il "condl", "condl"),

+ replicate = rep(1:2, each = 2))
> smdata

feature group replicate

1 samplel ctrl 1
2 sample2 ctrl 1
3 sample3 condl 2
4 sample4 condl 2

See Exercise-03.R

Feature description

> fmdata <- data.frame(feature = rownames(expdata),
+ description = ...)

See Exercise-03.R

The complete experiment

> marray <- list(

+ expression = expdata,
+ featuremeta = fmdata,
+ samplemeta = smdata)

See Exercise-03.R

Plan

R scripting: a complete use case

Exercise 4:
» Reproduce the data structure of the previous exercise using
the MAdatal.csv, smetal.csv and fmetal.csv files.
» Produce figures to explore the data.

» Count and visualise the differentially expressed genes in three
microarray result data.

Data 10

read.table creates a data.frame from a spreadsheet file.

write.table writes a data.frame/matrix to a spreadsheet (tsv,
csv).

Specialised data formats often have specific i/o functionality
(microarray CEL files see later)

save writes an binary representation of R objects to a file
(cross-platform).

load load a binary R file from disk.

See Exercise-04.R

Plotting

v

scatter plots with plot and smoothScatter

v

boxplots with boxplot,

v

histograms with hist

v

heatmaps with heatmap

See Exercise-04.R

Programming

» Flow control: for (and while) loops
» Conditions: if, (if else) and else

» (The apply family of functions)

See Exercise-04.R

Optional Exercise 5:

» Combine gene expression results from multiple files into one
matrix and visualise the results.

» Extract some genes of interest from a table and subset the
original data.

New functions: lapply, unlist, unique, match and strsplit.

See Exercise-05.R

Plan

Packages

Packages

» Primary mechanism to distribute R software is via packages.

» Packages are installed in libraries (directories) on your had
disk, and they are loaded with the library function.

» There are software, data and annotation packages.

» The Comprehensive R Archive Network (CRAN) is the main
package repository. It provides an automatic build framework
for package authors.

» The Bioconductor project manages its own CRAN-style
repository.

» R-forge — https://r-forge.r-project.org/

https://r-forge.r-project.org/

i
1200 o
Bioconductor 671 reviewed / Ea
800 o
packages (2.12) . Lo
:'? 500 L) |- 548
§ 400 — i;?:
CRAN 4262 packages 5 Lon
. 3 219
R-forge 1453 projects =
162
. i o
19*" June 2012 100 T A AL A
PIE BTy oTiGoiyoig
T 19 T 91T I 19 13 1%
528 25 &2 £EEEE BB

o,
5
5

Finding packages
» BiocViews — http://bioconductor.org/packages/
release/BiocViews.html.

» CRAN Task Views —
http://cran.r-project.org/web/views/.

http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/BiocViews.html
http://cran.r-project.org/web/views/

Package installation

» From within R, using install.packages - takes care of
dependencies

install.packages("packagename")

» Update all installed packages with update.packages.
» For Bioconductor packages, use biocLite:

source ("http://www.bioconductor.org/biocLite.R")
or, 1f you have already done so in the past
library("BiocInstaller")

biocLite("packageName")

Getting information about packages

» CRAN/Bioconductor/R-forge web pages
» Documentation

help(package = "Biobase")
> Vignettes (mandatory for Bioconductor packages)

vignette(package = "Biobase")

vignette("Bioconductor", package = "Biobase")

» Demos

demo("lattice", package = "lattice")

Plan

Bioconductor
The eSet class

The Bioconductor project

Bioconductor! provides tools for the analysis and comprehension of
high-throughput genomic data. Bioconductor uses the R statistical
programming language, and is open source and open development.

v

Good to get things done.

v

Good to programming (as in engineering).

Excellent for bioinformatics.

v

» Community support.

v

Reproducible research.

"http://bioconductor.org/

http://bioconductor.org/

Bioconductor provides

» dedicated statistical methodologies

> that work out-of-the-box on specialised data structures
(objects)
> including relevant annotation

» and come with extensive documentation

The eSet class

Higher order objects

When the data to be stored is more complex, special objects are
created to store and handle it in a specialised manner. These
higher order objects are constructed using the data types we have
seen so far as building blocks.

Let's look at how microarray data is handled in Bioconductor - the
eSet structure.

(The eSet model has been re-used for other technologies.)

> library("Biobase")
> data(sample.ExpressionSet)
> sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples
element names: exprs, se.exprs
protocolData: none
phenoData
sampleNames: A B ... Z (26 total)
varLabels: sex type score
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu95av2

> class(sample.ExpressionSet)
[1] "ExpressionSet"
attr(,"package")

[1] "Biobase"

> slotNames (sample.ExpressionSet)

[1] "experimentData" "assayData"
[3] "phenoData" "featureData"
[5] "annotation" "protocolData"
[7] ".__classVersion__"

> ## class?ExpressionSet

assayData expression values in identical sized matrices.
phenoData sample annotation in AnnotatedDataFrame.
featureData feature annotation in AnnotatedDataFrame.

experimentData description of the experiment as a MIAME object
(see ?MIAME for more details).

annotation type of chip as a character.

protocolData scan dates as a character.

The assayData slot
Stored the expression data of the assay.

> exprs(sample.ExpressionSet) [1:4, 1:3]

A B C
AFFX-MurIL2_at 192.74 85.753 176.76
AFFX-MurIL10_at 97.14 126.196 77.92
AFFX-MurIlL4_at 45.82 8.831 33.06
AFFX-MurFAS_at 22.54 3.601 14.69

> dim(sample.ExpressionSet)

Features Samples
500 26

The phenoData slot
stores the meta data about the samples.

> phenoData(sample.ExpressionSet)

An object of class 'AnnotatedDataFrame'
sampleNames: A B ... Z (26 total)
varLabels: sex type score
varMetadata: labelDescription

> pData(sample.ExpressionSet) ## as a data. frame

The featureData slot
stores the meta data about the feautres.

> fData(sample.ExpressionSet)

data frame with O columns and 500 rows

> ## as an AnnotatedDataFrame
> featureData(sample.ExpressionSet)

AnnotatedDataFrame

consists of a collection of samples and the values of variables
measured on those samples. There is also a description of each
variable measured. AnnotatedDataFrame associates a
data.frame with its metadata.

> head(pData(sample.ExpressionSet))

sex type score
A Female Control 0.75
B Male Case 0.40
© Male Control 0.73
D Male Case 0.42
E Female Case 0.93
F Male Control 0.22

Subsetting ExpressionSet instances

It is reasonable to expect that subsetting operations work also for
higher order objects.

> sample.ExpressionSet[1:10, 1:2]

ExpressionSet (storageMode: lockedEnvironment)
assayData: 10 features, 2 samples

element names: exprs, se.exprs
protocolData: none
phenoData

sampleNames: A B

varLabels: sex type score

varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu95av2

Plan

A Bioc script

A typical Bioconductor script for microarray data analysis.
> Getting data

» Import data into R using dedicated infrastructure
> Analyse
» Save script, plots and objects

Using a subset of the tg-gates data

» E-MTAB-800: transcription profiling by array of rat liver and
kidney after exposure to approximately 130 chemicals
collected from repeat dosing studies?

» Downloaded and unzipped E-MTAB-800.raw.1.zip
» Using only a subset of files below.

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-800/

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-800/

Exercise 6:

Loading libraries

library("Biobase")
library("affy")

Reading data

rawdata <- ReadAffy(filenames = flnms)

Normalisation

eset <- rma(rawdata)

See Exercise-06.R

References

General
» W. N. Venables, D. M. Smith and the R Development Core
Team, An Introduction to R (get it with help.start())

» R. Gentleman, R Programming for Bioinformatics, CRC Press,
2008

» Plenty of free documentation on the R web page and
elsewhere.

Bioconductor

» Gentleman et al., Bioconductor: open software development
for computational biology and bioinformatics, Genome Biol.
2004; 5:(10)R80

» Bioconductor Case Studies, 2008, Springer.

References

Plotting

» We have covered base graphics, not lattice and ggplot2.

» Lattice: Multivariate Data Visualization with R, Deepayan
Sarkar (2008)

> ggplot2: Elegant Graphics for Data Analysis, Hadley Wickham
(2010)

> http://gallery.r-enthusiasts.com/allgraph.php

» R Graphics manual:
http://rgm3.lab.nig.ac.jp/RGM/r_image_list

» http://www.cookbook-r.com/Graphs/ (ggplot2)

http://gallery.r-enthusiasts.com/allgraph.php
http://rgm3.lab.nig.ac.jp/RGM/r_image_list
http://www.cookbook-r.com/Graphs/

toLatex(sessionInfo())

v

R Under development (unstable) (2013-10-16 r64064),

x86_64-unknown-linux-gnu

Locale: LC_CTYPE=en_GB.UTF-8, LC_NUMERIC=C
LC_TIME=en_GB.UTF-8, LC_COLLATE=en_GB.UTF-8,
LC_MONETARY=en_GB.UTF-8, LC_MESSAGES=en_GB.UTF-8,
LC_PAPER=en_GB.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.UTF-8,
LC_IDENTIFICATION=C

Base packages: base, datasets, graphics, grDevices, methods,
parallel, stats, utils
Other packages: Biobase 2.23.3, BiocGenerics 0.9.3, knitr 1.5

Loaded via a namespace (and not attached): evaluate 0.5.1,
formatR 0.10, stringr 0.6.2, tools 3.1.0

> Parts of these slides are based on the Beginners guide to
solving biological problems in R course3, University of
Cambridge.

» This work is licensed under a CC BY-SA 3.0 License

» Course web page:
https://github.com/lgatto/TeachingMaterial

Thank you for your attention

*http://www.training.cam.ac.uk/gsls/course/gsls-rintro

https://github.com/lgatto/TeachingMaterial
http://www.training.cam.ac.uk/gsls/course/gsls-rintro

	About R
	Hello woRld
	Data types
	Basic data structures
	Exercise

	R scripting: a complete use case
	Packages
	Bioconductor
	The eSet class

	A Bioc script

